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Abstract. We give a polynomial time algorithm for solving the Euclidean Steiner tree problem
when the terminals are constrained to lie on a fixed finite set of disjoint finite-length compact simple
smooth curves. The problem is known to be NP-hard in general. We also show it to be NP-hard if
the terminals lie on two parallel infinite lines or on a bent line segment provided the bend has an
angle of less than 120◦.
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1. Introduction. Suppose we are given a finite set of n points, called terminals,
in the plane. A Steiner tree is a tree connecting all the given points, and the Steiner
problem is to find a Steiner tree of shortest total length, called a minimal Steiner
tree. This has applications in areas such as the design of pipelines, drainage systems,
and wiring. The tree can have extra (nonterminal) vertices, called Steiner vertices.
In solving the Steiner problem, one has to determine not only the underlying graph
of the tree (called its topology) but also the precise positions of the Steiner vertices.
As shown by Hwang [4], the latter problem does not cause great difficulties, since a
minimal Steiner tree can be determined in linear time given its topology.

The following is well known (see Gilbert and Pollak [3]).
Lemma 1. In a minimal Steiner tree, Steiner vertices all have degree 3, and the

three incident edges meet at 120◦ angles.
We define a Steiner component of a tree to be a maximal subtree, all of whose

nonleaves are Steiner vertices. We may deduce that in a given Steiner component,
the edges are oriented in only three different directions.

However, making use of the number and complexity of the possible topologies,
Garey, Graham, and Johnson [1] showed that the Steiner problem is NP-complete.
Therefore it is expected that there is no polynomial time algorithm to find a minimal
Steiner tree.

In 1987, R. Graham suggested trying to solve the Steiner problem in the case
where the terminals all lie on a circle. We have been considering a more general
version of this question: for any problem whose input is a set of points in the plane,
we can restrict ourselves to the case where all given points lie on a fixed set of smooth
curves of finite total length in the plane. We call this a G-constrained problem. So,
for the G-constrained Steiner problem, the terminals must lie on G. In this paper we
prove the following theorem. (Note that a compact curve must have finite length.)

Theorem 1. If G is a fixed finite set of disjoint compact simple smooth curves
in the plane, then there is a polynomial time algorithm for the G-constrained Steiner
tree problem.
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Note. We ignore the complexity of the presentation of G and the terminals and
assume that elementary geometric constructions can be performed in bounded time.
So, in particular, by “polynomial time” we mean time polynomial in the number n of
terminals.

For example, the restriction of the Steiner problem to terminals which lie on the
smooth curves in Figure 1 has a polynomial time algorithm.

Fig. 1. Disjoint smooth curves.

We prove Theorem 1 in the following section. The degree of the polynomial
involved in our proof is in general quite high, and so we do not attempt to determine
it precisely. It is highly dependent on the geometry of G. In fact the running time of
the algorithm depends on the length and the maximum curvature of G as well as the
proximity of the curves or sections of a curve.

We also show in section 3 that the smoothness condition cannot be dropped
totally from Theorem 1, by showing that the special case of the Steiner problem, in
which the terminals are constrained to lie on two line segments meeting at an angle
which is less than 120◦, is NP-hard. This is much stronger than the main result of
[1] that the Steiner problem is NP-hard, but we use an argument different from and
in many ways simpler than the argument there. In particular, our result implies that
the Steiner problem remains NP-hard even when restricted to sets of terminals lying
in convex position. As we show, the problem is even NP-hard when the terminals are
restricted to lying on two parallel lines. Our first proof assumes that infinite precision
real arithmetic takes finite time. Due to the intricacies of handling infinite precision
and the fact that our proof does not really require infinite precision, we also prove
that the corresponding discretized versions of these problems are NP-complete. From
the argument in [1], it follows that the Steiner problem is NP-hard in the strong sense,
whereas the argument we give here for the restricted problems does not provide this
conclusion. However, in both [1] and here, the discretized problems have not been
shown NP-complete in the strong sense. In fact, Provan [5] gave a full polynomial
time approximation scheme for the case where terminals are in convex position. It
follows that the discretization of this problem cannot be NP-complete in the strong
sense unless P = NP.

It follows from our results that the G-constrained Steiner problem is still NP-hard
when G is the curve in Figure 2. However, the proof of Theorem 1 can be adapted to
give a polynomial time approximation scheme when G is a fixed finite set of smooth
curves of finite total length (see Figure 3); i.e., we get an algorithm constructing a
tree whose length is within δ of that of the minimal Steiner tree for any prescribed
δ > 0.

The topologies occurring in the NP-hardness proofs in section 3 cannot cause a
problem if all angles in G are greater than 120◦, so we do not hesitate to conjecture
that Theorem 1 can be strengthened as follows.

Conjecture. If G is a fixed collection of compact smooth curves of finite total
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Fig. 2. Curves meeting at an angle.

Fig. 3. Smooth curves meeting and crossing.

length, then there is a polynomial time algorithm for the G-constrained minimal
Steiner tree problem if the minimum angle formed by the meeting of any two curves
is strictly greater than 120◦.

In view of the results in section 3, the truth of the conjecture would imply that only
those G with a minimum angle of exactly 120◦ would be of undetermined complexity.
For these, the second-order behavior of the curves near such angles would undoubtedly
be the determining factor.

2. Proof of Theorem 1: An algorithm. Suppose G is a fixed finite set of
disjoint smooth (i.e., continuously differentiable) compact curves of finite total length.
Let L denote an upper bound on the length of a curve containing G, for instance the
total length of the curves in G plus the sum of the distances between the components
of G. Then L is an upper bound on the length of a minimal Steiner tree in this
problem.

In view of the smoothness of the curves of G, we can choose, for any δ > 0, a
covering of G made up of a finite set Q(δ) of simply connected compact curves which
overlap only on their endpoints with the properties that

G =
⋃

Q∈Q(δ)

Q

and such that all tangents to the curve of G at points in any fixed Q ∈ Q and in the
two neighboring curves in Q have direction within δ of each other. (See Figure 4(a).)

Choosing δ small enough allows us to consider the curves ofG to be approximately
straight in each Q ∈ Q and the two neighboring curves. For some of our statements
we assume that δ is sufficiently small, without explicitly stating so.
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ε

(a) (b)

Fig. 4. Capsules.

Also, there is some minimal ε > 0 for which the set of points at distance exactly
ε from the curves is self-intersecting. We will fix ε to have a smaller positive value
than this, as determined below.

Given Q ∈ Q(δ), define the capsule C(Q) to be

{x : d(x,Q) ≤ ε},
where d denotes Euclidean distance. (See Figure 4(b).) Note that G ∩ C(Q) is a
simply connected curve by the choice of ε.

We define the direction of G in a capsule to be the direction of a tangent to G at
some point in the capsule. We choose ε so small that the direction of G is within δ of
the direction of all tangents to the curve of G at points within the capsule. This can
be done by choosing it small enough to make sure that the parts of G contained in
the capsule are within the neighboring elements of Q. Despite this condition on ε, we
are at liberty in our argument to make δ as small as we please and (if necessary by
subdividing elements in Q) to ensure that for each Q ∈ Q the length of G∩C(Q) is at
most 100ε. (The constant 100 is chosen for convenience: any number greater than 3
would do.) We may henceforth regard the set of capsules as fixed. The determination
of the capsules is a step of our algorithm which we will not describe explicitly. It
needs to be done once only for any given set of curves, and so takes constant time
independent of n. Thus, we assume the capsules have been determined before starting
the algorithm.

Let S be a minimal Steiner tree for a given set of n terminals lying on G. For
a capsule C = C(Q), the set of edges of S which intersect C and are incident with
Steiner vertices of S not necessarily in C induce a forest F . We next analyze this
forest in detail. Note that we consider terminal-to-terminal edges last.

2.1. Bounding the number of paths to the boundary of the capsule. We
define an alternating path, or zigzag, to be a path in S such that all internal vertices
of the path are Steiner vertices, and such that at most two directions are used in the
edges of the path. By Lemma 1, every zigzag is contained in a maximal zigzag with
a terminal at each end. Zigzags are defined in F analogously, but in that case the
maximal zigzags will terminate at vertices outside C.

If an edge of F is nearly parallel to G in C, an “alternating topology” can occur
as in Figure 5. To be precise, we define an alternating branch of F to be a branch
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Fig. 5. Alternating branch.

of a Steiner component S0 of S (i.e., a connected component of S0 − e for some edge
e of S0) contained in F , containing at least two Steiner vertices, and in which some
zigzag using the direction of e contains all the Steiner vertices in the branch. Since
an alternating branch of F is a subtree of a Steiner component of S, it has three
directions occurring in its edges. It is easy to verify that in an alternating branch,
one of the three directions is arbitrarily close to the direction of G in C. (In Figure 5,
the angles between s2t2 and the tangent to G at t2 and between s1t1 and the tangent
to G at t1 add to give the angle between the tangents to G at t1 and t2. This is
less than δ.) The other two directions determine a maximal zigzag in the alternating
branch containing the Steiner vertices, called the zigzag of the branch. This is the
same zigzag as referred to in the definition if there are more than two Steiner vertices.
For example, the zigzag of the branch in Figure 5 is t0, s1, s2, s3, s4. A cherry of F is
a branch of a Steiner component of S contained in F and containing just one Steiner
vertex and two terminals. Each alternating branch contains a unique cherry.

We shall now choose a maximal zigzag from each terminal in Q in F but not
in an alternating branch or cherry of F . First choose any edge incident with such a
terminal u. Then the other end of this edge is a Steiner vertex v, because all edges in
F are incident with at least one such vertex. For the second edge of the zigzag, choose
another edge incident with v leading away from G ∩ C, and then extend these two
edges to a maximal zigzag in F . Note that this zigzag will be adjacent to some other
Steiner vertex in F , as the branch containing the zigzag is not alternating. Next, from
each cherry of F containing a terminal in Q, choose a maximal zigzag in F originating
in the cherry and using no direction close to (i.e., within δ of) the direction of G in C.
Note that for each alternating branch B of F containing such a cherry, this determines
the maximal zigzag in F containing the zigzag of B. Denote the set of all the maximal
zigzags chosen in either of these two ways by Z. Also denote the set of terminals on
Q which are adjacent in S to terminals outside C(Q) by Z ′.

Clearly, no edge is in more than two maximal zigzags since once a choice of two
directions is made then the zigzag is determined. A zigzag in Z with both ends in
G ∩ C would necessarily use a direction close to that of G in C. This is because if
no direction is close to G then the zigzag is chosen leading away from G at the first
Steiner vertex so it clearly cannot end on G. Thus, by construction, such a zigzag
must have been formed from a terminal not in an alternating branch or a cherry, as
in the latter cases one end is not in the capsule C. But in view of the directions of
edges in this zigzag, the terminal must be contained in an alternating branch or in a
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cherry, and so this is impossible.
We now consider the zigzags in Z. A zigzag in F with no end on Q must originate

in a cherry spanning one of the ends of Q to one side of G ∩ C − Q. There can be
at most four of these zigzags, because no two cherries on the same side of G ∩ C can
enclose intersecting segments of G ∩ C. Thus in Z we have at least |Z| − 4 paths
from Q to the boundary of C. Clearly no edge is in more than two maximal zigzags.
Hence the total length of edges in F is at least (|Z| − 4)ε/2. Each terminal in Z ′ also
contributes at least ε to the length of S − F . Since S is a minimal Steiner tree, we
now have

|Z ∪ Z ′| ≤ 2L

ε
+ 4,

which is a constant independent of n, depending on the length and maximum curva-
ture of G.

2.2. The algorithm. We need to consider the structure of F inside the capsules.
With this aim, define Y (C) to be the set whose elements are

(i) the maximal alternating branches in F which contain at least one terminal
in Q;
(ii) the cherries in F not in alternating branches in F , which contain at least
one terminal in Q;
(iii) the terminals in Q which are in F but not in any alternating branch or
any cherry of F ;
(iv) the terminals in Z ′.

For elements of Y (C) in (i)–(iii), we can associate a unique maximal zigzag. Since
each alternating branch contains precisely one cherry, each element of Y (C) of type (i)
contains the beginning of just one maximal zigzag in Z(C). For (ii), for each cherry
we chose a unique maximal zigzag. For (iii) we associated a unique maximal zigzag
with such a terminal, leading away from G∩C. Thus |Y (C)| = |Z ∪Z′| and is hence
bounded. Thus, we consider the following algorithm for finding a minimal Steiner
tree S on the given terminals. Let M denote the length of the shortest tree found so
far in the algorithm. The algorithm grows the Steiner tree inward starting from the
curve but leaves terminal-to-terminal edges until last. Recall that we are assuming
that the capsules have already been determined.

0. Put M = ∞.
1. In each capsule C choose the terminals in Y (C) and select which of these
are in Z ′. Also choose the sets of terminals in the alternating branches and
cherries in Y (C), and the remaining terminals adjacent to Steiner vertices,
and the adjacency between the vertices within the alternating branches (which
includes the arrangement of Steiner vertices in the alternating branches).
2. Choose the adjacencies of the subforest of S induced by all remaining
edges incident with Steiner vertices. These edges may start at terminals and
connect to Steiner vertices outside the capsules or may be part of S outside
the capsules.
Repeat steps 3–5 for each possible choice made in steps 1 and 2.
3. Compute a minimal length set of edges to add to the forest in step 2
in order to complete the choice of adjacencies in S. These edges must be
terminal to terminal.
4. Find a minimal tree S with these adjacencies.
5. If the length of S is less than M , set M equal to the length of S and put
S0 = S.
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6. Output S0 as the minimal Steiner tree.

2.3. Each step can be determined in polynomial time. Since there is a
fixed number of capsules, the sum of |Y (C)| over all C is bounded. Step 2 can be
carried out in a bounded number of ways and in bounded time because it amounts
to a choice of a forest whose leaves are elements in Y (C), over all capsules C. Step 3
can be done in polynomial time by computing the distance of any Steiner component
containing a Steiner vertex from any other such component by a direct edge from
terminal to terminal. This gives a weighted graph whose vertices are these Steiner
components, and all we need is a minimum weight spanning tree in this graph, which
is computable in polynomial time using standard methods. Step 4 can be carried out
in polynomial time by Hwang’s result mentioned in the introduction.

The proof is completed by showing that, for sufficiently small δ, the alternatives
for step 1 can be determined in time polynomial in n. A crucial part of this is to show
that they are polynomial in number.

Note that the choice of terminals in cherries and alternating branches in a capsule
will affect the valid alternatives in an adjacent capsule, as the capsules overlap. Nev-
ertheless, all we have to do is show that there is a polynomial number of alternatives
for each capsule C, since a choice for a capsule and its adjacent ones can be checked
in polynomial time by first checking that the graph is a tree and then using Hwang
[4].

Elements of Y (C) of the second and third kind (cherries and isolated terminals)
contain either two terminals or one terminal and so each can be chosen in time n2.
Thus it is only the maximal alternating branches that cause trouble. All we need to
show is that each can be chosen in a polynomial number of ways. The difficulty is
that they can contain an unbounded number of terminals.

The zigzag of a maximal alternating branch B in Y (C) determines an ordering
of the terminals t0, . . . , tj and of the Steiner vertices s1, . . . , sj in B, as in Figure 5.
For 1 ≤ i ≤ j − 2, there is a constant c1 such that

d(si, si+1)

d(si, ti)
> c1.(1)

If this ratio is arbitrarily small there are two cases. In the first, if d(si+1, si+2)/d(si, si+1)
is large enough, then the tree S can be shortened by replacing the line from x to si+1

by the line from x to a where x and a are appropriately chosen points between si+1

and si+2 and between si and ti, respectively (see Figure 6(a)). In the second case if
d(si+1, si+2)/d(si, si+1) is small, S can be shortened by replacing the line from y to
si+2 by the line from ti to y where y is the closest point to ti on the line from si+2

to ti+2 (see Figure 6(b)). A similar argument applies even if si+1 is the first Steiner
vertex s1 in the alternating branch. In this case si is replaced by t0.

Furthermore, since the line from si to si+1 makes an angle close to 60◦ with the
direction of G in C, we have for 1 ≤ i ≤ j − 1

d(si+1, ti+1)

d(si, si+1)
> ω1,(2)

where ω1 can be made as large as we like, without affecting c1, by our choice of δ. In
fact, in the triangle si+1 ti+1 si, the angle at ti+1 can be made as small as necessary
by the selection of δ.
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Fig. 6. Nonoptimal trees.

This equation is also valid for i = 0 if we take s0 = t0. From (1) and (2),

d(si+1, ti+1)

d(si, ti)
> ω2,

d(si+1, si)

d(si, si−1)
> ω2(3)

for an arbitrarily large constant ω2, 1 ≤ i ≤ j − 2.
These inequalities will be used to deduce two things: first, the terminals of two

different alternating branches (on opposite sides of G) cannot intermingle along G
very much; and second, when the section of G containing the terminals of the branch
is decided, the choice of which terminals are to be included in the branch has a
polynomial number of alternatives.

2.4. Intermingling does not occur. The outermost terminals along the curve
of G∩C are tj and tj−1. We refer to the terminals t0, . . . , tj−3 as the inner terminals
of B. Note that tj−2 is not inner.

Suppose that some inner terminal t′ of some other alternating branch B′ lies
between two inner terminals of B along the curve ofG∩C. Let d0 denote d(sj−3, sj−2).
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By (3), this is approximately equal to d(t0, sj−2), since the distances d(t0, s0), . . . ,
d(sj−4, sj−3) are all negligible compared with d(sj−3, sj−2). So using (1) we have
that

d(t0, sj−2)

d(t0, tj−3)
> c′1

for some constant c′1. Thus

d0

d(t0, tj−3)
> c2

for some constant c2. But t′ lies between the inner terminals of B, and so if t′ lies on
the same side of t0 as tj−3 we have d(t0, tj−3) > d(t0, t

′). The same conclusion follows
if t′ lies on the other side of t0 because tj−3 is much further away from t0 than tj−4.
Hence d(t0, t

′) < c′2d0 < d(tj−2, sj−2) by (2), where c′2 denotes some constant. We
next show by the minimality of S that no point in B′, except perhaps t′, can have
distance to tj−2 less than d(tj−2, sj−2). Because if b′ is such a point, then we can
consider joining tj−2 to b′ and erasing the edge tj−2sj−2 (in the case where the path
in S from B′ to tj−2 is via sj−2) or joining t0 to t′ and erasing tj−2sj−2 (otherwise).
This gives a tree shorter than S. Similarly, no point in B′ can have distance to tj−1

less than d(tj−1, sj−1) or distance to sj−1 less than d(sj−1, sj−2). This gives three
circles A1, A2, and A3 from the interior of which B′ is excluded (see Figure 7). A
short interval I of G ∩ C lies between these excluded regions. Lines l1 and l2 can be
drawn from the ends of I at angles of 60 + δ◦ to the direction of G in C, as shown in
Figure 7. It follows from (2) that the radius of A2 divided by the distance from A2

to the far end of I can be made arbitrarily large. Hence l2 intersects A2. Similarly,
it follows that l1 intersects A1. Thus there are bounded regions R1, R2, and R3 as
shown in Figure 7.

Assume now that some terminal (not necessarily inner) of B′ lies outside I. Re-
ferring to the terminals of B′ as t′0, t

′
1, . . . as for B, let i be maximized such that t′i

lies in I. Either t′i is the leftmost terminal of B′ in I, in which case the line from s′i
to s′i+1 must lie in regions R1 and R2, or it is the rightmost terminal of B′ in I, in
which case the line from s′i to s′i+1 must lie in regions R1 and R3. This forces the line
from t′i+1 to s′i+1 to enter A1 or A2, which is a contradiction.

Thus all terminals of B′ lie inside I. Since B was arbitrary, we now get a con-
tradiction, by reversing the roles of B and B′, unless all the inner terminals of B′ lie
between two adjacent inner terminals of B. In this case we can join all the terminals
of B′ along G to the closest terminal of B and delete B′. Since B′ has length at least
ε (it leaves the capsule C), and we can assume that I has length less than ε, this
shortens S. If this operation disconnects S, we can reconnect it either to tj−2 or to
tj−1 to obtain a tree shorter than S since the edge of B′ leaving the capsule slants to
the left or to the right at approximately 60◦ to the direction of G in the capsule. (In
verifying this, note that by (2) and (3), in the first case, d(sj−2, t0) is arbitrarily small
compared with d(tj−2, t0) and hence with ε also by the assumption that the length
of G ∩ C(Q) is at most 100ε. The second case is similar.) The conclusion is that no
inner terminal of any alternating branch in Y (C) lies between two inner terminals of
another alternating branch.

2.5. Assigning terminals to branches. For the alternating branch B as be-
fore, we can choose the terminals tj−4, tj−3, . . . , tj and t0 in at most n6 ways. Do this
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A1
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to tj–1

to sj
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R2

l

1l

to tj–2

sj–2

Fig. 7. Excluded regions.

for each alternating branch. Let I0 denote the portion of G∩C between tj−4 and tj−3.
We can assume from above that no terminals on I0 are in other alternating branches,
and we can ignore the ones in cherries (assuming that they have been chosen already).
Thus terminals on I0 are the terminals of B and terminals adjacent in S only to other
terminals.

Suppose that an edge of S is incident with both a terminal t in I0 and a terminal
t′ outside I0. Then either t is in Z ′, and is already chosen, or t′ is in G∩C, in which
case S is clearly not optimal due to the edges of B being close to, nearly parallel to,
and nearly overlapping the edge tt′. Similarly, no edge connecting two terminals in
I0 can “overlap” another such edge, in the sense that the end of one edge cannot lie
between the two ends of the other edge (betweenness is measured along G).

Thus we can assume that the terminals in I0 other than t0, t1, . . . , tj−3 are all
connected in S along G to the terminals of B. Any edge from a terminal in B to one
not in B must be directed away from t0 since otherwise an angle of less than 120◦ is
created (see Figure 8). We next show that it is enough in this situation to choose t0
and the direction from t0 to t1.

First, no terminals can lie in between t0 and t1, so t1 is now determined. For the
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t1

t0
t2u1 u2

Fig. 8. Terminals near an alternating branch.

same reason that produces (2) we have

d(s1, t1)

d(t0, s1)
> ω1.

Also, for the same reason that produces (1), the terminals u1 and u2 in Figure
8 must have distance at most c3d(t0, s1) from t0 for some constant c3. On the other
hand, from (3) and (4),

d(s2, t2)

d(t0, s1)
> ω1

and thus t2 is uniquely determined as the first terminal around G from t0 in the
direction away from t1 and of distance at least c3d(t0, s1) from t0. In a similar fashion
the terminals t3, t4, and so on are determined uniquely, one after another. This
completes the proof, since t0 and the direction from t0 to t1 can be chosen in at most
2n ways.

3. NP-hardness of angles. We present the following NP-complete problem in
the format given by Garey and Johnson [2].

SUBSET SUM.

INSTANCE: A set S = {d1, . . . , dn} of integers and an integer s.

QUESTION: Is there a subset J of S such that
∑

i∈J di = s?

We will use the fact that SUBSET SUM is NP-complete to deduce that the
following problem is NP-hard.

PALIMEST (parallel line minimal Euclidean Steiner tree).

INSTANCE: A set T of points in the plane contained in two parallel lines and a
number l.

QUESTION: Is there a Steiner tree S with terminals T and length at most l?

In [1] a thorough discussion can be found of the difficulties of describing the com-
plexity of Steiner tree problems due to the existence of square roots in the Euclidean
metric. Instead of repeating that discussion, we state our results in two forms. The-
orems 2 and 3 assume that infinite precision computation such as calculating the
distance between points in the plane precisely can be done in finite time. Then Theo-
rem 4 states that discretized versions of these problems, which are more realistic from
the point of view of practical computing, are NP-complete. In view of Provan’s result
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[5], these discretized versions cannot be NP-complete in the strong sense unless P =
NP.

Theorem 2. PALIMEST is NP-hard.
The proof of Theorem 2 is by reduction from SUBSET SUM. Given an instance

S = {d1, . . . , dn} and s of SUBSET SUM, we construct an instance X(S) of PAL-
IMEST as follows. First choose four parallel lines l1 and l2, l

′
1 and l′2 such that l′1

and l′2 are between l1 and l2. Then construct a tree with all leaves on l1 and l2, with
all edges at 30◦ or 90◦ to the direction of l1 and l2, and with structure as shown in
Figure 9.

l'

v' v'

u0 u1 u2 un

v 1 v 2 v'1 v 3 v 4 2 v 5 v 6 3l 2

2

l'1

l 1

v 0 v

2s

Fig. 9. A particularly troublesome set of terminals.

The leaves of the tree on l1 are u0, . . . , un, and those on l2 are v1, . . . , v2n and v.
Note that the symmetry of Figure 9 means that once the distances between the lines
are chosen, the only flexibility is where the Steiner points between v2i−1 and v2i are
located. In particular the locations of the points v, u0, . . . , un are determined. The
points v1, . . . , v2n are chosen so that d(v2i−1, v2i) = di for each i. Note that this can
be achieved by adjusting the height of the Steiner points. For PALIMEST, let T be
the set {v1, . . . , v2n} ∪ {u0, . . . , un} together with the n points v′i on l2 of distance di
to the right of v2i for each i and the point v0 on l2 of distance 2s to the left of v.
Choose

d(l1, l2) >> d(l1, l
′
1) = d(l2, l

′
2) >> D =

n∑
i=1

di

so that, seen from a long way off, the tree looks like Figure 10. Clearly, on this
scale the tree describes a minimal Steiner tree for the terminals in T . Thus, such a
minimal Steiner tree must have the form of the tree shown in Figure 9, except that
the rightmost edge is incident with v0 rather than v, and that each connection up to
l2 except that at v0 contains a Steiner vertex adjacent to both v2i and one of v2i−1

and v′i. Whichever vertex is missed is adjacent directly to v2i in T . The two options
are shown in Figure 11. We refer to them as the left and right options of the ith
upper attachment. In any tree which uses one of these two options for each i and has
the property that all edges meet at Steiner vertices at 120◦, the angle α between l1
and the edge to u0 is determined. We call such a tree, whether minimal or not, an
α-degree tree.

Proposition 1. There exists a 30-degree tree if and only if there is a subset J
of S such that

∑
i∈J di = s.

Proof. This follows from the simple observation that in a 30-degree tree, use of the
right option at the ith attachment for each i in a set J has the effect of translating the
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l 2

l 1

Fig. 10. A minimal tree.

v'vv'v 2 2 11v 1 v 1

Fig. 11. Two modes of attachment.

rightmost leaf of the tree, which lies on l2 near v, along l2 by a distance of 2
∑

i∈J di
to the left.

The main fact remaining to be shown is that 30-degree trees, if they occur, are
minimal. To facilitate this we define a generalization of an α-degree tree called an
α-degree configuration. First add an extra line l3 parallel to l2 and intersecting all
the upper vertical lines of an α-degree tree A, such that d(l2, l

′
2) >> d(l3, l2) >> D.

Every upper vertical edge of A is sliced into two edges by l3, and the ends of these
edges at l3 are then permitted to move freely up and down l3 as if moving along a
curtain rail on runners, as in Figure 12. The length of the configuration is computed
as the sum of the lengths of its edges; distances along l3 are ignored. The directions
of the edges in the configuration are still restricted to three directions at 120◦ to each
other, and the angle of the edge at u0 to l1 is α. By a configuration we mean an
α-degree configuration for some α.

v' v'

u0 u1 u2

v 1 v 2 v'1 v 3 v 4 2 v 5 v 6 3
l 2

l 1

l 3

un

v 0

Fig. 12. An α-degree configuration.

Proposition 2. All shortest configurations are 30-degree configurations.

Proof. This follows from the observations that in a shortest configuration each
edge meeting l3 must do so at 90◦, and that each component of a shortest configuration
is a minimal Steiner tree and hence, by Lemma 1, has edges at Steiner vertices meeting
at 120◦.

Proposition 3. All 30-degree configurations have equal length.

Proof. The sum of the lengths of the edges above l3 is clearly constant, since
d(v2i−1, v2i) = di = d(v2i, v

′
i). Let w1, . . . , wn denote the points on l3 touched by

the configuration in left-to-right order. For 0 ≤ i < n, let a2i denote the horizontal
distance from ui to wi+1 and a2i+1 the horizontal distance from wi+1 to ui+1, and let
a2n denote the horizontal distance from un to v0. Also for 1 ≤ i ≤ n let x2i−1 denote
the length of the edge below l3 incident with wi, and let x2i denote the length of the
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edge incident with ui. We have for 1 ≤ i < 2n,

x1 + a0/
√

3 = xi + xi+1 + ai/
√

3 = x2n + a2n/
√

3 = d(l1, l3)

and thus

2n∑
i=1

2xi +
2n∑
i=0

ai/
√

3 = (2n+ 1)d(l1, l3).

Since
∑2n

i=0 ai is fixed equal to the horizontal distance from u0 to v0, it follows that
the length of the configuration is constant.

In view of Proposition 3, we define L to denote the length of all 30-degree config-
urations.

Proposition 4. There exists a 30-degree tree if and only if the minimal Steiner
trees have length L.

Proof. A 30-degree tree is a 30-degree configuration which, by Propositions 2 and
3, is a shortest configuration of length L, and is hence a minimal Steiner tree, because
all α-degree Steiner trees are configurations. Any non-30-degree tree is not a minimal
configuration by Proposition 2, and hence has length greater than L.

For PALIMEST use T as constructed above and set l = L. From Proposition 4 it
follows that the answer to the given instance of SUBSET SUM is YES if and only if
the answer to this instance of PALIMEST is YES. Since this instance of PALIMEST
is computable in time polynomial in n, this completes the proof of Theorem 2.

We now consider graphs with angles in the form of the following problem.
β-INSEMEST (intersecting segment minimal Euclidean Steiner tree).
INSTANCE: A set T of points in the plane contained in two line segments emanating
from a point at angle β and a number l.
QUESTION: Is there a Steiner tree S with terminals T and length at most l?

Theorem 3. For β < 120◦, β-INSEMEST is NP-hard.
Proof. This follows the proof of Theorem 2, using the same instance of SUBSET

SUM but with different figures. Choose two line segments m1 and m2 meeting at an
angle of β◦ and bisected by a line l0 at 30◦ to horizontal. As in the proof of Theorem 2,
we use a tree with all edges in three directions 120◦ to each other, one direction being
horizontal. Seen from a distance, the tree looks like Figure 13(a). When expanded,
the interior of circle C1 is as seen in Figure 13(b) and that of the circle C ′1 is as seen
in Figure 13(c), while the interior of C2 looks like that of C1 (but shows un−1 instead
of un, and C3 and C ′2 instead of C2 and C ′1). After repeating this pattern n times,
we get to Cn, which is as shown in Figure 13(d). The distance between u0 and v1 is
chosen much larger than D, but the precise relative placement of v2i−1 and v2i with
respect to v′i, and of v with respect to v0, is determined below.

For INSEMEST, let T be the set {v1, . . . , v2n} ∪ {u0, . . . , un} ∪ {v′1, . . . , v′n} to-
gether with a point v0 on m2 to the left of v. By an adjustment of the structure, the
vertical edge leading into C ′i and the distances d(v2i−1, v2i), d(v2i, v

′
i), and d(v, v0)

can be made small enough so that a minimal Steiner tree for the terminals in T has
the same adjacency structure as the α-degree trees in the proof of Theorem 2. We
use this name in the present situation for such a tree in which the edge incident with
u0 makes an angle α with the horizontal. The constraint that β is less than 120◦ is
required to ensure that α-degree trees exist. It is fairly easy to see that a minimal
Steiner tree for T must be such a tree, provided the Steiner vertices inside C ′i are
caused to be sufficiently close to m2.
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Cn

un

C1

C1
m2

m1

C2

C'1

un–1

(a) (b)

C'n

u 0

(d)(c)

C'1

v'

v 2n–1

v 2n

n

v

Fig. 13. Terminals on two intersecting lines.

We must still specify the exact placement of the vi, v
′
i, and of v. The distances

d(v2i−1, v2i) and d(v2i, v
′
i) are chosen so that in the two options shown in Figure 14,

the vertical line in the left option is of distance exactly di to the left of the one in the
right option, and such that the length of this branch of the tree above the horizontal
line li is the same in both cases. Note that since the bisector of the angle between m1

and m2 is at 30◦ to horizontal and β is less than 120◦, the angle of m2 to horizontal
is less than 30◦. Thus it can be seen that the desired placement of these vertices
is always possible (by Melzak’s algorithm). As in Figure 9, we choose a “leftmost”
30-degree tree to define the positions of v1, v3, . . . , v2n−1 and v. Then v0 is chosen by
displacing the edge of the 30-degree tree incident with v horizontally at a distance 2s
to the left. v0 is then the intersection of this displaced edge with m2.

The rest of the proof now parallels the proof of Theorem 2 very closely, except
that in place of the line l3 we have individual lines li, one for each i, providing curtain
rails for each of the upper attachments of an α-degree configuration. Propositions 1–4
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v'

v2i–1

v 2i

i

li

v'

v2i–1

v 2i

i

li

Fig. 14. Two equally long options.

remain true in the new context, and we obtain Theorem 3.
For the discretized problems, we introduce as in [1] the discretized (and more

computationally realistic) Euclidean metric d′ in which the length of an edge joining
two points x and y is taken as d′(x, y) = dd(x, y)e. The discretized Euclidean length
of a tree is then the sum of the discrete Euclidean lengths of its edges. For the
discretized problems DPALIMEST and DINSEMEST, we restrict the input points
to points with integer coordinates, the condition that they are contained in a line
becomes the condition that they are at distance less than 1 on that line, and the
lengths of the trees are replaced by their discretized Euclidean lengths.

Theorem 4. DPALIMEST, and β-DINSEMEST for β < 120◦, are NP-complete.
Proof. This depends on the fact that we can scale up the instances in the proofs of

Theorems 2 and 3 so that even when restricted to integer coordinates, all the optimal
trees for the discretized versions correspond to optimal trees for the nondiscretized
versions. The scale up can be chosen of the form CP (n) for a constant C and P (n)
any polynomial in n. (Another way to look at this is to observe that by scaling down
the integers, we can alternatively regard the discretized problems as restrictions to
rationals in which the number of places in their decimal representations is bounded
above by a polynomial in n.)

First consider PALIMEST. It has to be verified that an appropriate instance of
this problem can be computed in polynomial time from the instance of SUBSET SUM.
There are several observations that ensure that nothing can go wrong here. First, the
diameter of the set of terminals described can be chosen, for example, so that it is
bounded above by W = P (D) for some polynomial P .

Second, consider an α-degree tree with a choice of right-hand upper connections
corresponding to a subset of {d1, . . . , dn} whose sum is not s. It is easily seen that
the difference between α and 30◦ is then at least C/W for a constant C. But for
such α the difference in length between an α-degree configuration and a 30-degree
configuration will be at least C/W 2. This can be seen by noting that the part of an
α-degree configuration near a Steiner vertex, which has size W/n, can be replaced,
using 120◦ angles, by a network that is shorter by at least C/(nW ). (The second
variation can be shown to be nonzero using the techniques in [6, section 1].) Hence
appropriate scaling will make this difference arbitrarily large, even using discretized
Euclidean lengths of edges. In this way we can arrange that the total discretized
length of the α-degree tree is longer than that of the 30-degree tree. It follows that
PALIMEST is NP-complete.

Now consider β-DINSEMEST. The difference in scale between Ci and Ci+1 is a
constant, and so the width of the set of terminals can be bounded above by CnP (D)
for some constant C. The rest of the proof goes as for PALIMEST.
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PARTITIONS WITH RESTRICTED BLOCK SIZES, MÖBIUS
FUNCTIONS, AND THE k-OF-EACH PROBLEM∗
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Abstract. Given a list of n real numbers, one wants to decide whether every number in the
list occurs at least k times. It will be shown that Ω(n logn) is a sharp lower bound for the depth of
an algebraic decision or computation tree solving this problem for a fixed k. For linear decision trees,
the coefficient can be taken to be arbitrarily close to 1 (using the ternary logarithm). This is done by
using the Björner–Lovász–Yao method, which turns the problem into one of estimating the Möbius
function for a certain partition lattice. The method will work also for the more general T -multiplicity
problem when T is additive and cofinite. A formula for the exponential generating function for the
Möbius function of a partition poset with restricted block sizes in general will also be given.
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Introduction. The membership problem is the problem of determining whether
a given point belongs to a certain prescribed region in Rn. In a sequence of papers,
[BLY], [Y1], [BL], and [Y2], Björner, Lovász, and Yao have developed a technique for
determining lower bounds for the depth of decision and computation trees in terms
of the Betti numbers for the region. In the case of subspace arrangements, the lower
bounds specialize to expressions involving the Möbius function for the corresponding
intersection lattice. Björner, Lovász, and Yao were originally motivated by the k-equal
problem, i.e., to determine whether there exists k equal numbers among a list of n
given numbers. For fixed k they were able to show the sharp lower bound Ω(n logn)
for that problem.

In this paper we will give a more general method for estimation of the Möbius
function which will lead to the same lower bound for the k-of-each problem stated in
the abstract. We will also consider the following more general problem: given a set T of
positive integers and a list of n real numbers, determine whether every number in the
list occurs with a multiplicity m such that m ∈ T . We will call this the T-multiplicity
problem. It will be shown that if T is additive, cofinite, and does not contain 1, then
the same lower bound is again valid. It will also be shown that in the case of linear
decision trees, the coefficient can be taken arbitrarily close to 1 (using the ternary
logarithm). The method will also reprove the results for the k-equal problem.

In section 3 we will calculate the exponential generating function for the Möbius
function of a partition poset with an arbitrary set of forbidden block sizes. In section
5 this will be used to get a lower bound on the absolute value of the Möbius functions
corresponding to the computational problems, leading to the complexity-theoretic
lower bound. In section 2 an algorithm is given to show that this lower bound is
sharp.
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1. Preliminaries. By identifying the list of numbers with a point x ∈ Rn, the
k-of-each problem can be viewed as deciding whether x belongs to a certain subset
Vn,k of Rn. Vn,k can be described as the union of a set of linear subspaces, a so called
subspace arrangement. Given n and k, let An,k denote the set of all linear subspaces
of Rn defined by some equations of type xi1 = xi2 = · · · = xir where r ≥ k such that
every coordinate occurs in one of the equations. Then

Vn,k = ∪A∈An,k
A.

Now the problem is to decide whether x is in Vn,k or not. Partially order the

elements of An,k by reverse inclusion. Adding Rn as 0̂ we get the intersection lattice
denoted Ln,k. (For a discussion of lattices and subspace arrangements, see [B1] and
[OT].)

We will consider three slightly different models for deciding if a point x belongs to
the subspace arrangement or not. A linear decision tree is a rooted ternary tree where
at every interior node a linear function is evaluated at x, and the three edges leaving
the node are labeled “<,” “=,” and “>,” corresponding to whether the outcome of
the linear test is less than, equal to, or greater than zero. The leaves of the tree
are marked YES or NO, thus giving the answer to whether or not x belongs to the
subspace arrangement. We will use Theorem 3.7 in [BL], which gives a lower bound on
the number of leaves in any linear decision tree for the k-of-each problem. Taking the
ternary logarithm gives a lower bound on the depth of a linear decision tree C1(Vn,k),
namely Theorem A.

Theorem A (Björner and Lovász). The depth of a linear decision tree determin-
ing the k-of-each problem is bounded below by the following inequality:

C1(Vn,k) ≥ log3

 ∑
x∈Πn,k

|µ(0̂, x)|
 .

The second model will be a degree-d algebraic decision tree, which differs from
a linear decision tree by having polynomial tests of degree at most d at each node
instead of linear ones. The third model is an algebraic computation tree where a node
can perform a binary arithmetic calculation or test whether a previously calculated
number is less than, equal to, or greater than zero. For a detailed description of such
trees, see [Y1]. Let Cd(Vn,k) and C(Vn,k) denote the minimal depth for an algebraic
decision tree using polynomials of degree ≤ d and an algebraic computation tree,
respectively. The following lower bounds follow from recent work of Yao; see the proof
of Theorem 3 in [Y2].

Theorem B (Yao). The depth of a degree-d algebraic decision tree and of an
algebraic computation tree is bounded below by

Cd(Vn,k) ≥ αd log

 ∑
x∈Πn,k

|µ(0̂, x)|
− βdn

and

C(Vn,k) ≥ α log

 ∑
x∈Πn,k

|µ(0̂, x)|
− βn,

respectively, for some constants α, αd, β, βd > 0.
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For a survey of these topological methods in complexity theory, see [B2]. For
the definitions of lattice, Möbius function, and other combinatorial terminology, the
reader is referred to basic books in combinatorics, e.g., [S1].

We will consider the partition lattice Πn,k consisting of partitions of {1, 2, . . . , n},
where block sizes 1, 2, . . . , k−1 are forbidden, with the discrete partition (1)(2) · · · (n)
added as zero. Observe that Πn,k is a lattice with the same join-operator as Πn.
The meet-operation is that of Πn (coarsest common refinement) unless one gets some

block of size less than k; then the meet will be 0̂. Our interest in Πn,k comes from the
following proposition.

Proposition 1. Ln,k is isomorphic to Πn,k.
Proof. If σ ∈ Πn,k, let

Bσ = {x ∈ Rn|xi = xj if i and j are in the same block in σ}.

We get that dimBσ = number of blocks in σ.
It is immediate that Bσ ∨ Bπ = Bσ ∩ Bπ = Bσ∨π and from this follows that

Ln,k ∼= Πn,k.

2. Algorithm. The problem posed is the following: given a list of n real num-
bers, one wants to decide whether every number in the list occurs at least k times.

The following algorithm shows that the k-of-each problem can be solved using a
linear tree with depth n log2(n/k) + 3n.

Algorithm.

1. Divide the numbers into k separate lists with (approximately) n/k elements in each
and sort each list completely. This takes k(n/k log2 n/k) = n log2 n/k comparisons.
2. Find the smallest number a among the smallest elements in each list. This takes
k − 1 comparisons.
3. Remove all elements equal to a. This takes at most (number of elements equal to
a)+k comparisons. If the number of elements equal to a is less than k then the answer
is NO, if not then repeat from 2 until all elements are removed.

Steps 2 and 3 can be repeated at most n/k times, so the total number of com-
parisons performed is at most

n log2

n

k
+
n

k
(k − 1 + k) + n ≤ n log2

n

k
+ 3n.

3. The Möbius function. The intersection lattices we will be interested in have
a combinatorial description in terms of set partitions. We will derive the exponential
generating function for such partition posets. This is done also in [BL, section 4] but
only in the case when singleton blocks are allowed. Here we will need the case when
singleton blocks are forbidden. We will treat both cases simultaneously with a method
different from the one used in [BL].

Given any set T ⊆ Z+ = {1, 2, 3, . . . }, we consider the set Πn,T of partitions
of [n] := {1, 2, . . . , n} into blocks whose sizes are in T . Ordering the elements by
refinement we get a poset, which is not a lattice in general. If 1 /∈ T then we have to
add the discrete partition (1)(2) · · · (n) to Πn,T as 0̂. We denote by µn,T the Möbius
function of the poset Πn,T , where the subscript n often will be suppressed. Let also

µT (n) := µn,T (0̂, 1̂) if n ∈ T . It will be convenient to extend the definition of µn,T (π, σ)
by setting it to 0 if either π or σ is not in Πn,T . In particular, µT (n) = 0 if n /∈ T .

When doing the calculations we will use a well-known (see, e.g., [S1]) property of
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the Möbius function for posets. Given a poset P and a, b, c ∈ P , then

[0̂, a] ∼= [0̂, b]× [0̂, c] =⇒ µP (0̂, a) = µP (0̂, b)µP (0̂, c).

We also need a not-so-well-known fact about the Möbius function for which we have
not found any reference so we include a proof.

Lemma 1. For any poset P and a, b, c ∈ P we have

[0̂, a]\{0̂} ∼= ([0̂, b]\{0̂})× ([0̂, c]\{0̂}) =⇒ µP (0̂, a) = −µP (0̂, b)µP (0̂, c).

Proof. Using the definition of Möbius function we get

µP (0̂, a) = −
∑

0̂<π≤a
µP (π, a)

= −
∑

0̂<π1≤b
0̂<π2≤c

µP (π1 × π2, c) = −
∑

0̂<π1≤b
0̂<π2≤c

µP (π1, b)µP (π2, c)

= −(−µP (0̂, b))(−µP (0̂, c)) = −µP (0̂, b)µP (0̂, c).

We can now prove the basic recurrence formula.
Lemma 2. If n ∈ T\{1} we have

(1) µT (n) = −
∑

∑
i∈T\{n} ici=n

µT
c1(1) · · ·µT cn−1(n− 1)

n!

Π(j!)cjcj !
if 1 ∈ T,

(2)

µT (n) = −1 +
∑

∑
i∈T\{n} ici=n

(−1)
∑
ciµT

c2(2) · · ·µT cn−2(n− 2)
n!

Π(j!)cjcj !
if 1 /∈ T.

Proof. When 1 ∈ T we have

[0̂, (1, 2, 3, . . . , l)(l + 1, . . . , n)] = [0̂, (1, 2, . . . , l)]× [0̂, (l + 1, . . . , n)].

From the properties of the Möbius function stated above we get µT (0̂, (1, 2, . . . , l)(l+
1, . . . , n)) = µT (l)µT (n− l).

We also know that there are n!∏n
j=1(j!)

cj cj !
partitions of [n] of type c1, . . . , cn. By

definition of the Möbius function we get the first formula.
If 1 /∈ T we have instead

[0̂, (1, 2, . . . , l)(l + 1, . . . , n)]\{0̂} = ([0̂, (1, 2, . . . , l)]\{0̂})× ([0̂, (l + 1, . . . , n)]\{0̂}),
and hence Lemma 1 shows that

µT (0̂, (1, 2, . . . , l)(l + 1, . . . , n)) = −µT (l)µT (n− l).

This gives the second equation, where the −1 term is for 0̂ = (1)(2) · · · (n), which is
not included in the sum.

The second step is to calculate the exponential generating function for each spe-
cific T . Define

FT (x) :=
∞∑
n=1

µT (n)
xn

n!
,
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remembering that µT (n) = 0 if n /∈ T . Define also for every positive integer n

sT (n) :=
∑

σ∈Πn,T

µT (0̂, σ).

By the definition of the Möbius function, we have sT (n) = 0 if n ∈ T\{1}.
However, sT (1) = 1 for any T . We also define

pT (x) :=
∑
n∈Z+

sT (n)
xn

n!
.

Remark. Note that if n /∈ T ∪ {1}, sT (n) gets the value that −µT (n) would have
had if n had belonged to T . Hence if n /∈ T ∪ {1}, one can replace µT (n) by −sT (n)
in Lemma 2.

Proposition 2. The exponential generating function for Πn,T is given by

(3) FT (x) = ln (1 + pT (x)) if 1 ∈ T,

(4) FT (x) = − ln (ex − pT (x)) if 1 /∈ T.

Proof. In the first case, 1 ∈ T .
Using the recurrence formula in Lemma 2, we get

0 =
∑

n∈T\{1}
0
xn

n!
=

∑
n∈T\{1}

 ∑
∑

i∈T ici=n

µT
c1(1) · · ·µT cn(n)

n!

Π(j!)cjcj !

 xn

n!

=
∏
j∈T

(
1 +

µT (j)xj

j!
+
µT

2(j)x2j

(j!)22!
+ · · ·

)
− 1

−
∑

n∈Z+\(T\{1})

 ∑
∑

i∈T ici=n

µT
c1(1) · · ·µT cn(n)

n!

Π(j!)cjcj !

 xn

n!

∗
=
∏
j∈T

eµT (j) x
j

j! − 1−
∑

n∈Z+\(T\{1})
sT (n)

xn

n!

= eFT (x) − 1−
∑
n∈Z+

sT (n)
xn

n!
,

and the equation follows. The ∗ equality (above and below) follows from the above
remark.

In the second case, 1 /∈ T .

0 =
∑
n∈T

 ∑
∑

i∈T ici=n

(−1)
∑
ciµT

c2(2) · · ·µT cn(n)
n!

Π(j!)cjcj !
− 1

 xn

n!

=
∑
n∈T

 ∑
∑

i∈T ici=n

(−µT (2)x2)c2

(2!)c2c2!

(−µT (3)x3)c3

(3!)c3c3!
· · · (−µT (n)xn)cn

(n!)cncn!

−
∑
n∈T

xn

n!

=
∏
j∈T

(
1− µT (j)xj

j!
+
µT

2(j)x2j

(j!)22!
− · · ·

)
− 1−

∑
n∈T

xn

n!
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−
∑
n/∈T

 ∑
∑

i∈T ici=n

(−µT (2)x2)c2

(2!)c2c2!

(−µT (3)x3)c3

(3!)c3c3!
· · · (−µT (n− 2)xn−2)cn−2

((n− 2)!)cn−2cn−2!


∗
=
∏
j∈T

e−µT (j) x
j

j! − 1−
∑
n∈T

xn

n!
+
∑
n/∈T

(sT (n)− 1)
xn

n!

= e−FT (x) − ex +
∑
n/∈T

sT (n)
xn

n!

and the proposition follows.
The reader well acquainted with the exponential formula (see, e.g., [S2]) might

wonder whether it is possible to use it to prove Proposition 2. Indeed, that is the case,
but we have preferred to give a more direct proof to avoid unnecessary terminology.

4. Three lemmas. This section consists of three lemmas with proofs of a rather
technical nature. The reader is advised to just read the statements of the lemmas and
then go on to the proofs of the main theorems in the next section. The interested
reader can then come back to sort out the technicalities.

To prove the main theorems, we will need an upper bound for the radius of
convergence for ln(ez − p(z)), considered as a function on C, for certain polynomials
p(z). To do this we will need the following lemma for which I’m indebted to Daniel
Bertilsson.

Modulus Lemma. Let p(z) be a polynomial of degree k − 1 such that p(0) = 0
and p′(0) = 1. Then there is a zero of ez − p(z) with modulus less than 9k.

Proof. The main ingredient in the argument is the following version of Landau’s
theorem (see [J] and [H]): suppose f : D1 := {z ∈ C | |z| < 1} → C\{0, 1} is an

analytic function. Then |f ′(0)| ≤ 2|f(0)| (| ln |f(0)||+A) where A = Γ(1/4)4

4π2 ≈ 4.45.
Suppose now ez − p(z) 6= 0 for all z, |z| < R. Define an analytic function g :

DR → C by

g(z)k := 1− e−zp(z).

This is possible since 1 − e−zp(z) is assumed to be nonzero in the simply connected
region DR. There is a number ω, ωk = 1 such that g(z) 6= ω for all z, |z| < R.
(Otherwise g would assume all k-roots of unity as values, and hence p(z) = 0 for k

different z ∈ C. ) Define f(z) := g(Rz)
ω for all z ∈ D1. The function f does not take

the values 0 and 1. Landau’s theorem says∣∣∣∣g′(0)

ω
R

∣∣∣∣ ≤ 2

∣∣∣∣g(0)

ω

∣∣∣∣ (∣∣∣∣ln ∣∣∣∣g(0)

ω

∣∣∣∣∣∣∣∣+A

)
,

but kg′(0)g(0)k−1 = d
dz (1 − e−zp(z)) |z=0= −p′(0) = −1 and g(0) = 1, so R

k ≤ 2A;
i.e., R ≤ 2Ak ≈ 8.9k. We can now conclude that in the disc |z| < 9k there is a zero
to ez − p(z).

Lemma of Cosines. Let θ1, θ2, . . . , θm be real numbers. Then there is an integer
N such that in any set of N consecutive integers, there is an integer n such that∣∣∣∣∣

m∑
i=1

cosnθi

∣∣∣∣∣ >
√
m

2
.

This should be a known lemma but we have not been able to locate it in the
literature, so we include a proof due to Mats Boij.
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Proof. For all integers n we define f(n) :=
∑m

i=1 cosnθi, and for all integers n

and N we define gN (n) :=
∑n+N−1

k=n f(k)2/N . We can compute f(n)2 as

f(n)2 =
m∑
i=1

cos2 nθi +
∑
i<j

2 cosnθi cosnθj

=
m

2
+

1

2

m∑
i=1

cos 2nθi +
∑
i<j

cosn(θi + θj) + cosn(θi − θj).

We now use the following well-known formula for cosines:

n+N−1∑
k=n

cos kϕ =
sin Nϕ

2 cos N+2n−1
2 ϕ

sin ϕ
2

.

This shows that either sinϕ/2 = 0 and
∑n+N−1

k=n cos kϕ = N or

(5)

∣∣∣∣∣
n+N−1∑
k=n

cos kϕ

∣∣∣∣∣ ≤ 1

sin ϕ
2

.

We have that

gN (n) =

n+N−1∑
k=n

f(k)2/N =
m

2
+

1

N

n+N−1∑
k=n

1

2

m∑
i=1

cos 2kθi

+
1

N

n+N−1∑
k=n

∑
i<j

(cos k(θi + θj) + cos k(θi − θj)).

Changing the order of summation, together with (5), shows that there is an integer
N such that gN (n) > m/4 for all integers n. But then there is an integer n in every
set of N consecutive integers such that f(n)2 > m/4; that is, |f(n)| > √

m/2, which
proves the lemma.

It might seem natural to assume that the k-of-each problem for a fixed k will
become more difficult to solve when n increases, i.e., that the depth of an optimal tree
increases monotonically with n. The following lemma gives almost monotonicity in a
certain sense, enough for our purpose.

Monotonicity lemma. The depth of an optimal linear decision tree (degree-d
algebraic decision tree, algebraic computation tree) for Vn,k is at most 2n more than
the depth of a linear tree (degree-d algebraic decision tree, algebraic computation tree)
for Vn+r,k for all r ≥ k.

Proof. Case 1. Linear decision tree or degree-d algebraic decision tree.
Given x ∈ Rn, it suffices with n− 1 comparisons to find the largest coordinate of

x, and hence there is a linear tree S of depth n− 1 that can find the position i of the
largest coordinate xi. At every leaf of S we place a modified version of an optimal tree
for Vn+r,k, where we have done the substitution xn+1 = xn+2 = · · · = xn+r = xi + 1
with i being the position of the largest coordinate corresponding to that leaf. This
substitution does not alter the degree of the tree and is hence legal. And since xi + 1
is larger than all the coordinates in x, the tree will give the correct answer.

Case 2. Algebraic computation tree.
To test if xi − xj is less than, equal to, or larger than zero, we first do the

subtraction in an arithmetic node and then the test in the next node. Hence a tree
with depth 2n− 2 is sufficient to find the largest coordinate i. We also need an extra
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node to do the calculation xi + 1. Then we proceed as in Case 1. Altogether we get
a tree with depth C(Vn+r,k) + 2n− 2 + 1 < C(Vn+r,k) + 2n.

5. Main theorems. We will start by proving the lower bounds for the k-of-each
problem. When T = Z+\{1, 2, . . . , k − 1}, let µn,k denote µn,T , µk(n) denote µT (n),
and so on. In Πn,k we have that sk(n) = 1 for all n < k, so we get from Proposition
2 that

Fk(x) = − ln(ex − pk(x)),

where pk(x) =
∑k−1

n=1
xn

n! . Now we have come to the main theorem. It says that the
algorithm in section 2 is (up to a constant) the fastest possible in the worst case.

Theorem 1. The depth of a degree-d algebraic decision tree or of an algebraic
computation tree for the k-of-each problem will be at least

Ω (n logn) .

Given ε > 0 and k, there is a number Nk,ε such that the depth of a linear tree solving
the k-of-each problem for n > Nk,ε is bounded below by

(1− ε)n log3 n.

Proof. We will use the results on Fk(z), the exponential generating function for
µk(n) found in section 3, to estimate |µk(n)|. The theorem will then follow from
Theorems B and A.

Let Rk denote the radius of convergence for Fk(z) considered as a function on C.

It is well known from analysis that 1
Rk

= lim
( |µk(n)|

n!

)1/n
. Let z1, z̄1, . . . , zt, z̄t denote

the nonreal zeros of ez − pk(z) with modulus Rk. Since ez − pk(z) = 1 + zk/k! +
zk+1/(k + 1)! + · · · there are no positive real zeros, but −Rk might be a zero. Let
δ = 1 if this is the case; otherwise, let δ = 0. Write zj = Rke

iθj with 0 < θj < π
for j = 1, . . . , t. Observe that there cannot be other zeros with modulus arbitrarily
close to Rk, since an entire function with an accumulation point of zeros has to be
identically zero. So we can speak of the next zero which will have strictly larger
modulus than Rk. Let R′ denote this value (it might be infinity), which will be the
radius of convergence of

ln

(
ez − pk(z)

(z − (−Rk))δΠt
j=1(z − zj)(z − z̄j)

)
=:
∑
n

bnz
n.

As long as we are only dealing with a real power series with a nonzero constant there is
no problem using the laws of logarithm. But when it comes to separating (z−zj) from
(z − z̄j) we have to take care. However, with the usual branchcut along the negative
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real axis the following calculations are valid when z is a real number 0 < z < Rk.

ln(z2 − 2Re(zj)z +R2
k) = ln((z +Rke

i(θj−π))(z +Rke
−i(θj−π)))

= ln(z +Rke
i(θj−π)) + ln(z +Rke

−i(θj−π))

= lnRke
i(θj−π) + ln

(
z

Rkei(θj−π)
+ 1

)
+ lnRke

−i(θj−π) + ln

(
z

Rke−i(θj−π)
+ 1

)
= lnR2

k +
∞∑
n=1

(−1)n−1

n

(
− z

zj

)n
+

∞∑
n=1

(−1)n−1

n

(
− z

z̄j

)n
= lnR2

k −
∞∑
n=1

2Re

(
1

zj

)n
zn

n
.

The calculations for a real zero are easier and all together we get

ln(ez − pk(z)) =
t∑

j=1

ln(z2 − 2Re(zj)z +R2
k) + δ ln(z − (−Rk))

+ ln

(
ez − pk(z)

(z − (−Rk))δΠt
j=1(z − zj)(z − z̄j)

)

=
t∑

j=1

(
lnR2

k −
∞∑
n=1

2Re

(
1

zj

)n
zn

n

)
+ δ

(
lnRk −

∞∑
n=1

(
− 1

Rk

)n
zn

n

)
+
∑
n

bnz
n.

Note that since 1
R′ = lim (|bn|)1/n we get for any c with 1 < c < R′

Rk
that there exists

a number ck such that n > ck =⇒ |bn| ≤ 1
cnRn

k
. By comparing coefficients we get the

following bound for sufficiently large n:

|µk(n)|
n!

≥ |2∑t
j=1 cos(−nθj) + δ cos(−nπ)|

nRn
k

− |bn|

≥ 1

Rn
k

(
|2∑t

j=1 cos(−nθj) + δ cos(−nπ)|
n

− 1

cn

)
.

Now we need to estimate the sum of cosines from below and Rk from above. The
Modulus Lemma shows that Rk < 9k. The Lemma of Cosines with m = 2t or 2t + 1
shows that there exists a number Mk such that in any set of Mk consecutive numbers
there is an integer n such that |2∑t

j=1 cos(−nθj) + δ cos(−nπ)| > 1/2.

Let c′k be such that 1
cn < 1

4n whenever n > c′k. Using the lemmas above we get
that for every integer n > max{c′k, ck,Mk + k + 2} there is an integer m such that
k < n−m < Mk + k and

|µk(m)| ≥ m!

4m(9k)m
≥
(m

3

)m 1

4m(9k)m

=⇒ log3 |µk(m)| > m log3

m

27k
−m = m log3 m− (4 + log3 k)m.

The last tool we need is the Monotonicity Lemma which says that the depth of an
algebraic decision or algebraic computation tree is almost monotone with respect to
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n. Since |µk(n)| is one of the terms in Theorem B and the other terms in the sum are
all positive, we get

C(Vn,k) ≥ C(Vm,k)−2m ≥ α log3 |µk(m)|− (β+2)m ≥ αm log3 m− (β+6+log3 k)m

≥ α(n− k −Mk) log3(n− k −Mk)− (β + 6 + log3 k)n

≥ αn log3 n− β′n

for some constants 0 < α ≤ 1 and β′. The last step is using log(n − k − Mk) ≥
logn− log(k +Mk), which is true since n > Mk + k + 2 > 4. The above estimation is
valid also for Cd(Vn,k), so the first part of the theorem follows.

To prove the second part let n ≥ max{2(Mk+k)/ε, c′k, ck} and let m be as above.
From Theorem A and the Monotonicity Lemma we get

C1(Vn,k) > log3 |µk(m)| − 2m > m log3 m− (6 + log3 k)m

>
(
1− ε

2

)
n log3

((
1− ε

2

)
n

)
− (6 + log3 k)n

>
(
1− ε

2

)
n log3 n−

(
6 + log3 k − log3

(
1− ε

2

))
n.

Choose Nk,ε ≥ max{2(Mk + k)/ε, c′k, ck} and also large enough for ε
2 log3 n > 6 +

log3(1+ ε
2 )k to be true for all n ≥ Nk,ε. The second part of the theorem follows.

Given a set T ⊆ Z+ and a list of n numbers, we can consider the problem of
deciding whether every number in the list occurs with a multiplicity m such that
m ∈ T . We will call this the T-multiplicity problem. This is a more general problem
containing the k-of-each problem as the special case when T = {k, k + 1, k + 2, . . . }.
We will say that T is additive if a, b ∈ T implies a + b ∈ T . Without any extra effort
we can now get the following theorem.

Theorem 2. Let T ⊆ Z+ be an additive and cofinite set not containing 1. Then
the depth of a degree-d algebraic decision or algebraic computation tree for the T -
multiplicity problem will be at least

Ω (n logn) .

Given ε > 0 there is a number NT,ε such that the depth of a linear tree solving the
T -multiplicity problem is bounded below by

(1− ε)n log3 n.

Proof. It is not difficult to verify that since T is additive it corresponds to a
subspace arrangement with Πn,T as an intersection lattice, i.e., a generalization of
Proposition 1. Since T is cofinite, we get that max Z\T is finite. It is the degree of
the polynomial pT (x) in FT (x) = − ln(ex − pT (x)); hence we can use the Modulus
Lemma. The Monotonicity Lemma is also still valid with k replaced by max Z\T .
The theorems of Björner, Lovász, and Yao give suitable generalizations of Theorems
A and B. Hence we can apply the same proof as for Theorem 1.

If 1 ∈ T then the only case when the T -multiplicity problem gives a subspace
arrangement is when T = {1, k, k + 1, k + 2, . . . } which is the k-equal problem. The
above proof is valid also in this case. Note that the algorithm of section 2 will (with
obvious modifications) still work for the T -multiplicity problem for arbitrary T , but
here k is the smallest number in T .
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6. Remarks and open problems.
Remark 1. The Modulus Lemma is not needed for odd values of k since then

there is a real root. This means that one could prove the theorem for odd k more
easily. And for even k one can, by doubling the input, turn it into the (2k−1)-of-each
problem. This way one could prove Theorem 1 without the Modulus Lemma but get
a constant one half in front of the lower bound. But this proof would not work for
Theorem 2.

Remark 2. Another interesting invariant for the partition poset Πn,T is the char-

acteristic polynomial φT (n; t) =
∑

π∈Πn
µT (0̂, π)tb(π), where b(π) denotes the number

of blocks in π. Also let φT (0; t) = 1. The method of section 3 can be used to calculate

its exponential generating function GT (x, t) =
∑∞

n=0 φT (n; t)x
n

n! .

GT (x, t) =

1 +
∑

n∈Z+\(T\{1})
sT (n)

xn

n!

t

if 1 ∈ T,

GT (x, t) = etx + 1−
ex − ∑

n∈Z+\T
sT (n)

xn

n!

t

if 1 /∈ T.

The first formula can also be found in [BL].
Problem 1. As noted, the algorithm works for any T . What about the lower

bound for general T? The so-called k-divisibility problem is a T -multiplicity problem
with T = {k, 2k, 3k, . . . }. In [BL] it is shown to have Ω(n logn) as lower bound. Here
T is additive but not cofinite. When is cofiniteness a necessary condition? Does there
exist any nontrivial set T such that the T -multiplicity problem can be solved faster
than n logn?

Problem 2. A referee asked if it is possible to make the lower bound for linear trees
solving the k-of-each problem uniform in k, i.e., if ∀ε > 0, ∃Nε such that ∀n > Nε∀k
C1(Vn,k) ≥ (1− ε)n log3(n/k). This would indeed be an interesting sharpening of the
result. To this end one would need a more detailed analysis of the zeros of ez − pk(z)
to determine if estimates of the constants ck, c

′
k, and Mk that are independent of k

exist. For small values of k numerical tests suggest that there are k − 1 zeros with
the same modulus and no other zeros. This would imply that ck and c′k are small and
independent of k.

Problem 3. The algorithm solves the k-of-each problem in n log2 n+(3− log2 k)n
steps, and the theorem gives (1− ε)n log3 n as a lower bound for linear decision trees.
Is it possible to sharpen the lower bound to binary logarithm?
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Abstract. An upper bound is given on the minimum distance between i subsets of same size
of a regular graph in terms of the ith largest eigenvalue in absolute value. This yields a bound
on the diameter in terms of the ith largest eigenvalue for any integer i. Our bounds are shown to
be asymptotically tight for explicit families of graphs having an asymptotically optimal ith largest
eigenvalue. A result by Quenell [Adv. Math., 106 (1994), pp. 122–148] relating the diameter, the
second eigenvalue, and the girth of a regular graph is obtained as a by-product.
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1. Introduction. Many combinatorial properties of a graph are related to the
spectrum of its adjacency matrix [2, 3, 4, 17]. The adjacency matrixA of an undirected
graph is the 0–1 matrix indexed by the vertices and such that the entry (u, v) is equal
to 1 if and only if (u, v) is an edge. Since the adjacency matrix of any graph H
on n vertices is symmetric and real, its eigenvalues are real and will be denoted by
λ0(H) ≥ λ1(H) ≥ · · · ≥ λn−1(H). In this paper, we explore the relation between
the spectrum of a graph and its isoperimetric properties. We focus our attention on
the diameter, which is defined to be the maximum distance in H between any pair
of vertices, that will be denoted by D(H). The diameter plays an important role in
network design in parallel and distributed computing.

Let λ = λ(H) = max(λ1, |λn−1|). It is known that if a graph is k-regular, then
λ0 = k and λ ≤ k, with equality if and only if the graph is disconnected or bipartite.
Moreover, the graph is an expander if and only if [2] there exists a gap between k and
λ1. Thus, the existence of an upper bound on the diameter in terms of the eigenvalue
gap is not surprising. Such a bound first appeared in [3], where it was shown that,
when G is k-regular,

D(G) ≤ 2

√
2k

(k − λ1)
log2 n.(1)

Chung [5] (see also [12]) established that

D(G) ≤
⌊

log(n− 1)

log(k/λ)

⌋
+ 1,(2)
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which beats (1) when λ is small. Equation (2) was further improved in [6, 16], where
it was shown that

D(G) ≤
⌊

cosh−1(n− 1)

cosh−1(k/λ)

⌋
+ 1.(3)

In this paper, we establish isoperimetric bounds that are a function of the subsequent
eigenvalues and do not depend on the second eigenvalue. More precisely, we have
Theorem 1.1.

Theorem 1.1. Let G = (V,E) be an undirected k-regular graph and δ0, δ1, . . . , δn−1

be the eigenvalues of its adjacency matrix, with |δ0| ≥ |δ1| ≥ · · · ≥ |δn−1|. Let d(X,Y )
denote the distance between two subsets X and Y . If |δi| < k and X1, X2, . . . , Xi+1

are i+ 1 subsets of V of same cardinality xn, then

min
1≤j<h≤i+1

d(Xj , Xh) ≤
⌈

cosh−1(x−1 − 1)

cosh−1(k/|δi|)

⌉
+ 1.

Equation (2) is (up to an additive constant 1) a particular case of Theorem 1.1.
We will use Theorem 1.1 to derive upper bounds on the diameter of G in terms of
δi. In section 3, we establish a lower bound on the size of N t(X), where X is a set
of vertices and N t(X) is the set of nodes that can be reached from X by a path of
length t; that is,

N(N(. . . N(︸ ︷︷ ︸
t times

X)) . . .).

The lower bound on |N t(X)| is a function of the size of X and of the second eigenvalue
in absolute value λ of the graph. As a first corollary, we obtain an upper bound on
the distance between two subsets of a given size. As a second corollary, we get a
simple proof of a recent result [15] relating the diameter, the girth, and λ. Section 3
combines ideas in [3, 12, 17]. In section 4, we prove Theorem 1.1 and derive a relation
between the diameter of a graph and its subsequent eigenvalues.

In section 5, we study the tightness of the aforementioned bounds. For fixed n
and k, the right-hand side of (3) is small when λ is small. It is known, however, that
for any sequence Gn,k of k-regular graphs on n vertices, lim inf λ(Gn,k) ≥ 2

√
k − 1

as n goes to infinity [2, 12, 14]. A Ramanujan graph is a k-regular graph where
all eigenvalues not equal to ±k are at most 2

√
k − 1 in absolute value. Ramanujan

graphs have been constructed explicitly in [12, 13]. It is known [12] (and in the non-
bipartite case follows from (3)) that the diameter of a k-regular Ramanujan graph on
n vertices is at most (2+ o(1)) logk−1 n. On the other hand, it is easy to see that it is
at least (1 + o(1)) logk−1 n. To the best of our knowledge, these are the best-known
asymptotic bounds on the diameter of the known explicit families of Ramanujan
graphs [12, 13]. In section 5, for many integers k, we construct explicitly a family of
k-regular graphs with λ = (2 + o(1))

√
k − 1 and diameter (2 + o(1)) logk−1 n. We

generalize our construction to show that our bound on the diameter in terms of δi is
asymptotically tight for explicit families of graphs having an asymptotically optimal
ith largest eigenvalue.

Section 3 is based on [9]. A longer version of the paper appears in [10].

2. Notation and background. Let G = (V,E) be an undirected k-regular
graph on n vertices. Denote by L2(V ) the set of real-valued functions on V and
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L2
0(V ) = {f ∈ L2(V );

∑
v∈V f(v) = 0}. As usual, we define the scalar product of two

vectors f and g of L2(V ) by

f · g =
∑
v∈V

f(v)g(v)

and the Euclidean norm of a vector f by ||f || =
√
f · f . The adjacency matrix A of

G defines a linear operator in L2(V ) that maps every vector f ∈ L2(V ) to the vector
Af defined by

(Af)(v) =
∑

(v,w)∈E
f(w).(4)

This operator is self-adjoint since ∀f, g ∈ L2(V ), we have

(Af) · g = f · (Ag) =
∑

(v,w)∈E
f(v)g(w).(5)

For any subset W of V , we denote by χW the characteristic vector of W :

χW (v) =

{
1 if v ∈W ,
0 otherwise.

The support of a vector f ∈ L2(V ) is defined to be the set of nodes v for which
f(v) 6= 0. We sometimes order the eigenvalues of a graph H according to their absolute
values and denote them by δi(H), so that |δ0(H)| ≥ |δ1(H)| ≥ · · · ≥ |δn−1(H)|.
Denote by λi(B) the (i+ 1)st largest eigenvalue of a matrix B with real eigenvalues.
The l1-norm ||h||1 of a vector h is defined to be

∑
v∈V |h(v)|.

The Chebychev polynomial of degree t is the unique polynomial Pt satisfying the
equation

Pt(cosh z) = cosh(tz)(6)

for any complex number z. Chebychev polynomials have been used in [12] in the
study of expanders. The following facts easily follow from (6).

Fact 1. For any complex number z, we have Pt(−z) = (−1)
t
Pt(z).

Fact 2. For any real number s between −1 and 1, we have |Pt(s)| ≤ 1.

3. Bounds on the distance between two subsets. The following theorem
generalizes a result of Tanner [17]. We use a similar proof technique.

Theorem 3.1. Let G = (V,E) be a k-regular graph on n vertices and λ its second
largest eigenvalue in absolute value. For any subset X of V and any integer t ≥ 1,
we have

|N t(X)| ≥ Pt
2(k/λ)|X|

1 + (Pt
2(k/λ)− 1)|X|/n.(7)

If G is a nonbipartite Ramanujan graph of degree k, then

|N t(X)|
|X| ≥ ((k − 1)t + 1)

2

4(k − 1)t + ((k − 1)t − 1)
2|X|/n ≥ (k − 1)t

4 + (k − 1)t|X|/n.

In particular, if |X|/n is at most 4(k−1)−t−1, then |N t(X)| ≥ (k − 2)(k − 1)t−1|X|/4.
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Proof. Denote by f the characteristic vector of X. Let f = f̄ + f0, where f̄
is a constant vector and f0 ∈ L2

0(V ). It follows from Fact 1 that Pt is of the form
Pt(s) = cts

t+ct−2s
t−2+ · · ·, and so Pt(λ

−1A) f = ctλ
−tAtf+ct−2λ

−(t−2)At−2f+ · · ·.
This implies that the support of the vector g = Pt(λ

−1A) f is a subset of N t(X).
This is because the support of the vector Alf is N l(X), and N t(X) ⊇ N t−2(X) ⊇ · · ·.
We will obtain a lower bound on the size of N t(X) by comparing the norm of g with
its sum of coordinates. Since Af̄ = kf̄ , we have

g = Pt(λ
−1A) f̄ + Pt(λ

−1A) f0 = Pt(k/λ) f̄ + Pt(λ
−1A) f0.

Equation (4) shows that L2
0(V ) is invariant under A, and so Pt(λ

−1A) f0 ∈ L2
0(V ).

The eigenvalues of the restriction A|L2
0(V ) of A to L2

0(V ) are λi for 1 ≤ i ≤ n− 1. By
the Pythagorean theorem, we have

||g||2 = Pt
2(k/λ)||f̄ ||2 + ||Pt(λ−1A) f0||2 ≤ Pt

2(k/λ)||f̄ ||2 + ||f0||2.

The second inequality follows from the fact that the operator Pt(λ
−1A|L2

0(V )) is self-

adjoint and its eigenvalues Pt(λi/λ), 1 ≤ i ≤ n − 1, are at most 1 in absolute value
(Fact 2). It follows from the Cauchy–Schwarz inequality that

|χNt(X) · g|2 ≤ |N t(X)| (Pt
2(k/λ)||f̄ ||2 + ||f0||2)(8)

= |N t(X)| (Pt
2(k/λ)||f̄ ||2 + |X| − ||f̄ ||2).

The sum of coordinates χNt(X) · g of g is equal to Pt(k/λ)|X|. This is because the
sum of coordinates of Ah is equal to k times the sum of coordinates of h, as follows
immediately from (4). By replacing the terms χNt(X) · g and ||f̄ || by their values in
(8), we get

|X|
|N t(X)| ≤

|X|
n

+
1− |X|/n
Pt

2(k/λ)
,(9)

which implies (7).
If G is a nonbipartite Ramanujan graph, we can replace λ by 2

√
k − 1 in (7). We

have

Pt

(
k

2
√
k − 1

)
= Pt

(
cosh

(
ln(k − 1)

2

))
= cosh

(
t
ln(k − 1)

2

)
=

(k − 1)t/2 + (k − 1)−t/2

2
.

The rest of the theorem follows by an easy calculation.
Corollary 3.2. If G is nonbipartite and X and Y are two subsets of V of

cardinality xn and yn, respectively,

d(X,Y ) ≤
⌊

cosh−1
√

(x−1 − 1)(y−1 − 1)

cosh−1(k/λ)

⌋
+ 1.
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Proof. If t is an integer such that the right-hand side of (9) is less than |X|/(n−
|Y |), then |N t(X)| > n− |Y |, and so the distance between X and Y is at most t. Let
θ = cosh−1(k/λ), so that Pt(k/λ) = cosh(tθ). We want t to be such that

x+
1− x

cosh2(tθ)
<

x

1− y
.

Solving for t yields the desired bound on d(X,Y ).
By applying Corollary 3.2 to any pair of subsets consisting of single vertices, we

obtain (3), which has already been established in [6, 16].
Corollary 3.3 (see [15]). If G is nonbipartite,

D(G) ≤
cosh−1

(
n

k(k−1)r−1 − 1
)

cosh−1(k/λ)

+ 2r + 1,

where r = b(c(G)− 1)/2c is the injectivity radius of G.
Proof. We remind the reader that c(G) is the girth of G. Consider any pair

of vertices u and v. The subsets Nr({u}) and Nr({v}) have size k(k − 1)r−1. By
applying Corollary 3.2 to these subsets, we get

d(Nr({u}), Nr({v})) ≤
cosh−1

(
n

k(k−1)r−1 − 1
)

cosh−1(k/λ)

+ 1.

Corollary 3.3 follows immediately.
Corollary 3.3 had first been established by Quenell [15].

4. Relation with subsequent eigenvalues. We now show the following spe-
cial case of Theorem 1.1.

Theorem 4.1. If G = (V,E) is a k-regular graph and |δi| < k, then for any set
S of i+ 1 vertices of V ,

min
{u,v}⊂S,u 6=v

d(u, v) ≤
⌈

cosh−1(n− 1)

cosh−1(k/|δi|)

⌉
+ 1.

Proof. Let ej be an eigenvector of A corresponding to the eigenvalue δj , and let
f ∈ L2(V ) be a nonzero function null on V − S such that f belongs to the vector
space Ei spanned by ei, ei+1, . . . , en−1. The existence of f follows from the fact that
dimL2(S) = i+ 1 and dimEi = n− i. Given an integer t, let g = Pt(|δi|−1

A)f . The
vector space Ei is invariant under A, and the eigenvalues of the restriction of A to
Ei are δh for i ≤ h ≤ n − 1. By a reasoning similar to the proof of Theorem 3.1
the eigenvalues Pt(δh/|δi|), for i ≤ h ≤ n − 1, of the restriction of the operator

Pt(|δi|−1
A) to Ei are at most 1 in absolute value, and so ||g|| ≤ ||f ||. Assume now

that min{u,v}⊂S,u 6=v d(u, v) > 2t. Then the vectors Pt(|δi|−1
A)χ{u}, for u ∈ S, have

disjoint supports, and so

||g||1 =

∥∥∥∥∥∑
u∈S

f(u) Pt(|δi|−1
A)χ{u}

∥∥∥∥∥
1

(10)

=
∑
u∈S

|f(u)| ||Pt(|δi|−1
A)χ{u}||1
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≥
∑
u∈S

|f(u)|Pt(k/|δi|)

= Pt(k/|δi|)||f ||1.

The third equation follows from the fact that the sum of coordinates of the vector
Pt(|δi|−1

A)χ{u} is Pt(k/|δi|).
On the other hand,

||g||1 ≤
√
n||g||(11)

≤ √
n||f ||

≤
√
n/2||f ||1.

The first inequality is a consequence of the Cauchy–Schwarz inequality. The last
inequality is valid because f ∈ L2

0(V ). Indeed,

||f ||2 = ||f+||2 + ||f−||2
≤ ||f+||21 + ||f−||21
=

||f ||21
2

,

where f+ = max(f, 0) and f− = min(f, 0).
Combining (10) and (11) shows that

Pt(k/|δi|) ≤
√
n/2.(12)

Equation (12) does not hold for t = blc+ 1, where

l =
cosh−1

√
n/2

cosh−1(k/|δi|)
,

and so min{u,v}⊂S,u 6=v d(u, v) ≤ 2blc+ 2.
This bound can be slightly improved when l is an integer. Indeed, let t = l and

assume as before that min{u,v}⊂S,u 6=v d(u, v) > 2l. Since Pl(k/|δi|) =
√
n/2, all terms

of (11) are equal (otherwise, (12) would be a strict inequality for t = l). This implies
that the support of g is equal to V . It follows that every point in G is at distance
at most l from some point in S, and so min{u,v}⊂S,u 6=v d(u, v) ≤ 2l + 1. We conclude
(whether l is an integer or not) that min{u,v}⊂S,u6=v d(u, v) ≤ d2le + 1. The lemma

follows by noting that 2 cosh−1
√
n/2 = cosh−1(n− 1).

Theorem 1.1 can be shown in a similar way to Theorem 4.1. The main difference
is that we consider a function f in L2(∪i+1

j=1Xj) which is constant on each Xj .
Corollary 4.2. If G is a k-regular connected graph and |δi| < k, where i is an

integer between 1 and n− 1,

D(G) ≤ i

⌈
cosh−1(n− 1)

cosh−1(k/|δi|)

⌉
+ 2i− 1.(13)

If r is the injectivity radius of G then

D(G) ≤ i

⌈
cosh−1( n

k(k−1)r−1 − 1)

cosh−1(k/|δi|)

⌉
+ 2ir + 2i− 1.
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Proof. Let u and v be two vertices at maximal distance in G. Consider a shortest
path between u and v. There exists a sequence of i+ 1 vertices u0 = u, u1, . . . , ui = v
on this path at distance at least bD(G)/ic from each other. By applying Theorem 4.1
to the set {u0, u1, . . . , ui}, we get the first bound on D(G) = d(u, v). The second
bound can be established in a similar fashion by applying Theorem 1.1 to the subsets
Nr({uj}).

5. Tightness of bounds. We show that, for any fixed i, (13) is asymptotically
tight for certain families of k-regular graphs having asymptotically optimal |δi|. We
use techniques similar to [11]. We start with the case i = 1.

Theorem 5.1. For any integer k such that k− 1 is prime congruent to 1 modulo
4, there exists an infinite explicit family of k-regular graphs Gn on n vertices with
λ(Gn) = (2 + o(1))

√
k − 1 and diameter (2 + o(1)) logk−1 n.

Proof. Let H be a nonbipartite k-regular Ramanujan graph on n′ vertices of
girth at least (2/3 + o(1)) logk−1 n

′. Such a graph has been explicitly constructed
in [12]. Consider two identical trees T and T ′ of depth l = blogk−1 m − 2c, where
m = bn′/ logn′c and whose internal nodes have degree k. All leaves in T and T ′ have
the same depth, and H, T , and T ′ are disjoint. Let F be a set of edges in H at
distance at least r = Ω(logk−1(n

′/m)) from each other and such that the number of
edges in F is equal to the number of leaves in T (F can be found greedily). Identify
one endpoint of each edge in F to a leaf in T and the other endpoint to a leaf in
T ′ in such a way that all leaves of T and T ′ are identified to distinct vertices in
H. By deleting the edges in F , we obtain a k-regular graph G on n vertices. The
diameter of G is at least twice the depth of T , which is (1 + o(1)) logk−1 n. We show

that λ(G) = (2 + o(1))
√
k − 1. Equation (3) then implies that the diameter of G is

equal to (2 + o(1)) logk−1 n. We only need to show the upper bound on λ′ = λ(G),

since λ′ ≥ (2 + o(1))
√
k − 1 for any family of k-regular graphs as the number of

vertices goes to infinity [2, 12, 14]. Let A be the adjacency matrix of H and A′ the
adjacency matrix of G. We assume that λ′ > 2

√
k − 1 (otherwise we are done), and

let λ′ = 2
√
k − 1 cosh θ′, with θ′ > 0. We also assume that λ′ = λ1(G). The case

λ′ = −λn−1(G) can be treated similarly. Denote by V (G), V (H), V (T ), and V (T ′)
the vertex sets of G, H, T , and T ′, respectively.

Let g ∈ L2(V (G)) be an eigenvector of A′ corresponding to λ′, and let f ∈
L2(V (H)) be the vector of L2(V (H)) that coincides with g on V (H). By (5), we have

λ′||g||2 = g ·A′g(14)

= f ·Af −
∑

(u,v)∈F
g(u)g(v) +

∑
(u,v)∈E(T )

g(u)g(v) +
∑

(u,v)∈E(T ′)

g(u)g(v)

≤ f ·Af + (2
√
k − 1 + 1)

∑
v∈V (T )∪V (T ′)

g(v)2.

The third equation follows from the fact that the largest eigenvalue of T is at most
2
√
k − 1. Since g ∈ L2

0(V (G)),∑
w∈V (H)

f(w) = −
∑

w∈(V (T )∪V (T ′))−V (H)

g(w).

We need the following lemma whose proof can be found in [11].

Lemma 5.2. If H = (V,E) is k-regular on n vertices, then for any f ∈ L2(V ),
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we have

f ·Af ≤ λ1(H)||f ||2 +
k − λ1(H)

n

(∑
v∈V

f(v)

)2

.

Using Lemma 5.2 and the Cauchy–Schwarz inequality, we get

f ·Af ≤ λ1(H)||f ||2 +
k

n

 ∑
w∈(V (T )∪V (T ′))−V (H)

g(w)

2

≤ 2
√
k − 1

||g||2 − ∑
w∈(V (T )∪V (T ′))−V (H)

g(w)2


+

2km

n

∑
w∈(V (T )∪V (T ′))−V (H)

g(w)2

≤ 2
√
k − 1||g||2

for sufficiently large n. Combining this with (14) yields

λ′||g||2 ≤ 2
√
k − 1

||g||2 + 2
∑

v∈V (T )∪V (T ′)

g(v)2

 .(15)

Next, we show that
∑

v∈V (T )∪V (T ′) g(v)
2 is small compared with ||g||2. We use the

following lemma whose proof is implicit in [11] and is given in detail in [10, sec. 5.3].
Lemma 5.3. Let G = (V,E) be a k-regular graph and g an eigenvector of G

corresponding to the eigenvalue 2
√
k − 1 cosh θ, with θ > 0. If l and l′ are two non-

negative integers with l < l′, and u is a node of G such that the subgraph induced on
the set of nodes at distance at most l′ from u is a tree, then∑

v∈V :d(u,v)=l

g(v)2 ≤ e−2(l′−l)θ||g||2.

By applying Lemma 5.3 in the case where u is the root of T and l′ = l + r, we
see that

||g||2 ≥ e2rθ
′ ∑
v∈V (T ):d(u,v)=l

g(v)2.

By applying the lemma to l − 1, l − 2, . . . , 0, we obtain

||g||2 ≥ e2rθ
′
(1− e−2θ′)

∑
v∈V (T )

g(v)2.

Combining this with (15) yields

cosh θ′ ≤ 1 + 4
e−2rθ′

1− e−2θ′ .

As a consequence, θ′ ≤ 2(log r)/r, for large n, and so λ′ ≤ (2 + o(1))
√
k − 1.
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It is known (see, e.g., [8]) that |δi(Gn)| ≥ (2 + o(1))
√
k − 1 for any family of

k-regular graphs as the number of vertices goes to infinity. For graphs such that
|δi(Gn)| = (2 + o(1))

√
k − 1, (13) implies that D(G) ≤ (2 + o(1))i logk−1 n. The

following theorem, obtained jointly with N. Alon [1], shows that this bound is tight
for some families of graphs. The proof uses the max-min characterization of the
eigenvalues.

Fact 3. If B is a self-adjoint operator in a vector space L and λi(B) its (i+1)st
largest eigenvalue, then

λi(B) = max
H

min
g∈H−{0}

g ·Bg
||g||2 ,

where H ranges over the vector subspaces of L of dimension i+ 1.
Theorem 5.4. If k − 1 is a prime congruent to 1 modulo 4 and i is a positive

integer, there exists an infinite explicit family of k-regular graphs Gn on n vertices of
diameter (2 + o(1))i logk−1 n and such that δj(Gn) = k − O(1/n), for 0 ≤ j ≤ i − 1,

and |δi(Gn)| = (2 + o(1))
√
k − 1.

Proof. Consider a family (Fn) of k-regular graphs satisfying the conditions of
Theorem 5.1 and whose girth goes to infinity as n goes to infinity. Such a family can
be constructed explicitly, as shown in the proof of Theorem 5.1. We construct the
graphs Gn (for n multiple of i and such that Fn/i exists) as follows: consider i distinct

copies of Fn/i, denoted by F j
n/i, for 1 ≤ j ≤ i. Let (uj , vj) be a pair of vertices in

F j
n/i at maximal distance from each other, and let u′j (respectively, v′j) be a vertex

of F j
n/i adjacent to uj (respectively, vj). We form the graph Gn by connecting vj

(respectively, v′j) to uj+1 (respectively, u′j+1), for 1 ≤ j ≤ i− 1, and deleting the edge
between uj and u′j , for 2 ≤ j ≤ i and the edge between vj and v′j , for 1 ≤ j ≤ i− 1.
Clearly, the diameter of Gn is (2 + o(1))i logk−1 n.

The eigenvalues of the union of the Fn/i satisfy the conditions of Theorem 5.4.
Indeed, the first i eigenvalues are equal to k, and the (i + 1)st largest eigenvalue in
absolute value is, in absolute value, equal to λ(Fn/i) = (2 + o(1))

√
k − 1. This is

because the eigenvalues of a graph are the union of the eigenvalues of its connected
components. We now show that the i + 1 largest eigenvalues of Gn are close to the
i+ 1 largest eigenvalues of the union of the Fn/i.

Let A (respectively, A′) be the adjacency matrix of the union of the Fn/i (respec-

tively, Gn). Let Vj be the vertex set of F j
n/i and V the vertex set of Gn. It follows

from (5) that for any f ∈ L2(V ),

(16)

|A′f · f −Af · f |

= 2

∣∣∣∣i−1∑
j=1

(f(vj)f(uj+1) + f(v′j)f(u′j+1)− f(uj+1)f(u′j+1)− f(vj)f(v′j))
∣∣∣∣

≤ 2
i∑

j=1

(
f(uj)

2 + f(u′j)
2 + f(vj)

2 + f(v′j)
2
)
.

Denote byH the subspace of L2(V ) of vectors which are constant on each Vj . Equation
(16) shows that, for each f ∈ H, we have A′f · f ≥ (k − 8i/n)||f ||2. Since dimH =
i, it follows from Fact 3 that λi−1(G) is lower bounded by k − 8i/n, and so are
|δ0|, |δ1|, . . . , |δi−1|.
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We now show that |δi(Gn)| = (2 + o(1))
√
k − 1. We only need to show the upper

bound, as the lower bound holds for any family of k-regular graphs [8]. Let r be the
injectivity radius of Gn. It is at least the injectivity radius of Fn/i. If |δi| ≤ 2

√
k − 1,

we are done, so we will assume in the rest of the proof that δi > 2
√
k − 1. (The case

where δi < −2
√
k − 1 can be treated similarly.) Let δi = 2

√
k − 1 cosh θ, with θ > 0,

and eh an eigenvector of A′ corresponding to δh for 0 ≤ h ≤ i. Since |δh| ≥ δi, for
0 ≤ j ≤ i, it follows from Lemma 5.3 that |eh(uj)| ≤ e−rθ||eh||. Using the Cauchy–
Schwarz inequality and the orthogonality of the vectors eh, this implies that for any
vector f ∈ Vect(e0, e1, . . . , ei),

|f(uj)| ≤
√
i+ 1e−rθ||f ||.(17)

Indeed, if f =
∑i

h=0 cheh, then

f(uj)
2 ≤ (i+ 1)

i∑
h=0

ch
2eh(uj)

2

≤ (i+ 1)e−2rθ
i∑

h=0

ch
2||eh||2

= (i+ 1)e−2rθ||f ||2.

Equation (17) remains valid if uj is replaced by u′j , vj , or v′j . Since the vector space

Vect(e0, e1, . . . , ei) is of dimension greater than H, it intersects H⊥−{0}. Let g be an
element of this intersection. Since the restriction of g to each Vj belongs to L2

0(Vj),

||Ag||2 ≤ λ(Fn/i)
2||g||2 ≤ (4 + o(1))(k − 1)||g||2.

Combining this with (17) applied to the vector f = A′g yields

||A′g||2 ≤ ||Ag||2 +
i∑

j=1

(A′g)(uj)2 + (A′g)(u′j)
2 + (A′g)(vj)2 + (A′g)(v′j)

2(18)

≤ (4 + o(1))(k − 1)||g||2 + 4i(i+ 1)e−2rθ||A′g||2.

But since g ∈ Vect(e0, e1, . . . , ei), we have ||A′g||2 ≥ δi
2||g||2. Combining this with

(18) shows that

cosh2 θ ≤ 1 + o(1) + 4i(i+ 1)e−2rθ cosh2 θ,

which implies that θ = o(1), since r = ω(1). We conclude that |δi| ≤ (2+o(1))
√
k − 1

holds.

Concluding remark. The results in sections 3–4 (including Theorem 1.1) can
be easily extended to general graphs using the techniques in [6]. This yields bounds
in terms of the eigenvalues of the Laplacian. Recently, other generalizations and
extensions of our results, notably to continuous spaces, have been accomplished in [7].

Acknowledgment. We are grateful to Noga Alon for many helpful discussions
and his contribution to Theorem 5.4.
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Abstract. This paper deals with q-series arising from the study of the transitive closure prob-
lem in random acyclic digraphs. In particular, it presents an identity involving divisor generating
functions which allows us to determine the asymptotic behavior of polynomials defined by a general
class of recursive equations, including the polynomials for the mean and the variance of the size of
the transitive closure in random acyclic digraphs.
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1. Introduction. In [7] Simon, Crippa, and Collenberg studied the distribution
of the transitive closure in the Gn,p-model of a random acyclic digraph. By inter-
preting the random variable describing the size of the transitive closure of a node as
a discrete-time, pure-birth process, they succeeded in finding closed expressions for
its distribution, mean, and variance. Developing these expressions as polynomials in

q
def
= 1− p (where p is the probability of existence of an edge), they formulated some

conjectures regarding their asymptotic behavior as n, the number of nodes, tends to
∞.

This is the departure point of this paper, whose main result is the identity for-
mulated in section 2. This identity not only allows us to prove in section 4 the
conjectures formulated in [7], but also provides a generalization of an identity pro-
posed by Uchimura involving divisor generating functions. Moreover, we will show
in section 3 that it allows us to determine the asymptotic behavior of polynomials
defined by a general class of recursive equations.

These results are not just of theoretical interest: in section 5 we will show that they
can be easily implemented in one of the current symbolic computation systems and
finally that they provide a bridge among the fields of discrete mathematics, probability
theory, and number theory.

2. The main identity. There are several definitions and identities in the liter-
ature that we require. First of all, we need the definition of q-hypergeometric series1

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, t

)
=
∑
n≥0

(a1, a2, . . . , ar; q)n t
n

(q, b1, b2, . . . , bs; q)n
,(1)

where

(A1, A2, . . . , Ar; q)n =
r∏

i=1

n−1∏
j=0

(1−Ai q
j)(2)

∗ Received by the editors January 31, 1994; accepted for publication (in revised form) February
1, 1996.
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1 An actual introduction to the theory of hypergeometric series is [4].
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and

(A1, A2, . . . , Ar; q)∞ =
r∏

i=1

∞∏
j=0

(1−Ai q
j).(3)

Throughout this paper we will assume that q is a variable with 0 < q < 1, and therefore
(1) converges absolutely provided |t| < 1. Whenever no misunderstanding can arise,
we will denote the q-shifted factorial by (A1, A2, . . . , Ar)n, resp., (A1, A2, . . . , Ar)∞,
instead of by (2), resp., (3). We also need the identity for the q-exponential function∑

n≥0

zn

(q)n
=

1

(z)∞
,(4)

the q-Gauss sum

2φ1

(
a, b
c

; q, c/a b

)
=

(c/a, c/b; q)∞
(c, c/a b; q)∞

,(5)

and the Chu–Vandermonde convolution (see [3])

k∑
r=1

(
j

r

)(
k − 1

k − r

)
=

(
k + j − 1

k

)
.(6)

Further, following the notation of [5], we will write σi(n) for the sum of ith powers of
the divisors of n; i.e.,

σi(n)
def
=
∑
d|n

di.

In particular, then, σ0(n) will denote the number of divisors of n. The generating
function of σi(n) will be denoted by

Si(q)
def
=
∑
n≥1

σi(n) qn.(7)

At this point we can state the major identity of this paper.
Theorem 2.1. Let Si(q) be defined as above. Then for any integer k ≥ 1 there

is a polynomial Mk(x1, . . . , xk) with rational coefficients such that

∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)k
= Mk(S0(q), . . . , Sk−1(q)).(8)

In order to prove this theorem we need several lemmas.
Lemma 2.2. For any integer k ≥ 1 the following identity holds:

rk
def
=
∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)k
= (q)∞

∑
j≥0

qj

(q)j

(
k + j − 1

k

)
.(9)

Proof. Let

R(z)
def
=
∑
k≥1

rk z
k;
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then we have

R(z) =
∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n

∑
k≥1

(
z

1− qn

)k

=
∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n

z
1−qn

1− z
1−qn

= − z

1− z

∑
n≥1

(−1)n q(
n+1

2 )

(q)n

(
1− qn

1−z
)

=
∑
n≥1

(
1

1−z
)
n

(−1)n q(
n+1

2 )

(q)n

(
q

1−z
)
n

= −1 + lim
τ→0

2φ1

( 1
1−z ,

q
τ

q
1−z

; q, τ

)
(5)
= −1 + lim

τ→0

(q, τ
1−z )∞

( q
1−z , τ)∞

= −1 +
(q)∞(
q

1−z
)
∞

(4)
= −1 + (q)∞

∑
j≥0

(
q

1−z
)j

(q)j

= −1 + (q)∞
∑
j≥0

qj

(q)j

∑
k≥0

(
k + j − 1

k

)
zk.

Therefore, by comparing the coefficients, for k ≥ 1 we obtain

rk = (q)∞
∑
j≥0

qj

(q)j

(
k + j − 1

k

)
.

Lemma 2.3.

1

r!

[
dr

dεr
(q)∞
(ε q)∞

]
ε=1

= (q)∞
∑
n≥0

qn

(q)n

(
n

r

)
.(10)

Proof.

1

r!

[
dr

dεr
(q)∞
(ε q)∞

]
ε=1

(4)
=

1

r!

 dr

dεr
(q)∞

∑
n≥0

εn qn

(q)n


ε=1

=
(q)∞
r!

∑
n≥0

n (n− 1) · · · (n− r + 1) εn−r qn

(q)n

∣∣∣∣∣∣
ε=1

= (q)∞
∑
n≥0

qn

(q)n

(
n

r

)
.
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Lemma 2.4. Let

Tr ≡ Tr(ε) ≡ Tr(ε, q) =
∑
n≥1

qr n

(1− ε qn)r
.

Then there exists a polynomial Nk(x1, . . . , xk) with rational coefficients such that for
any integer k ≥ 1 the following holds:

dk

dεk
(q)∞
(ε q)∞

=
(q)∞
(ε q)∞

Nk(T1, . . . , Tk).(11)

Proof. We will proceed by induction on k. For k = 1 we have

d

dε

(q)∞
(ε q)∞

= (q)∞
d

dε

∏
i≥1

(1− ε qi)−1

= (q)∞
∑
j≥1

∏
i≥1
i 6=j

(1− ε qi)−1

 (
qj (1− ε qj)−2

)
= (q)∞

∑
j≥1

∏
i≥1

(1− ε qi)−1 qj

1− ε qj

=
(q)∞
(ε q)∞

∑
j≥1

qj

1− ε qj

=
(q)∞
(ε q)∞

T1,(12)

so choose N1(x1) = x1. Further, notice that

d

dε
Tr(ε) =

d

dε

∑
n≥1

qr n (1− ε qn)−r

=
∑
n≥1

qr n (1− ε qn)−r−1 r qn

= r
∑
n≥1

q(r+1)n (1− ε qn)−(r+1)

= r Tr+1(ε).(13)

Now assume that our result is established up to a k; then we have

dk+1

dεk+1

(q)∞
(ε q)∞

=
d

dε

(
(q)∞
(ε q)∞

Nk(T1, . . . , Tk)

)
=

(q)∞
(ε q)∞

T1 Nk(T1, . . . , Tk) +
(q)∞
(ε q)∞

d

dε
Nk(T1, . . . , Tk)

=
(q)∞
(ε q)∞

Nk+1(T1, . . . , Tk+1),

where

Nk+1(T1, . . . , Tk+1) = T1 Nk(T1, . . . , Tk) +
d

dε
Nk(T1, . . . , Tk).(14)
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It remains to show that (14) is a polynomial in T1, . . . , Tk+1 with rational coefficients.
Clearly this holds for the first term. Further, Nk(T1, . . . , Tk) is a sum of terms of the
form

c T j1
1 · · ·T jk

k ,

and thus, according to (13), its derivative with respect to ε will be a polynomial in
T1, . . . , Tk+1 with rational coefficients.

Lemma 2.5. For any integer k ≥ 1 there exist rational numbers ck,j , 0 ≤ j ≤
k − 1, such that

Tk(1, q) =
k−1∑
j=0

ck,j Sj(q).(15)

Proof. Recall the definition of Stirling numbers of the first kind:

x (x− 1) · · · (x− n+ 1) =
n∑

k=0

s(n, k)xk.

Now we have

Tk(1, q)

=
∑
n≥1

qk n

(1− qn)k

=
∑
n≥1

qn (1− (1− qn))k−1

(1− qn)k

=
∑
n≥1

qn

(1− qn)k

k−1∑
j=0

(
k − 1

j

)
(−1)j (1− qn)j

=
k−1∑
j=0

(
k − 1

j

)
(−1)j

∑
n≥1

∑
m≥0

(
k − j +m− 1

k − j − 1

)
qn (1+m)

=

k−1∑
j=0

(
k − 1

j

)
(−1)j

∑
n≥1

∑
m≥0

qn (1+m)

(k − j − 1)!
(m+ 1) (m+ 2) · · · (m+ k − j − 1)

=
k−1∑
j=0

(
k − 1

j

)
(−1)k−1

(k − j − 1)!

∑
m,n≥1

qnm (−m) (−m− 1) · · · (−m− k + j + 2)

=

k−1∑
j=0

(
k − 1

j

)
(−1)k−1

(k − j − 1)!

k−j−1∑
h=0

s(k − j − 1, h) (−1)h
∑

m,n≥1

mh qnm

=
k−1∑
j=0

(
k − 1

j

)
(−1)k−1

(k − j − 1)!

k−j−1∑
h=0

s(k − j − 1, h) (−1)h Sh(q)

=
k−1∑
h=0

Sh(q)
k−h−1∑
j=0

(
k − 1

j

)
(−1)h+k−1

(k − j − 1)!
s(k − j − 1, h)

=
k−1∑
h=0

ck,h Sh(q).
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At this point we have all the lemmas needed to prove Theorem 2.1.
Proof.

∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)k
(9)
= (q)∞

∑
j≥0

qj

(q)j

(
k + j − 1

k

)
(6)
= (q)∞

∑
j≥0

qj

(q)j

k∑
r=1

(
j

r

)(
k − 1

k − r

)

=

k∑
r=1

(
k − 1

k − r

)
(q)∞

∑
j≥0

qj

(q)j

(
j

r

)
(10)
=

k∑
r=1

(
k − 1

k − r

)
1

r!

[
dr

dεr
(q)∞
(ε q)∞

]
ε=1

(11)
=

k∑
r=1

(
k − 1

k − r

)
1

r!
Nr(T1(1, q), . . . , Tr(1, q))

(15)
=

k∑
r=1

(
k − 1

k − r

)
1

r!
Nr(c1,0 S0(q), c2,0 S0(q)

+c2,1 S1(q), . . . , cr,0 S0(q) + · · ·+ cr,r−1 Sr−1(q))

= Mk(S0(q), . . . , Sk−1(q)),

where Mk(x1, . . . , xk) is a polynomial in x1, . . . , xk with rational coefficients.
Remark. We note from the construction of Nr in the proof of Lemma 2.4 that we

have

Nr(T1, . . . , Tr) =
∑
π`r

c(r, π)x
m1(π)
1 · · ·xmr(π)

r ,(16)

where π ` r means π = (1m1(π) 2m2(π) 3m3(π) . . .) is a partition of r (
∑

j≥1 mj(π) j =
r). Therefore, according to the transformation of the Nr into Mk, we also have

Mk(x1, . . . , xk) =

k∑
r=1

∑
π`r

c(r, π)x
m1(π)
1 · · ·xmr(π)

r .(17)

Next we will compute the cases k = 1, 2, 3. In section 5 we will show that this
computation can be carried out by means of a current symbolic computation system,
so that the polynomial Mk(x1, . . . , xk) can be found for any k ≥ 1.

k = 1: Following the proof of Theorem 2.1 we have

∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)

(9)
= (q)∞

∑
j≥0

j qj

(q)j

(10)
=

[
d

dε

(q)∞
(ε q)∞

]
ε=1

(12)
= T1(1, q) =

∑
n≥1

qn

1− qn
= S0(q),

and therefore

M1(x1) = x1.(18)
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This identity was already proven by Uchimura in [8] and thus our theorem provides
a generalization of it.

k = 2: In this case we obtain in a similar way∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)2
(9)
= (q)∞

∑
j≥0

(
j+1
2

)
qj

(q)j

= (q)∞
∑
j≥0

((
j

2

)
+

(
j

1

))
qj

(q)j

(10)
=

1

2

[
d2

dε2
(q)∞
(ε q)∞

]
ε=1

+

[
d

dε

(q)∞
(ε q)∞

]
ε=1

(12)
=

1

2

[
d

dε

(q)∞
(ε q)∞

T1(ε)

]
ε=1

+ S0(q)

(12,13)
=

1

2

[
(q)∞
(ε q)∞

T2(ε) +
(q)∞
(ε q)∞

T1(ε)
2

]
ε=1

+ S0(q)

=
1

2
T2(1, q) +

1

2
S0(q)

2 + S0(q).

Following Lemma 2.5 through for k = 2, we find further that

T2(1, q) = c2,0 S0(q) + c2,1 S1(q) = −S0(q) + S1(q).

Hence ∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)2
=

1

2

(
S1(q) + S0(q) + S0(q)

2
)
,

and so

M2(x1, x2) =
1

2
x2 +

1

2
x1 +

1

2
x2

1.(19)

k = 3: First of all, by analyzing Lemma 2.5 we get

S2(q) =
∑
m≥1

∑
n≥1

n2 qnm

=
∑
m≥1

∑
n≥1

(
2

(
n+ 1

2

)
− n

)
qnm

= 2
∑
m≥1

qm

(1− qm)3
− S1(q)(20)

and

T3(1, q) =
∑
n≥1

qn (1− (1− qn))2

(1− qn)3

=
∑
n≥1

qn

(1− qn)3
− 2

∑
n≥1

qn

(1− qn)2
+
∑
n≥1

qn

1− qn

(20)
=

1

2
(S2(q) + S1(q))− 2S1(q) + S0(q)

=
1

2
S2(q)− 3

2
S1(q) + S0(q).
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Hence

∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)3

(9)
= (q)∞

∑
j≥0

(
j+2
3

)
qj

(q)j

= (q)∞
∑
j≥0

((
j

3

)
+ 2

(
j

2

)
+

(
j

1

))
qj

(q)j

(10)
=

1

3!

[
d3

dε3
(q)∞
(ε q)∞

]
ε=1

+

[
d2

dε2
(q)∞
(ε q)∞

]
ε=1

+

[
d

dε

(q)∞
(ε q)∞

]
ε=1

(k = 2)
=

1

3!

[
d2

dε2
(q)∞
(ε q)∞

T1(ε)

]
ε=1

+ T2(1, q) + S0(q)
2 + S0(q)

=
1

3!

[
d

dε

(
(q)∞
(ε q)∞

T2(ε) +
(q)∞
(ε q)∞

T1(ε)
2

)]
ε=1

+ S0(q)
2 + S1(q)

=
1

3!

[
(q)∞
(ε q)∞

2T3(ε) +
(q)∞
(ε q)∞

T1(ε)T2(ε) +
(q)∞
(ε q)∞

T1(ε)
3

+
(q)∞
(ε q)∞

2T1(ε)T2(ε)

]
ε=1

+ S0(q)
2 + S1(q)

=
1

3
T3(1, q) +

1

2
T1(1, q)T2(1, q) +

1

6
T1(1, q)

3 + S0(q)
2 + S1(q)

=
1

6
S2(q) +

1

2
S1(q) +

1

3
S0(q) +

1

2
S0(q)

2 +
1

2
S0(q)S1(q) +

1

6
S0(q)

3,

and so

M3(x1, x2, x3) =
1

6
x3 +

1

2
x2 +

1

3
x1 +

1

2
x2

1 +
1

2
x1 x2 +

1

6
x3

1.(21)

To conclude this section we will show that Theorem 2.1 constitutes the basis for
finding and proving new identities involving q-series. In [8] Uchimura proved that

(x)∞
∑
m≥1

m
xm

(x)m
≡
∑
m≥1

mxm
∏

j≥m+1

(1− xj) = S0(x);(22)

we can generalize this identity to the following.

Theorem 2.6. For any integer k ≥ 1 there exists a polynomial Hk(x1, . . . , xk)
with rational coefficients such that

(x)∞
∑
m≥1

mk xm

(x)m
= Hk(S0(x), . . . , Sk−1(x)).(23)

Proof. Let k ≥ 1 be an integer and consider first the expression

Bα(x)
def
=
∑
n≥1

(−1)n−1 αn x(n+1
2 )

(x)n (1− xn)k
.(24)
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Clearly then, by Theorem 2.1, B1(x) = Mk(S0(x), . . . , Sk−1(x)). On the other hand,
we have

Bα(x) =
∑
n≥1

(−1)n−1 αn x(n2)

(x)n−1

xn

(1− xn)k+1

=
∑
n≥1

(−1)n−1 αn x(n2)

(x)n−1

∑
m≥1

(
m+ k − 1

k

)
xnm

=
∑
m≥1

αxm
(
m+ k − 1

k

) ∑
n≥1

(−α)n−1 x(n−1)m x(n2)

(x)n−1

= α (αx)∞
∑
m≥1

(
m+ k − 1

k

)
xm

(αx)m
,

where the last identity follows from [5, Theorem 348] by letting j →∞ and a = −αxn.
At this point we can prove our theorem by induction on k. As mentioned before, the
case k = 1 has been treated by Uchimura. So let k ≥ 2 and let our theorem hold up
to k − 1. Then we have

k!Mk(S0(x), . . . , Sk−1(x)) = k!B1(x)

= (x)∞
∑
m≥1

k!

(
m+ k − 1

k

)
xm

(x)m

= (x)∞
∑
m≥1

k∑
i=1

gi,km
i xm

(x)m

=
k∑

i=1

gi,k (x)∞
∑
m≥1

mi xm

(x)m
,

where gk,k = 1, and thus

(x)∞
∑
m≥1

mk xm

(x)m
=

k!Mk(S0(x), . . . , Sk−1(x))−
k−1∑
i=1

gi,k (x)∞
∑
m≥1

mi xm

(x)m


=

[
k!B1(x)−

k−1∑
i=1

gi,kHi(S0(x), . . . , Si−1(x))

]
def
= Hk(S0(x), . . . , Sk−1(x)).

In section 5 we will show that the polynomial Hk(x1, . . . , xk) can also be deter-
mined by a symbolic computation program.

3. A set of recursive equations. Theorem 2.1 allows us to determine the
asymptotic behavior of polynomials defined by a general class of recursive equations.
Let

f(n) =
∑
k≥0

ck n
k

be a nonzero polynomial in n with rational coefficients andMj ≡Mj(S0(q), . . . , Sj−1(q))
be the same polynomials defined in Theorem 2.1. Then the following theorem holds.
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Theorem 3.1. Let an(q) be a polynomial in q defined by the recursive equation

an(q) = f(n) + (1− qn−1) an−1(q), n ≥ 1,(25)

initialized with a0(q) = 0. Then there are rational coefficients hj such that

lim
n→∞

(
n∑
i=1

f(i)− an(q)

)
=
∑
j≥1

hj Mj ;(26)

for the coefficients hj the following hold:

h1 = c0(27)

and

hj =
∑

i≥j−1

(−1)i−j+1

(
i− 1

j − 2

)
i!
∑
k≥i

ck s̃(k, i),(28)

where s̃(k, i) represents the Stirling number of the second kind.
Proof. For the generating function of f(n) we get

F (z) =
∑
n≥1

f(n) zn

=
∑
m≥0

∑
k≥m

ck s̃(k,m)m!︸ ︷︷ ︸
dm

zm

(1− z)m+1
− c0,

and therefore for z = qn we obtain

F (qn) =
∑
m≥0

dm
qnm

(1− qn)m+1
− c0

=
d0

1− qn
+
∑
m≥1

dm
qn (1− (1− qn))m−1

(1− qn)m+1
− c0

=
∑
m≥1

dm

m−1∑
j=0

(
m− 1

j

)
(−1)j︸ ︷︷ ︸

em,j

qn

(1− qn)m+1−j + c0
qn

1− qn
.

Now let

A(z)
def
=
∑
n≥1

an(q) zn;(29)

then by substituting (25) in (29) we get

A(z) =
∑
n≥1

[
f(n) + (1− qn−1) an−1(q)

]
zn

=
∑
n≥1

f(n) zn + z A(z)− z A(q z)

= F (z) + z A(z)− z A(q z),
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thus obtaining

A(z) =
F (z)

1− z
− z

1− z
A(q z).(30)

Finally, iterative substitution results in

A(z) =
∑
n≥0

(−1)n F (qnz) zn q(
n
2)

(z)n+1
.(31)

At this point we substitute z = q, use the expression for F (qn), and apply Theorem
2.1 to obtain

A(q) =
∑
n≥1

(−1)n−1 F (qn) q(
n
2)

(q)n

=
∑
m≥1

dm

m−1∑
j=0

em,j

∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)m+1−j + c0
∑
n≥1

(−1)n−1 q(
n+1

2 )

(q)n (1− qn)

=
∑
m≥1

dm

m−1∑
j=0

em,j Mm+1−j + c0 M1

= c0 M1 +
∑
j≥2

Mj

∑
i≥j−1

di ei,i−j+1

=
∑
j≥1

hj Mj ,

where h1 = c0, and for j ≥ 2 we have

hj =
∑

i≥j−1

di ei,i−j+1 =
∑

i≥j−1

(−1)i−j+1

(
i− 1

j − 2

)
i!
∑
k≥i

ck s̃(k, i).

To complete the proof it is sufficient to notice that an(q) can also be written as

an(q) =
n∑
i=1

f(i)−
n−1∑
i=1

qi ai(q),

and therefore we get

lim
n→∞

(
n∑
i=1

f(i)− an(q)

)
= A(q).

4. Applications to probability theory. As mentioned in the introduction, we
will show in this section that our theory allows us to prove in a very concise way two
results formulated in [7]. For this reason we will briefly restate some of the results
contained in that paper.

Let the Gn,p-model of a random acyclic digraph2 be defined by the vertex set V =
{1, . . . , n} and the set of edges (i, j) with i < j, where every edge occurs independently

2 An actual introduction to the theory of random graphs is [6].
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with probability p, 0 < p < 1. In this model the size γ∗n of the reflexive, transitive
closure of node 1, i.e., the cardinality of the set of nodes reachable through a directed
path starting in 1 (including node 1 itself), is a random variable with the following
distribution:

Pr(γ∗n = h) = qn−h
h−1∏
i=1

(1− qn−i),(32)

where q
def
= 1− p. This can be proven by interpreting γ∗n as a discrete-time, pure-birth

process with time t = n. Such a process can be described by a sequence of random
variables Xt, t ∈ N, assuming the states ` = 1, 2, 3, . . . with probabilities Pt,`, and by
a sequence of transition probabilities λ`, 0 ≤ λ` ≤ 1, such that Pt,` = 0 for t ≤ 0 or
` 6∈ {1, . . . , t}, P1,1 = 1, and Pt,` = (1 − λ`)Pt−1,` + λ`−1 Pt−1,`−1 otherwise. For γ∗n
holds λ` = 1 − q` and (32) can be verified by induction on n. At this point we are
able to give a very concise proof of the following theorem, already proved in [7].

Theorem 4.1. For all q, 0 < q < 1, we have

lim
n→∞ (n− E(γ∗n)) =

∞∑
i=1

qi

1− qi
≡ S0(q).(33)

Proof. Let us set

en(q)
def
= E(γ∗n);(34)

then using (32) it can be proven that en(q) satisfies the recursion

en(q) = 1 + (1− qn−1) en−1(q),(35)

which is of type (25) with the polynomial f(n) = 1. According to Theorem 3.1 there
are coefficients hj such that

lim
n→∞

(
n∑
i=1

f(i)− en(q)

)
= lim

n→∞ (n− E(γ∗n)) =
∑
j≥1

hj Mj .

As for f(n) = 1, we have c0 = 1 and ck = 0 for all k ≥ 1; we get h1 = 1 and hj = 0
for all j ≥ 2. Finally, we saw in (18) that M1(x) = x and so we have proven

lim
n→∞ (n− E(γ∗n)) = M1(S0(q)) = S0(q) ≡

∞∑
i=1

qi

1− qi
.

The next theorem concerns the asymptotic for the variance of γ∗n and it is not as
straightforward as the one for the mean.

Theorem 4.2. For all q, 0 < q < 1, we have

lim
n→∞ (Var(γ∗n)) =

∞∑
i=1

i qi

1− qi
≡ S1(q).(36)

Proof. Let us consider first the second moment of the distribution

xn(q)
def
= E((γ∗n)2).(37)
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Again using (32), it can be proven that xn(q) satisfies the recursion

xn(q) = 2 en(q)− 1 + (1− qn−1)xn−1(q);(38)

this equation is not of type (25), but by induction on n we can show that

xn(q) = 2n en(q)−
n∑
i=1

(2 i− 1)
n−1∏
j=1

(1− qj).(39)

If we now define

zn(q)
def
=

n∑
i=1

(2 i− 1)
n−1∏
j=1

(1− qj),(40)

it is easy to show that zn(q) satisfies the following recursion:

zn(q) = (2n− 1) + (1− qn−1) zn−1(q),(41)

which allows us to apply Theorem 3.1. For the polynomial f(n) = 2n − 1 we have
c0 = −1, c1 = 2, and ck = 0 for all k ≥ 2, and these values result in h1 = −1, h2 = 2,
and hj = 0 for all j ≥ 3. By (18) and (19) we know further that M1(x) = x and
M2(x, y) = 1/2 (x+ y + x2), and therefore we get

lim
n→∞

(
n∑
i=1

f(i)− zn(q)

)
= lim

n→∞

(
n∑
i=1

(2 i− 1)− zn(q)

)
= lim

n→∞
(
n2 − zn(q)

)
= −M1(S0(q)) + 2M2(S0(q), S1(q))

= S0(q)
2 + S1(q).

Finally we get

lim
n→∞ (Var(γ∗n)) = lim

n→∞
(
xn(q)− en(q)2

)
= lim

n→∞
(
2n en(q)− zn(q)− en(q)2

)
= lim

n→∞
(
(n2 − zn(q))− (n− en(q))2

)
= S0(q)

2 + S1(q)− S0(q)
2

= S1(q).

5. Programming the results. The results we have obtained can be easily pro-
grammed on one of the current symbolic computation systems. We have chosen Math-
ematica and now present two short listings implementing the results of Theorems 2.1
and 2.6.

Accordingly, c[k,h] correspond to the coefficients ck,h of Lemma 2.5, by means
of which we build Tk(1, q), represented by T[k] and by Tt[k], depending on the step
of the computation. The generating functions Si(q) are not explicitly computed and
they will figure in the result as S[i]. Further, in order to build the polynomials
Nk(T1, . . . , Tk) ≡ Nn[k], we had to define a functional De[ ] expressing the deriva-
tive with respect to ε as defined by (13) and later used in (14). The polynomial
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Mk(S0(q), . . . , Sk−1(q)) of Theorem 2.1 is finally expressed by M[k].

In[1]:= c[k_,h_] := Sum[Binomial[k-1,j] (-1)^(h+k-1)

StirlingS1[k-j-1,h]/(k-j-1)!,{j,0,k-h+1}]

In[2]:= T[k_] := Sum[S[h] c[k,h],{h,0,k-1}]

In[3]:= De[Tt[r_]] := r Tt[r+1]

In[4]:= De[a_ b_] := a De[b] + b De[a]

In[5]:= De[a_^b_] := b a^(b-1) De[a]

In[6]:= De[a_+b_] := De[a] + De[b]

In[7]:= De[n_] := If[IntegerQ[n],0,De[n]]

In[8]:= Nn[1] := Tt[1]

In[9]:= Nn[k_] := Tt[1] Nn[k-1] + De[Nn[k-1]]

In[10]:= M[k_] := Expand[Sum[Binomial[k-1,k-r] Nn[r]/r!,{r,1,k}]

/.{Tt->T}]

In[11]:= M[4]

2 3 4

S[0] 11 S[0] S[0] S[0] 11 S[1] 3 S[0] S[1]

Out[11]:= ---- + -------- + ----- + ----- + ------- + ----------- +

4 24 4 24 24 4

2 2

S[0] S[1] S[1] S[2] S[0] S[2] S[3]

---------- + ----- + ---- + --------- + ----

4 8 4 6 24

Similarly, we use g[i,k] to denote gi,k in the proof of Theorem 2.6 and we express
the result by H[k].

In[12]:= g[i_,k_] := CoefficientList[Product[m+j,{j,0,k-1}],m][[i+1]]

In[13]:= H[1] := S[0]

In[14]:= H[k_] := Expand[k! M[k] - Sum[g[i,k] H[i],{i,1,k-1}]]

In[15]:= H[2]

2

Out[15]:= S[0] + S[1]

In[16]:= H[3]

3

Out[16]:= S[0] + 3 S[0] S[1] + S[2]

In[17]:= H[4]

4 2 2

Out[17]:= S[0] + 6 S[0] S[1] + 3 S[1] + 4 S[0] S[2] + S[3]

6. Conclusion and open questions. In this paper we have presented some
q-series arising from the study of random graphs, in particular from the distribution
of the transitive closure in random acyclic digraphs.

The main identity, expressed in Theorem 2.1, seems to play a key role in proving
other results, like those in Theorems 2.6 and 3.1. As the corresponding proofs are con-
structive, the results we have obtained can be implemented in symbolic computation
systems, and this could allow the automatic generation of new identities.

In [2] Bressoud and Subbarao showed that
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σ0(n) = −
∑
π`n

′(−1)#(π)λ(π),(42)

where π ` n means that π is a partition of n, the prime on the summation restricts
the sum to those partitions which have distinct parts, #(π) is the number of parts in
π, and λ(π) is the smallest part in π.

Using Theorem 2.6, we are now able to derive many more identities of the same
type. In fact, for any k ≥ 1 the coefficient of xN in the left-hand side of (23) is given
by

Nk +
N−1∑
j=1

jk
∑

π`(N−j)

′(−1)#(π)[λ(π) ≥ j + 1],(43)

where the expression [P ] is evaluated to 1 if P is true and to 0 if P is false. On the
other hand, we can also determine the coefficient of xN in Hk(S0(x), . . . , Sk−1(x));
for k = 2 we get, for instance, from section 5

H2(S0(x), S1(x)) = S0(x)2 + S1(x),

and therefore we obtain the following identity:

σ1(N) +
N−1∑
i=1

σ0(i)σ0(N − i) = N2 +
N−1∑
j=1

j2
∑

π`(N−j)

′(−1)#(π)[λ(π) ≥ j + 1].(44)

As far as further research is concerned, we would like to mention some open
problems.

Van Hamme [10] showed a finite analogue of identity (8) for k = 1:

n∑
k=1

(−1)k−1 q(
k+1
2 )

1− qk

[n
k

]
=

n∑
k=1

qk

1− qk
,(45)

where
[
n
k

]
is the Gaussian polynomial defined by[n

k

]
def
=

(q)n
(q)k (q)n−k

.

Later this was generalized by Uchimura [9] for any nonnegative integer m to

n∑
k=1

(−1)k−1 q(
k+1
2 )

1− qk+m

[n
k

]
=

n∑
k=1

qk

1− qk

/[
k +m

k

]
.(46)

This result has also been proven utilizing the differentiation techniques we have applied
here (see [1]). It is therefore natural to ask if it is possible to find for k > 1 a finite
analogue to (8) and a generalization of type (46).

Another open question concerns the polynomial Hk(S0(x), . . . , Sk−1(x)) of The-
orem 2.6: by letting the program presented in section 5 compute Hk for higher k we
conjecture that

Hk(S0(x), . . . , Sk−1(x)) =
∑
π`k

c(k, π)S0(x)m1(π) · · ·Sk−1(x)mr(π),(47)
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analogous to the remark we made for the polynomial Mk.
Finally, it would be interesting to generalize Theorem 3.1 to the case where f(n)

is a periodical sequence. For instance, if we consider

f(n) = (−1)n,

we obtain

lim
n→∞

(
n∑
i=1

f(i)− an(q)

)
=
∑
j≥1

(−q)j2 .(48)

Note added in proof. K. Dilcher (Discrete Math., 145 (1995), pp. 83–93) has
found an ingenious alternative proof for Theorem 2.1 in addition to many related
results.
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OBSTRUCTIONS FOR 2-MÖBIUS BAND EMBEDDING EXTENSION
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Abstract. Let K = C ∪ e1 ∪ e2 be a subgraph of G consisting of a cycle C and disjoint paths
e1 and e2 connecting two interlacing pairs of vertices in C. Suppose that K is embedded in the
Möbius band in such a way that C lies on its boundary. An algorithm is presented which in linear
time extends the embedding of K to an embedding of G, if such an extension is possible, or finds
a “nice” obstruction for such embedding extensions. The structure of obtained obstructions is also
analyzed in detail.

Key words. surface embedding, obstruction, Möbius band, algorithm

AMS subject classifications. 05C10, 05C85, 68Q20

PII. S0895480194264150

1. Introduction. Let K be a subgraph of a graph G. A K-bridge (or a K-
component) in G is a subgraph of G which is either an edge e ∈ E(G)\E(K) (together
with its endpoints) which has both endpoints in K or a connected component of
G− V (K) together with all edges (and their endpoints) between this component and
K. Each edge of a K-bridge B having an endpoint in K is a foot of B. The vertices
of B ∩K are the vertices of attachment of B. A vertex of K of degree in K different
from two is a main vertex of K. For convenience, if a connected component of K is a
cycle, then we choose an arbitrary vertex of it and declare it to be a main vertex of
K as well. A branch of K is any path (possibly a closed path) in K whose endpoints
are main vertices, but no internal vertex on this path is a main vertex. If a K-bridge
has all vertices of attachment on a single branch of K, it is said to be local .

This paper is part of a larger project [JMM, M4] which shows that there is a linear
time algorithm to construct embeddings of graphs in an arbitrary (fixed) surface,
generalizing the well-known Hopcroft–Tarjan algorithm [HT] for testing planarity in
linear time. Our algorithms rely on the theory of bridges: a subgraph K of G is
embedded in the surface and then either this embedding is extended to an embedding
of G or an obstruction for such extensions is found. In this paper we solve and
analyze a particular case of this problem where the underlying surface is the Möbius
band dissected by K into two faces. It is shown that obstructions for extending
the embedding of K either are small or have a very special (millipede) structure.
Moreover, finding an embedding extension or such an obstruction requires only linear
time (see Theorem 5.3).

These results are used and extended in [JM] and [M1]. Related results are also
obtained in [M1, M2].

In our algorithms, we consider embeddings of graphs. In case of orientable sur-
faces, embeddings can be described combinatorially [GT] by specifying a rotation
system: for each vertex v of the graph G we have cyclic permutation πv of its neigh-
bors, representing their circular order around v on the surface. Although the Möbius
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1996. This research was supported in part by the Ministry of Science and Technology of Slovenia,
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band is nonorientable, such a presentation suffices in our case since it is enough to
specify rotation system in each of the faces of the chosen embedding of K. In order
to make a clear presentation of our algorithm, we have decided to use this descrip-
tion only implicitly. Whenever we say that we have an embedding, we mean such a
combinatorial description.

Concerning the time complexity of our algorithms, we assume a random-access
machine (RAM) model with unit cost for basic operations. This model was introduced
by Cook and Reckhow [CR]. More precisely, our model is the unit-cost RAM, where
operations on integers whose value is O(n) need only constant time (n is the size of
the given graph).

2. Parallel computations with constant time overhead. We will need the
following simulation of parallelism performed on a unit-cost RAM. At certain steps of
our algorithm we will not be able to decide in advance between two possible choices.
In such a case we will continue computations simultaneously in both directions. This
will enable us to efficiently choose between the two alternatives. During such parallel
computations no new parallelism will be introduced.

Denote by P1 and P2 both parallel processes. During the parallel computation
exactly one of the following three cases will occur:

(i) The process P1 terminates successfully . This means that at the beginning of
the parallelism the decision for P1 would be the right one. In this case, we
say that the parallel computation terminates successfully . We also stop P2 (if
still active) and restore the memory to the state before starting parallelism,
choose the alternative P1 as the proper one, and continue with (nonparallel)
computation from this point on.

(ii) If P2 terminates successfully, then we act as in the previous case, except that
we stop P1 and choose the second alternative as the right one.

(iii) If neither P1 nor P2 terminates successfully, then the parallel computation is
said to terminate nonsuccessfully .

If one of the processes fails, we still continue to run the remaining one. If it succeeds,
case (i) or (ii) occurs; if the other process also fails, we have case (iii).

In our application of parallelism, the processes P1 and P2 will try to extend
a partial embedding of a graph in two different ways. If appropriate embedding
extension is found by one of them, this process will be termed as successful. Otherwise
an obstruction for a particular type of embedding extension problem will be found. In
case (iii) the “union” of both obstructions will give rise to a more general obstruction.

We want to ensure that the amount of time spent by both processes is proportional
to the work done by either of them. To reach this goal, the actual implementation
proceeds as follows. Each parallel process will have only read access to the memory
of the main process (global memory) and also its own “copy” of this memory (local
memory). Because of the restrictions on the time spent by the parallel computations
we do not copy the data from the global memory to the process’ local memory. Other-
wise it might happen that the process performs only a small amount of work and then
terminates successfully; therefore, the amount of work done at this parallel session is
small, while copying the whole graph and auxiliary structures to the local memory
could take time proportional to the size of the input. To avoid these time-consuming
operations we propose the following simple memory management for local memory.
Each cell in the local memory is either empty or occupied . If it is empty, this means
that its corresponding cell in the global memory would still have the initial contents
if the current parallel process would be performed on the global memory. If it is
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occupied, its new contents are stored in the local memory, so that the global memory
remains unchanged. When requiring contents of a cell, the current process first checks
in the local memory whether the cell is empty or occupied. If it is empty, it reads
the contents from the corresponding cell in the global memory. Otherwise, it takes
data from the local memory. New cell contents are always stored in the process’ local
memory.

To be able to efficiently delete the contents of the parallel process’ local memory
after the termination of the process (and so prepare it for another parallel session)
each parallel process is associated with a list of occupied cells in its local memory.
When deleting the contents of the local memory, only these cells need to be considered.
(Only the very first “cleaning” is done by the main process in the initialization phase
of the algorithm.) Initially, at the start of the parallel process, all cells in the local
memory are empty. Moreover, the list of occupied cells is also empty. When during
the computation an empty cell becomes occupied, the list is updated accordingly.

It is obvious that the above memory management adds only constant time over-
head to every operation performed by the parallel process. Moreover, the final “clean-
ing” of the local memory needs at most time proportional to the amount of work
performed by the process.

It can be shown that parallelism can be realized on the standard RAM although
we do not have access to the program counter. The time complexity increases by
a constant factor (depending on the length of the program) in order to maintain
parallelism.

Let us mention that the above method of choosing between alternatives by testing
them in parallel could also be (equally efficiently) implemented when the number of
alternatives is constant (but possibly greater than two).

3. Obstructions. Let K be a fixed graph embedded in some surface. Embedding
extension problem asks if for a given graph G ⊇ K it is possible to extend the chosen
embedding of K to an embedding of G. A subgraph Ω of G−E(K) is an obstruction
(for embedding extensions of K to G) if there is no embedding of K∪Ω extending the
chosen embedding of K. Because of Lemma 4.1 we will be able to assume that all ob-
structions we will work with contain only entire K-bridges. Moreover, we will be only
interested in minimal obstructions, i.e., obstructions in which no bridge is redundant.
It will turn out that for our particular case of embedding extension problem, minimal
obstructions can be precisely characterized. They are either small, i.e., composed of a
small number of bridges, or (although arbitrarily large) of a very special form which
will be introduced in what follows.

Let K = C ∪ e1 ∪ e2 be a graph homeomorphic to K4, where C is a cycle and
e1, e2 are disjoint paths connecting pairs of interlacing vertices in C. Suppose that
K is 2-cell embedded in the Möbius band in such a way that C lies on its boundary.
Denote by F1 and F2 the faces of K under this embedding (cf. Figure 1). We say
that K-bridges B and B′ overlap in a face of K if they cannot be simultaneously
embedded in that face.

For the purpose of the following definitions we will assume that all bridges of K
in G are small (Lemma 4.1). If this were not the case, the bridges B◦

i appearing in
the definitions should be replaced by their H-subgraphs (cf. [M2, M3]).

A thin millipede in G based on e1 and with apex x ∈ V (e2) is a subgraph M of
G−E(K) which can be expressed as M = B◦

1 ∪ · · · ∪B◦
m (m ≥ 7), where we have the

following:
(M1) Each of B◦

1 and B◦
m is a K-bridge in G. Moreover, B◦

1 ∪B◦
2 ∪B◦

3 is uniquely
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Fig. 1. Embedding of K in the Möbius band.

embeddable in F1 ∪ F2. Let Fα be the face containing B◦
1 under this embed-

ding. Similarly, B◦
m−2 ∪ B◦

m−1 ∪ B◦
m is uniquely embeddable, and let Fβ be

the face containing B◦
m. If m is even, then α = β. If m is odd, then α 6= β.

(M2) B◦
2 , . . . , B

◦
m−1 are distinct K-bridges that are attached to e1 and to x and are

not attached to K elsewhere.
(M3) For each i = 1, 2, . . . ,m− 1, B◦

i and B◦
i+1 overlap in F1 and in F2.

(M4) For i > 1 and i+ 2 ≤ j < m, B◦
i and B◦

j can be simultaneously embedded in
F1 and in F2. The same holds when i = 1 and 3 ≤ j < m for the face Fα.
Similarly, B◦

i (1 < i ≤ m − 2) and B◦
m can be simultaneously embedded in

Fβ . Additionally, B◦
1 ∪B◦

m can be embedded in Fα ∪ Fβ .
It is clear by (M1) and (M3) that a thin millipede M obstructs embedding extensions
of K to G.

Our notion of millipedes differs slightly from the concept of millipedes introduced
in [M2]. The millipedes in [M2] can be shorter (i.e., m < 7 is allowed), and their
subgraphs B◦

i are allowed to be proper subgraphs of bridges in order that millipedes
become minimal obstruction (with respect to the graph inclusion). On the other
hand, after eliminating redundant branches in bridges B◦

i , we can get from our thin
millipedes a millipede in the sense of [M2].

We will also need skew millipedes based on e1. They are defined similarly as thin
millipedes. The apex of a thin millipede is replaced by a pair of vertices x, y ∈ V (e2)
where no K-bridge is attached to e2 on the (open) segment between x and y. The
bridges B◦

1 , B
◦
2 , . . . , B

◦
m satisfy (M1) and (M3), while (M2) and (M4) are replaced by

the following.
(M2′) B◦

2 , . . . , B
◦
m−1 are distinct K-bridges. If i is even (1 < i < m), then B◦

i is
attached to e1 and to x (and not elsewhere). If i is odd (1 < i < m), then
B◦
i is attached to e1 and to y (and not elsewhere).

(M4′) For i > 1 and i + 2 ≤ j < m, B◦
i and B◦

j can be simultaneously embedded
in Fα if either i 6≡ α (mod 2) or j ≡ α (mod 2) (or both). They can be
simultaneously embedded in F3−α if either i ≡ α (mod 2) or j 6≡ α (mod 2)
(or both). For 3 ≤ j < m, B◦

1∪B◦
j can be embedded in Fα. For 1 < i ≤ m−2,

B◦
i ∪B◦

m can be embedded in Fβ . Additionally, B◦
1∪B◦

2∪B◦
3∪B◦

m−2∪B◦
m−1∪

B◦
m can be embedded in F1 ∪ F2.

An equivalent definition of a skew millipede is that (M2′) together with the last
condition in (M4′) holds and after contracting the (closed) segment on e2 between x
and y, we get a thin millipede.

In referring to a millipede, we mean either a thin or a skew millipede. It is
clear from the description that millipedes are obstructions for embedding extensions.
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It follows from (M4) ((M4′), respectively) that they are also minimal (no bridge is
redundant).

An obstruction will be called nice if it is either composed of a small number of
bridges (at most 13) or is a millipede. Millipedes based on e2 and with apex x ∈ V (e1)
({x, y} ⊆ V (e1), respectively) are defined analogously. If the numbering of bridges in
a millipede is reversed (i.e., B′

i = B◦
m−i+1), then B′

1, . . . , B
′
m also satisfy (M1)–(M4)

(or (M1)–(M4′)).

4. 2-Möbius band algorithm. Let G be a connected graph and K = C∪e1∪e2
a subgraph of G homeomorphic to K4, where C is a cycle and e1, e2 are disjoint paths
connecting interlacing pairs a0, b0 and c0, d0 (respectively) of vertices in C. Suppose
that K is embedded in the Möbius band with C on its boundary and that F1 and
F2 are the faces of this embedding (cf. Figure 1). The problem of extending the
embedding of K to an embedding of G will be referred to as the 2-Möbius band
embedding extension problem [M1].

In this section we will outline a linear time algorithm for the 2-Möbius band
embedding extension problem which finds an embedding extension whenever possible.
We will show in section 5 how to extend this algorithm in order to construct a nice
obstruction in case embedding extensions do not exist.

The next result will enable us to replace every K-bridge B in G by a small
subgraph B̃ ⊆ B such that the embedding extension problem for the new graph is
equivalent to the original one.

If B is a bridge of K in G, denote by b(B) the number of branches of B ∪K that
are contained in B. The number b(B) is called the size of B.

Lemma 4.1 (see [M3]). Let G, K be as above. Every K-bridge B in G contains
a subgraph B̃ with size at most 13 such that for an arbitrary set of nonlocal K-bridges
B1, . . . , Bk, any embedding of K ∪ B̃1 ∪ · · · ∪ B̃k in the Möbius band with C on the
boundary can be extended to an embedding of K ∪ B1 ∪ · · · ∪ Bk. Moreover, the
replacement of all K-bridges B by their subgraphs B̃ can be done in linear time.

Let B be the set of K-bridges in G. We assume that no bridge in B is local on e1
or on e2. Denote by B0 the subset of B containing exactly those bridges which have
no vertex of attachment in C− e1− e2. These bridges are candidates to be embedded
either in F1 or in F2. From now on we will also assume that the replacement of
all K-bridges B by their small subgraphs B̃ (Lemma 4.1) has already been made.
Moreover, we assume that every bridge can be embedded in at least one of the faces
F1, F2. Otherwise we get a small obstruction and stop immediately. In particular, if
some bridge is attached only to two vertices of K, the above replacement changes it
into a branch. Moreover, we will assume that multiple branches between the same
vertices of K have been replaced by a single one.

Suppose that B ∈ B0. For y ∈ {a, b}, let yB be the vertex of attachment of B on
e1 as close to y0 as possible. Define similarly cB and dB as “extreme” attachments of
B on e2. Since there are no local bridges, the quantities xB (x ∈ {a, b, c, d}) are well
defined for every B ∈ B0. We define a = d, b = c, c = b, and d = a and ã = c, b̃ = d,
c̃ = a, and d̃ = b. Note that x0 and x0 are in the same side (left or right) of F1 and
that x̃0 and x0 lie in the opposite corners of F1.

We will first construct four lists of bridges in B0. They will be denoted by Sx,
where x stands for either a, b, c, or d. The list Sx corresponds to the (oriented) branch
e1 or e2 of K containing the vertex x0 oriented from x0 towards the other endpoint
(e.g., Sc corresponds to e2 oriented from c0 towards d0). Every list Sx will link all
bridges from B0. Their order in Sx will be consistent with the following requirements.
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(S1) If xQ is closer to x0 than xR, then the bridge Q precedes R in Sx.
(S2) If xQ = xR and xQ is closer to x0 than xR, then Q precedes R in Sx.
(S3) If xQ = xR, xQ = xR, and Q is attached only to xQ and xQ and R has at

least three vertices of attachment, then Q precedes R in the list Sx.
If a pair of bridges from B0 does not fit any of (S1), (S2), or (S3), then their order in
Sx is irrelevant. If a set of bridges from B0 is embedded in F1, then their order in F1

from left to right is consistent with Sa and Sd and inverse to their order in Sb or Sc.
Suppose that ej is the branch containing x0. Let v1, v2, . . . , vk be the vertices of

ej in direction from x0 towards the other end. The list Sx is the concatenation of
lists Ssx, s = 1, . . . , k, where each Ssx links all bridges B ∈ B0 with xB = vs (in order
respecting (S2) and (S3)). The lists Ssx are constructed simultaneously as follows:

Ssx := ∅, s = 1, . . . , k
Label all bridges in B0.
for all u ∈ V (e3−j) do
{The vertices u are taken in order as they appear on

e3−j from x0 towards the other end.}
for all edges f incident with u do

if f is a foot of a labeled bridge B then
if B is attached only to two vertices then

add B at the end of Ssx, where s is such that vs = xB
unlabel B

endif
endfor
for all edges f incident with u do

if f is a foot of a labeled bridge B then
if B is attached to three or more vertices then

add B at the end of Ssx, where s is such that vs = xB
unlabel B

endif
endfor

endfor

Link S1
x , . . . , S

k
x into Sx.

It is easy to realize the traversals in the above algorithm so that the overall
time spent by the algorithm is linear. Note that the double traversal of bridges with
xB = u assures that condition (S3) will be fulfilled. Condition (S2) is satisfied at the
end since the traversal of the “opposite” branch e3−j is performed in the direction
from x0 towards the other end. Clearly, (S1) is guaranteed by the use of sublists Ssx
and their appropriate linking at the end.

We are now ready to discuss the main part of the algorithm. Roughly speaking,
it is based on the following idea. Suppose that a subset of bridges B′ ⊆ B is already
embedded in F1 ∪ F2. Their presence in F1 ∪ F2 blocks some embeddings of the
remaining bridges. Some of the bridges thus need to be embedded in F1; some others
can only be embedded in F2. We say that these bridges are forced in F1 (or F2,
respectively). By adding these blocked bridges to B′, we obtain additional bridges
with only one face left for their embeddings. By repeating this procedure, either
we get stuck (which proves that no embedding extension exists with the initial B′
embedded as given) or no more bridges are blocked by the chosen embedding of B′.
In the latter case, it is clear that the bridges in B′ can be left embedded as they are
without obstructing any possible embeddings of the remaining bridges. The procedure
described above is called Forcing.
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At the very beginning, the bridges from B\B0 are uniquely embeddable, and they
are used as the starting set B′. If Forcing does not embed all of the bridges (and
does not get stuck), then the problem is how to restart. (This cannot be avoided if,
for example, B0 = B.) This problem will be solved by using parallel computations.
We choose a bridge B and start two parallel processes: the first one corresponds to
embedding B in F1, the other to the case where we embed B in F2. The details
of how to perform such parallel computations without increasing the overall time
complexity are described in section 2. Each of the two parallel processes either finds
an embedding for a set of bridges which does not interfere with any embedding of the
remaining bridges (successful termination) or gets stuck (nonsuccessful termination).
It has been described in section 2 how the two parallel processes react if one or
the other stops successfully. To ensure linear time complexity we have to choose
the starting bridge B appropriately: it must be the initial bridge in one of the lists
Sx. Of course, these lists are updated during the algorithm by removing the already
embedded bridges.

For x being any of a, b, c, or d, we will use three vertices x, x1, x2 on the branch ej
(j ∈ {1, 2}) containing the vertex x0. For u, v ∈ V (ej), denote by [u, v) the segment
of ej from u to v (including u but not including v) and similarly by [u, v] the closed
segment of ej from u to v (including both u and v). During the algorithm, all bridges
attached to [x0, x) are already embedded and all remaining bridges attached to [x, xi)
(i = 1, 2) are blocked in F3−i by already embedded bridges, so they will need to be
put in Fi. (In particular, if a bridge that has not yet been embedded is attached to
[x, x1) ∩ [x, x2), then we are in trouble.) In the algorithm we also use bridges Bx,1,
Bx,2. They are needed only for the efficient construction of obstructions, and their
use is described in more detail in section 5.

The main part of the algorithm is the following.
Determine lists Sx, x ∈ {a, b, c, d}, as explained above.
Determine B0. Let B′ := B \ B0.
Embed B′.
if no embedding exists then Obstruction

Determine initial values of x, x1, x2, Bx,1, Bx,2 for x ∈ {a, b, c, d}.
Forcing

if not successful then Obstruction

Initialize auxiliary variables for parallel computations.
while B0 6= ∅ do
B := the first bridge in Sa
for every embedding of B in F1 ∪ F2 do in parallel

Determine initial values of x, x1, x2, Bx,1, Bx,2 for x ∈ {a, b, c, d}.
Forcing

end parallel for
if not successful then Obstruction

endwhile
{If we reach this point, all the bridges have been embedded.}
Return the obtained embedding extension.

Procedure Obstruction reports that no embedding extension exists and ter-
minates. We will show in section 5 that by extending this procedure, one can also
construct nice obstructions (cf. section 3) for embedding extensions in linear time.
Procedure Forcing is described below.

procedure Forcing

{Some bridges are already embedded. They block some embeddings of
the remaining bridges. A bridge B ∈ B0 is blocked exactly when it is
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attached to a segment [x, xi) for some x ∈ {a, b, c, d}, i ∈ {1, 2}.
In that case, it must be embedded in Fi.}
while ∃x ∈ {a, b, c, d} such that x 6= x1 or x 6= x2 do
if x 6= x1 and x 6= x2 then
y := min{x1, x2} (closer to x)
if ∃B ∈ B0 attached to [x, y) then Stop(not successful)
x := y

endif
if x 6= x1 then i := 1 else i := 2 endif
Bi := all bridges in B0 attached to [x, xi)
Embed Bi in Fi.
if no embedding exists then Stop(not successful)
x := xi
Update a3−i, b3−i, c3−i, d3−i, and Sx.
B0 := B0 \ Bi
Bx,i := extreme bridge in Bi
Let Bx,i point to Bx,3−i.
{This will be needed in the construction of obstructions.}

endwhile
Return(successful)

end {Forcing}
The search for B ∈ B0 that is attached to [x, y) in the above procedure can be

easily implemented by advancing through the list Sx. Similarly, the embeddability of
Bi in Fi is checked by moving along the list Sx and comparing extreme vertices of
attachment of bridges with already blocked segments on e1 and e2. More precisely,
this is achieved as follows. Let B1, . . . , Bt be the bridges in Bi listed in the order as
they appear in Sx. Suppose that x0 ∈ V (ej) and denote by y0 the other endpoint of ej .
Obviously, each bridge Bk (1 ≤ k ≤ t) must have an embedding in Fi. Suppose first
that i = 1. Each Bk must also be attached to ej (entirely on the segment [x, y3−i]) and
to e3−j (entirely to the segment [x3−i, y3−i]; otherwise it overlaps with the already
embedded bridges). Moreover, for k = 1, . . . , t − 1 the bridge Bk+1 must be entirely
attached to the segment [yBk

, y0] of ej and to the segment [x̃Bk
, x̃0] of e3−j ; otherwise

it overlaps with Bk in Fi. If none of these tests fails, then the bridges in Bi can be
simultaneously embedded in Fi. When i = 2, some details in the above tests have to
be modified appropriately since the list Sx is constructed with respect to embeddings
in the face F1. In particular, x and y have to be replaced by x̃ and ỹ, respectively,
and vice versa. Moreover, bridges B ∈ Bi with the same extreme attachment xB have
to be considered in the order that is opposite to their order in Sx. During the above
test we also change B0.

Initial values of a, a1, a2 (and similarly for other x, x1, x2, x ∈ {b, c, d}) are deter-
mined at the very beginning as follows. We take a = a0. The vertex a1 is equal to
the vertex of attachment on e1 closest to b0 of bridges in B \ B0 that are attached to
the open segment from c0 to a0 on C. The corresponding bridge is taken as Ba,2. If
there are no such bridges, then a1 = a0 (and Ba,2 is undefined). Similarly, a2 is the
attachment on e1 closest to b0 of bridges in B \ B0 attached to the open segment on
C from a0 to d0. The corresponding bridge is then Ba,1.

There is a slight difference in determining the initial values of x, x1, x2 in the
parallel part. The values x remain unchanged. If B (the initial bridge in Sa) is
embedded in F1, then x1 = x for x ∈ {a, b, c, d}, a2 = bB , b2 = b, c2 = c, and d2 = cB .
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We take Ba,1 = Bd,1 = B. Other Bx,j are undefined.

If B is embedded in F2, the situation is more complex. In this case the process of
determining the initial values of x, x1, x2, Bx,1, Bx,2 (x ∈ {a, b, c, d}) will require some
additional preprocessing in order to decide between two possible choices:

(a) If all bridges attached to e1 only at a can be simultaneously embedded in
F2 (together with B), then they can go in F2 without loss of generality. All
other bridges attached to e2 on (dB , c] must be in F1, and, after fixing these
embeddings, we change c to become the vertex dB and proceed in the same
way as in the above case when B was in F1. (We set a1 = bB , c = c1 = dB ,
c2 = dR, b2 = aR, where R is the “leftmost” bridge among those which
were embedded in F1; if R is not attached to the segment [d, dB), we take
c2 = c; if there are no such bridges, then c2 = c, b2 = b. Also, Ba,2 = B,
Bb,1 = Bc,1 = R, or undefined; other Bx,j are always undefined.) If the
above bridges cannot be simultaneously embedded in F1, we terminate non-
successfully.

(b) Two bridges B′, B′′ attached to e1 only at a overlap in F2 or such a bridge
B′ overlaps with B in F2. Hence, one of B′, B′′ should be embedded in F1.
Then all bridges attached to e2 on [d, dB) must be in F2. Similarly, all bridges
attached to e2 only at dB and attached to (a, b] on e1 will necessarily go into
F2. After fixing these embeddings we let d = dB and change other values
x, x1, x2 (x ∈ {a, b, c, d}) as described below.

We need to make the decision about (a) or (b) in such a way that the time spent on
this is proportional to the number of bridges whose embedding is determined during
this process. (Otherwise, we can lose linearity.) This is achieved by traversing the list
Sc. Let B′ be the current bridge in the traversal. If bB′ 6= a, then we must embed B′

in F1; if it overlaps with already embedded bridges, call Obstruction. If not, embed
B′ in F1 and proceed with the next bridge in the list Sc. Otherwise (bB′ = aB′ = a)
we try to embed B′ in F2. If successful, we proceed with the next bridge in the list. If
B′ overlaps in F2 with some already embedded bridge, we have (b). If B′ overlaps in
F2 with an already embedded bridge B′′ 6= B, then B′′ is unique. Therefore, all other
bridges that have been embedded during our traversal can retain their embeddings
without loss of generality. The same is true in the other case when B′ overlaps with
B. In the first case we set R = B′′ while in the latter case we take R = B′. In both
cases we will consider R as a nonembedded bridge in what follows. Let Q be the last
bridge embedded in F1 during the traversal of Sc which has an attachment on [c, cR]
(possibly undefined). Next we embed in F2 all bridges attached to e2 on [d, dB) and all
bridges attached to dB and to (a, b]. (If this is not possible, call Obstruction.) After
these changes, the values x, x1, x2 are determined as follows: a, b remain unchanged,
a1 = a2 = a, b1 = a, b2 = aQ (or b if Q is undefined or attached to e2 only at (cR, c]),
c = c1 = cR, c2 = dQ (or c if Q is undefined), d = dB , d1 = cB , d2 = dB . Bridges Bx,i

are defined accordingly.

If none of the above stop cases occurs, we stop when reaching dB and then we
have case (a).

5. 2-Möbius band obstructions. Our algorithm can be extended in a rela-
tively simple way so that when no embedding extension exists, it returns a nice ob-
struction. Procedure Obstruction takes care of this task if we modify it as explained
in what follows.

There are three places where the presence of an obstruction is discovered:

(i) when embedding bridges of B′,
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(ii) in procedure Forcing,
(iii) when determining the initial values in the parallel part.
In case (i), we either get a K-bridge B ∈ B′ that cannot be embedded in any

of the faces, or get two bridges B1, B2 ∈ B′ that are both embeddable only in Fi
(i ∈ {1, 2}), where they overlap. It is clear that this case leads to a small obstruction
which can be determined efficiently by applying the results of [M2].

Consider now (ii). In Forcing, there are two obstruction stops. The first possi-
bility is when a bridge B ∈ B is attached to [x, y). This means that possible embedding
of B in F1 is blocked by Bx,1 and its embedding in F2 is blocked by Bx,2. When Bx,1

was embedded, we remembered which bridge forced it to be in F1. It is similar for all
other embedded bridges. Thus we can reconstruct a chain

(B1, Fi1) → (B2, Fi2) → · · · → (Bp, Fip),(1)

where the notation (Q,F ) → (R,F ′) means that Q and R cannot be simultaneously
embedded in F (Q being embedded in F forces R being embedded in F ′) and where
B1 is one of the initial bridges with fixed embedding, and (Bp, Fip) = (B,F1). Let us
note that i1, . . . , ip ∈ {1, 2} and that any two consecutive ir, ir+1 are distinct. Also,
Bp−1 = Bx,1. Similarly, we have a chain forcing B to be in F2:

(B′
1, Fj1) → (B′

2, Fj2) → · · · → (B′
q, Fjq ),(2)

where (B′
q, Fjq ) = (B,F2). It is clear that (Q,Fi) → (R,F3−i) is equivalent to

(R,Fi) → (Q,F3−i). Therefore (2) is equivalent to

(B′
q, F3−jq ) → (B′

q−1, F3−jq−1
) → · · · → (B′

1, F3−j1).(3)

Note that (B′
q, F3−jq ) = (Bp, Fip) = (B,F1). Now, (1) and (3) can be concatenated

and rewritten in the form

(R1, Fs1) → (R2, Fs2) → · · · → (Rr, Fsr ),(4)

where (R1, Fs1) = (B1, Fi1) and (Rr, Fsr ) = (B′
1, F3−j1).

The second stop in Forcing occurs when Bi cannot be simultaneously embedded
in Fi. If B ∈ Bi overlaps in Fi with some of the already embedded bridges, we
have exactly the same situation as above: we get (4). (As explained, this can be
discovered by a simple comparison of the extreme attachments of bridges in Bi with
a3−i, b3−i, c3−i, d3−i.)

The next possibility is that a bridge B ∈ Bi cannot be embedded in Fi (i.e., its
only embedding is in F3−i). Then we have

(R1, Fs1) → (R2, Fs2) → · · · → (Rr, Fsr ),(5)

where (Rr, Fsr ) = (B,Fi). This chain is not only of the same form as (4) but also
obeys the same condition that will be used in producing nice obstructions: R1 is
embeddable only in Fs1 , and Rr is embeddable only in F3−sr , the opposite face of
Fsr .

It is similar if two bridges from Bi overlap in Fi. We easily get a chain of form
(4) having the same properties as in the other cases.

If procedure Obstruction is reached because of unsuccessful termination of
the parallel computation, we get two chains of the form (4), one from each parallel
process. The first one starts with (B,F1) and it is discovered in (ii). It satisfies the
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chain condition (the first bridge uniquely embeddable, the last one assigned to the
wrong face) under the assumption that B is embeddable only in F1. The second
process gives rise to a similar chain. However, in this case the situation is slightly
different. We either get a chain of the form (4) that is obtained in (ii) and starts
with (B,F2) or get a small obstruction from (iii) which itself gives rise to a chain of
the form (4). More precisely, there are two possible calls to Obstruction in (iii). If
there are two bridges R′, R′′ that overlap in F2 and are forced in F2 by B, then

(B,F2) → (R′, F1) → (R′′, F2) → (B,F1)

is the required chain of the form (4). The second possibility is when the set of bridges

B′′ = {R ∈ B | dR ∈ [d, dB) or (dR = dB and bR ∈ (a, b])}

cannot be simultaneously embedded in F2. In this case, there is also a pair B′,
B̃ of bridges (where B̃ = B′′ or B) attached to e1 only at a and attached to e2
entirely on [c, dB ] that overlap in (F1 and) F2. Suppose first that there are two
bridges R′, R′′ ∈ B′′ that overlap in F2. Then the bridges B′, B̃, R′, R′′ form a small
obstruction for the whole embedding extension problem. The remaining possibility
why the bridges from B′′ cannot be simultaneously embedded in F1 is that there is a
uniquely embeddable bridge R′ ∈ B′′ that has no embedding in F2. Then B′, B̃, and
R′ form a small obstruction and we are done.

If the chain of the first parallel process starts with (B,F1) and the chain of the
other process starts with (B,F2), we can concatenate one chain with the “inverse” of
the other to get a chain of the form

(R1, Fs1) → (R2, Fs2) → · · · → (Rr, Fsr ).(6)

In general, there are three possibilities why the chain of form (6) (or (4)) leads to an
obstruction.

(A) As described before, R1 is embeddable only in Fs1 and Rr is embeddable only
in F3−sr . We allow that R1 = Rr.

(B) (R1, Fs1) = (Rr, Fsr ) = (B,F1) and (B,F2) appears somewhere in the chain.
(C) R1 is embeddable only in Fs1 and (B,F1), (B,F2) both appear somewhere in

the chain.
The last case (C) can be transformed into a chain of type (A) as follows. If

(B,F1) = (Ri, Fsi), (B,F2) = (Rj , Fsj ), i < j, then we get

(R1, Fs1) → · · · → (Rj , Fsj ) → (Ri−1, F3−si−1
) → · · · → (R1, F3−s1).

We will show that the obstruction formed by the chain (6) (viewing (4) as case
(A) of (6)) can be efficiently transformed into either a small obstruction or a (thin
or skew) millipede. This will be achieved through a series of successive reductions of
the chain (6). We will assume that r ≥ 14. Otherwise we have a small obstruction
formed by at most 13 bridges from our chain. If during the following reductions the
length of the chain drops below 14, we automatically stop because we have obtained
a small obstruction.

We say that bridges R and R′ are parallel in Fi (i ∈ {1, 2}) if they cannot be
simultaneously embedded in F3−i, i.e., (R,F3−i) → (R′, Fi).

Lemma 5.1. Let bridges Ri and Ri+2 from (6) be parallel in Fsi . Then in every
embedding of Ri ∪Ri+1 ∪Ri+2, the bridge Ri+2 is embedded in Fsi .
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Proof. Assume that there is an embedding of Ri ∪ Ri+1 ∪ Ri+2 such that Ri+2

is embedded in F3−si . Since Ri is parallel with Ri+2 in Fsi , it is embedded in Fsi .
By (6), Ri+1 is embedded in F3−si and Ri+2 should be embedded in Fsi , which is a
contradiction.

Similar arguments also show that if Ri and Ri+2j are parallel in Fsi , then in every
embedding of Ri ∪ · · · ∪ Ri+2j , the bridge Ri+2j is embedded in Fsi . In such a case
the bridge Ri+2j can be regarded as uniquely embeddable under the condition that
the final obstruction also contains the bridges Ri, . . . , Ri+2j−1. In what follows, we
will need the above claim for j = 1 and j = 2.

If there is a pair (Ri, Fsi) (1 < i < r) in the chain (6) such that Ri can be
embedded only in one face, then we act as follows. We may assume that Ri can be
embedded in Fsi , since otherwise we could look at the reversed chain

(6′) (Rr, F3−sr ) → · · · → (R2, F3−s2) → (R1, F3−s1) ,

where Ri appears in the right face. If the chain is of type (A), then we can shorten the
obstruction by taking (Ri, Fsi) → · · · → (Rr, Fsr ). If the chain is of type (B), then
we can change it into type (C). Let j (1 < j < r) be an index such that (Rj , Fsj ) =
(Rr, F3−sr ). We take the chain (Ri, Fsi) → · · · → (Rr, Fsr ) if i < j. It is similar if
i > j when we take (Ri, Fsi) → · · · → (Rr, Fsr ) → (R2, Fs2) → · · · → (Rj , Fsj ). The
obtained chain can be further reduced to type (A) as shown previously. It is easy to
see how to implement the above tests and reductions in linear time.

From now on we will assume that every bridge participating in the chain (6),
except the first and the last one when we have a chain of type (A), has (allowed)
embeddings in faces F1 and F2. If there is a pair (R,F ) which appears twice in the
chain of type (A) we leave out pairs between the two appearances. In chains of type
(B) this is performed only when the two appearances lie in the same segment of the
chain between R1 and its appearance in the other face. Again, this task can be easily
performed in linear time.

Suppose that we have a chain of type (B). Then we perform another checking
which will be needed in the proof of Lemma 5.2. Let (Rj , Fsj ) be the occurrence of
R1 in the other face. If (Rj−3, Fsj−3

) → (Rj , Fsj ) or (Rj , Fsj ) → (Rj+3, Fsj+3
), then

we can shorten our chain by leaving out the two superfluous pairs. We repeat this
change as long as possible. Under every embedding of R1 ∪ · · · ∪ Rj−1 in F1 ∪ F2,
the bridge R1 = Rj is embedded in Fsj . Therefore we may assume that j ≥ 6 since
otherwise we can transform our chain of type (B) into a chain of type (A) (with at
most four additional bridges which guarantee unique embeddability of R1 in Fsj ).
In this case we also repeat previous reductions on the new chain. Similarly, we may
assume that j ≤ r − 5. Note that all these changes can be done in linear time.

Next we check if there are pairs of parallel bridges which appear not far apart in
the chain. Suppose that we have a chain of type (B) with bridges Ri and Ri+2 being
parallel in Fk. By reversing the chain, if necessary, we may assume that Fk = Fsi .
There exists an index j, 1 < j < r, such that (Rj , Fsj ) = (R1, F3−s1). We will
regard Ri+2 as uniquely embeddable in Fsi (Lemma 5.1). We will actually achieve this
property at the end by adding bridges Ri and Ri+1 into the final obstruction. If i+2 ≤
j, our chain can be shortened and transformed into type (C) by taking (Ri+2, Fsi+2

) →
· · · → (Rr, Fsr ). If i + 2 > j, we transform our chain into (Ri+2, Fsi+2

) → · · · →
(Rr, Fsr ) = (R1, Fs1) → · · · → (Rj , Fsj ) which can be viewed as a chain of type
(C). In both cases, our chain of type (C) can be further changed into type (A). If
we have a pair of parallel bridges Ri, Ri+4, we take the same steps, except that in
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this case the final obstruction will have to contain not only bridges Ri, Ri+1 but also
bridges Ri+2, Ri+3. Obtaining the chain of type (A) we again perform the above
reductions (no intermediate bridge uniquely embeddable, no repetitions). Note that
this additional work can occur only once—when changing type (B) into type (A).

Let us now explain how to react regarding parallel bridges if we have a chain of
type (A). For j = r, r−1, . . . , 3 we check whether Rj is parallel with Rj−2 and whether
Rj+2 is parallel with Rj−2 (when j ≤ r − 2). If Rj and Rj−2 are parallel in Fsj , we
shorten the chain by removing the initial part (R1, Fs1) → · · · → (Rj−1, Fsj−1

) and
stop. If they are parallel in F3−sj , then we remove the tail (Rj+1, Fsj+1

) → · · · →
(Rr, Fsr ) and continue with work. It is similar when Rj−2 and Rj+2 are parallel.

Let us remark that if R1 is not embeddable in F3−s1 , then R1 and R3 are parallel
in Fs1 = Fs3 . Similarly, Rr−2 and Rr are usually parallel in F3−sr . It is obvious how
to perform the above tasks in linear time. By Lemma 5.1 the chain obtained after
this reduction (together with at most 4 + 4 = 8 additional bridges which guarantee
the unique embeddability of the first and the last bridge in the chain of type (A)) still
determines an obstruction. By the above remark, each bridge Ri (1 ≤ i ≤ r) can be
embedded in F1 and in F2, and no two bridges Ri, Ri+2 (1 ≤ i ≤ r − 2) or Ri, Ri+4

(1 ≤ i ≤ r − 4) are parallel in any of the faces.

Let R1 = {R2i−1 | 1 ≤ i ≤ dr/2e} and R2 = {R2i | 1 ≤ i ≤ br/2c}.
Lemma 5.2. There exists j ∈ {1, 2} and a vertex x ∈ V (ej) such that every

bridge from R1 is attached to ej only at x. Similarly, there exists k ∈ {1, 2} and a
vertex y ∈ V (ek) such that every bridge from R2 is attached to ek only at y.

Proof. Since we have decided to stop whenever our obstructing family of bridges
contains 13 or fewer members, we have r ≥ 6. Consider the bridges Ri, Ri+2, Ri+4 ∈
R1. Since they are pairwise nonparallel in F1 and in F2, they can be simultaneously
embedded in any of the faces. Therefore their union cannot contain two disjoint paths
connecting branches e1 and e2. Note that not all three bridges can be equal to each
other. Hence there exists a vertex x in one of the branches, say ej , such that x is
the only vertex of attachment of Ri ∪Ri+2 ∪Ri+4 to ej . Moreover, Ri ∪Ri+2 ∪Ri+4

is attached to at least two vertices on the branch e3−j . Similarly, there is a vertex
x′ in the branch ej′ such that Ri+2 ∪ Ri+4 ∪ Ri+6 is attached to ej′ only at x′.
If Ri+2 6= Ri+4, then it easily follows that ej′ = ej and x′ = x. On the other
hand, Ri+2 = Ri+4 can only happen if our chain is of type (B) and (Ri+3, Fsi+3

) =
(R1, F3−s1). Since in this case (Ri+2, Fsi+2

) → (Ri+3, Fsi+3
) and (Ri+3, Fsi+3

) →
(Ri+4, Fsi+4

) = (Ri+2, Fsi+2
), bridges Ri+2 and Ri+3 must overlap on e1 or e2. If

they overlap on ej , then (Ri, Fsi) → (Ri+3, Fsi+3) which is not possible because of
previous reductions. Therefore Ri+2 and Ri+3 overlap on e3−j . Suppose that x′ 6= x.
Then also ej′ = e3−j . Since Ri+2 overlaps on e3−j = ej′ with Ri+3 and since Ri+6 is
attached on ej′ to the same vertex x′ as Ri+2, we have (Ri+3, Fsi+3

) → (Ri+6, Fsi+6
).

But this is a contradiction, since we have reduced such forcing at previous steps.
Consequently, x′ = x. By increasing i, we easily derive the claimed result.

The proof of the second part is almost identical.

Additionally, we claim that either x and y lie on the same branch, or there is a
small obstruction. For vertices u, v ∈ V (e1) we say that u is to the left of v (or v is
to the right of u) if u is closer to a0 than v is. Similarly if u, v ∈ V (e2) we say that
u is to the left of v if it is closer to d0. Suppose now that r > 5 and that x ∈ V (e1),
y ∈ V (e2). We will distinguish between two possibilities.

(i) If there is a bridge Ri ∈ R1 which is attached on e2 to the left and to the
right of y, then a small obstruction is obtained as follows. When the chain is
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of type (A), pairs (R1, Fs1) → (R2, Fs2) → (Ri, Fsi) together with (Rr, Fsr )
if r is even or together with (Rr−1, Fsr−1

) → (Rr, Fsr ) if r is odd form the
desired obstruction. If the chain is of type (B), then R1 is just the branch xy
since R1 ∈ R1 ∩ R2. Let (Rj , Fsj ) = (R1, F3−s1) be the occurrence of R1 in
the other face. Since R2 overlaps with R1 in Fs1 and R1, R2 are attached to
e2 only at y, R2 is attached to e1 to the left and to the right of x. Similarly,
Rj+1 is attached to the left and to the right of y on e2. Then R1 ∪R2 ∪Rj+1

is a small obstruction. The case when there is a bridge R ∈ R2 attached on
e1 to the left and to the right of x is similar.

(ii) There is no bridge attached on e1 to the left and to the right of x, and also
there is no bridge attached on e2 to both sides of y. In this case the chain
must be of type (A) since otherwise R1 ∈ R1 ∩R2 would be just the branch
xy and would not be obstructed by any of the bridges. It is easy to see that
under every embedding of R1∪R2∪R3∪R4∪Rr, the bridge Rr is embedded
in Fsr . Since this is the wrong face for Rr, we have an obstruction.

In both cases the obtained small obstruction (together with bridges which assure the
unique embeddability of R1 and Rr) contains at most 13 bridges.

So far we have been able to restrict attachments of the bridges from the chain at
one of the branches to at most two vertices. It remains to find a millipede (or a small
obstruction) composed of some of these bridges. First we examine the case when
x = y. By a planarity testing we try to embed R1 ∪R2 in F1 ∪F2. (Planarity testing
can be used because R1 ∪ R2 is attached to one of e1, e2 just at a point.) If the test
fails, there will be a small obstruction composed of three mutually overlapping bridges.
Such bridges can be discovered in linear time by a traversal of the corresponding
branch ei (i ∈ {1, 2}) since bridges Rj , Rk overlap if and only if the interiors of their
attachment intervals on ei are not disjoint. This fact can also be used to prove that
we always get exactly three such bridges. The other case is when R1 ∪ R2 admits
an embedding in F1 ∪ F2. Then the chain is of type (A). In this case we must also
consider the additional bridges that assure the unique embeddability of R1 and Rr.
Either they give rise to a small obstruction (together with R1, R2, Rr−1, Rr) or we get
a thin millipede after eliminating possible superfluous additional bridges (cf. Claims
2 and 3 below).

Suppose now that x 6= y. Then our chain is of type (A). Note that in this case
R1 ∩ R2 = ∅. Without loss of generality we may assume that x, y ∈ V (e1) so that x
is to the left of y and F1 = Fs1 . The main idea of the algorithm is to traverse e2 from
left to right and at each step embed those bridges from R1 ∪ R2 which are forced in
one of the faces by previously embedded bridges.

Bridges forming a millipede will be denoted by Q1, Q2, . . . . For i = 1, 2, . . . , we
will denote by li and ri the leftmost and the rightmost vertex of attachment of Qi on
e2, respectively. Let Q1 = R1. Since Q1 has to be embedded in F1, every bridge from
R2 with vertex of attachment (strictly) to the left of r1 should go in F2. Therefore
we embed these bridges in F2. (If they cannot be simultaneously embedded, then
we get a small obstruction and stop.) Denote by Q2 the rightmost (with respect to
attachments on e2) of these bridges. If r2 lies to the left of r1 (or r2 = r1), we can
find a small obstruction (for details see case (iii) below). Hence, every bridge from
R1 with vertex of attachment to the left of r1 is forced in F1 by Q2. We may assume
that all these bridges can be simultaneously embedded in F1. Otherwise a small
obstruction can be found. Continuing this process we obtain a sequence of bridges
Q1, Q2, Q3, . . . such that for every i, bridge Qi overlaps on e2 with Qi+1. There are



OBSTRUCTIONS FOR MÖBIUS BAND EEP 71

several possibilities when we terminate this construction. Throughout the discussion
of each possibility we will assume that the last embedded bridge in the above sequence
is Qs and that it is embedded in F1. Note that in this case Q1, Q3, . . . , Qs ∈ R1 and
Q2, Q4, . . . , Qs−1 ∈ R2. Let B be the set of bridges from R2 that have an attachment
on [rs−1, rs).

(i) When trying to simultaneously embed in F2 all bridges from B, we encounter
a pair of overlapping bridges Q, Q′. Since Qs, Q,Q

′ pairwise overlap on e2,
they form a small obstruction.

(ii) If Rr ∈ B, then we set Qs+1 = Rr and stop.
(iii) Embed in F2 all bridges from B and let Qs+1 be the rightmost among these

bridges. Assume that rs+1 is not strictly to the right of rs. If among the
remaining bridges there is no bridge attached to e2 entirely on the segment
[rs, c0], then Rr ∈ R1. Moreover, since (Rr−1, F2) → (Rr, F1) and since Rr−1

is already embedded, (Qs+1, F2) also forces (Rr, F1). Hence Qs, Qs+1 and
Rr (together with additional bridges guaranteeing unique embeddability of
Rr) form a small obstruction. Otherwise, let Ri be the first bridge from the
chain that is attached to e2 only at [rs, c0]. By minimality of i and since
(Ri−1, Fsi−1) → (Ri, Fsi), the bridge Ri−1 must be attached to the left and
right of rs (and also Fsi−1

= F1). Then Ri−2 ∈ R2 must be attached on e2
entirely to the left of rs. Since Qs+1 is the rightmost among bridges embedded
in F2, Qs+1 and Ri−1 overlap on e2. Therefore, Qs, Qs+1, and Ri−1 form a
small obstruction.

(iv) Now we have rs+1 strictly to the right of rs. Next we check if there is a nonem-
bedded bridge Q ∈ R1 attached to [rs−1, rs). If it exists, then Qs−1, Qs, Qs+1,
and Q form a small obstruction. Otherwise, every bridge attached to the left
of rs has been embedded, another member Qs+1 of a possible millipede has
been obtained, and we can proceed with the next iteration.

If in the above steps a small obstruction has not been encountered, then we have
stopped in (ii) and the bridgesQ1 = R1, Q2, . . . , Qs, Qs+1 = Rr taken asB◦

2 , . . . , B
◦
m−1

(m = s+ 3), respectively, satisfy (M2′), (M3), and (M4′) from the definition of skew
millipedes. We will obtain B◦

1 and B◦
m from the additional bridges (which guaran-

tee the unique embeddability of R1 and Rr, respectively) and either prove that the
obtained sequence B◦

1 , B
◦
2 , . . . , B

◦
m satisfies (M1)–(M4′) or obtain a small obstruction

from these bridges.

Denote by Q0 the additional bridges that guarantee the unique embeddability of
Q1. Define similarly Qs+2 (the corresponding bridges for Qs+1). Recall that each of
Q0 and Qs+2 is composed of from one up to at most four bridges. In the following
paragraphs we are going to show how to change Q0 and Qs+2 to get a skew millipede.
In each claim either we will prove the desired property or a small obstruction will be
found.

Claim 0. Q̃ = Q0 ∪Q1 ∪Q2 ∪Qs ∪Qs+1 ∪Qs+2 has an embedding in F1 ∪F2. If
there is no such embedding, this is a small obstruction, and we are done. Note that
every embedding of Q̃ has Q1 in F1, Q2 in F2. Similarly, we know the faces where Qs

and Qs+1 are embedded.

Claim 1. No bridge is attached to a vertex on (x, y) ⊂ e1. Suppose there is such
a bridge B. If Q̃ ∪ B is an obstruction, it contains at most 13 bridges, and we are
done. Otherwise, B is attached only to [x, y] and to [r1, ls+1] ⊆ e2. Since B is not
local, it has an attachment z on e2. For some i, 2 ≤ i ≤ s, z ∈ (li, ri). It is easy to
see that B ∪Qi−1 ∪Qi ∪Qi+1 is an obstruction.
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Claim 2. Q0 contains one bridge and l1 is strictly to the left of l2. Consider an
embedding of Q0 ∪ Q1 induced by an embedding of Q̃. By the definition of Q0, Q1

cannot be re-embedded in F2 under this embedding. Since our embedding is induced
by Q̃, there is a bridge B ⊆ Q0 which is attached on (l1, r1). If there are more
candidates, we take the leftmost one. If B is attached out of e2 to a vertex different
from y, then B ∪Q1 ∪Q2 has unique embedding in F1 ∪ F2, and we can replace Q0

by the single bridge B and still retain the property (M1) (for B◦
j = Qj−1, j = 1, 2, 3).

It is also clear that in this case l1 is to the left of l2. The remaining case is when
B is attached to e1 only at y. In this case we extend the sequence Q1, . . . , Qs+1 by
adding B at its beginning and changing Q0 into Q0 \B. Using similar arguments as
above, one can prove that every embedding of the new Q0 forces B to be embedded in
F2. Then we repeat the above reductions starting with Claim 0 (with the appropriate
change of roles of x, y, F1, F2, etc.). Note that this extension occurs at most three
times.

Claim 3. Qs+2 contains one bridge and rs+1 is strictly to the right of rs. The
proof of this claim is analogous to the proof of the previous claim.

Having all of the above properties, we define m = s + 3 and B◦
j = Qj−1, j =

1, . . . ,m. Using the above claims and properties of the sequence Q1, . . . , Qs+1, we see
that the bridges B◦

j (1 ≤ j ≤ m) satisfy conditions (M1)–(M4′) from the definition of
skew millipedes.

To summarize, we have proved the following result.
Theorem 5.3. Let K = C ∪ e1 ∪ e2 be a subgraph of a graph G for the 2-Möbius

band embedding extension problem. Suppose that no K-bridge in G is local on one of
the branches e1, e2. There is a linear time algorithm that either finds an embedding
extension of K to G or returns an obstruction Ω for embedding extendibility. In the
latter case, either Ω is small and contains at most 13 bridges or it is a millipede based
on one of the branches e1, e2 and with apex on the other branch.

Let us recall that large bridges in the original graph have been replaced by small
bridges (b(B) ≤ 13). Moreover, when we have a millipede, all bridges except B◦

1 and
B◦
m can be replaced by triads (b(B) = 3).
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1. Introduction. In this note we propose a solution to the problem of Graham,
Knuth, and Patashnik [3], which asks for a good generalization of the Stirling numbers
of the first and second kinds (

[
n
k

]
and

{
n
k

}
in standard notation) to complex numbers

n and k. We define these numbers as a contour integral which reduces to the Cauchy
integral formula when n and k are integers. We show that when n − k is an integer
some identities involving these numbers generalize nicely to the complex case while
others do not. In particular, the classical recurrences involving these numbers do
generalize.

The first section gives definitions and some generalized identities. Our general-
ization seems suited for many numbers defined as coefficients of powers of a fixed
function. A counting function with m parameters will become an analytic function of
m complex variables.

In the second section we show that these generalized functions give natural proofs
of the unimodality and log concavity of the original numbers for extensive ranges of
n and k. The difference is that we study the derivatives of the generalized functions
rather than the differences of the original discrete functions. The definition we use is
implicit in the studies of the asymptotic behavior of various combinatorial numbers.

2. Definitions and easy consequences. We begin with the classical defini-
tions of the Stirling numbers in terms of their generating functions:[n

k

]
=

n!

k!
[tn−k]

(
1

t
ln

(
1

1− t

))k

,

{n
k

}
=

n!

k!
[tn−k]

(
et − 1

t

)k

,

[tn] being the coefficient of operator. Using Cauchy’s formula we have for y, x ∈ N,[y
x

]
=

y!

x!

1

2πi

∮
|z|=r

z−y−1 lnx
(

1

1− z

)
dz,
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x

}
=

y!

x!

1

2πi

∮
|z|=s

z−y−1 (ez − 1)
x
dz,

where y! = Γ(y + 1), x! = Γ(x + 1), 0 < r < 1, 0 < s < ∞, and the contours of
integration are circles of radius r and s, respectively. We notice, however, that in
these formulas x and y can be arbitrary complex numbers (y /∈ Z−), and so we can
use them to define Stirling numbers for complex variables. We first consider the case
in which x − y is an integer. In this case the integrands above are single valued so
that the values of r and s are, subject to the constraints above, irrelevant.

Proposition 2.1. If x− y ∈ N, then[y
x

]
=

[
y − 1

x− 1

]
+ (y − 1)

[
y − 1

x

]
.

Proof. From the definition in the preceding paragraph we have[
y − 1

x− 1

]
=

(y − 1)!

(x− 1)!

1

2πi

∮
|z|=r

z−(y−1)−1 lnx−1

(
1

1− z

)
dz.

If we integrate by parts the expression[
y − 1

x− 1

]
=

(y − 1)!

(x− 1)!

1

2πi

∮
|z|=r

z−y
(1− z)

x

d

dz

(
lnx

(
1

1− z

))
dz

we obtain

(y − 1)!

(x− 1)!

{
z−y(1− z)

2πix
lnx

(
1

1− z

)∣∣∣∣r
r(|z|=r)

+
y

2πix

∮
z−y−1 lnx

(
1

1− z

)
dz − y − 1

2πix

∮
z−y lnx

(
1

1− z

)
dz

}

=
y!

x!

∮
z−y−1 lnx

(
1

1− z

)
dz − (y − 1)

(y − 1)!

x!

∮
z−y lnx

(
1

1− z

)
dz

=
[y
x

]
− (y − 1)

[
y − 1

x

]
,

and we have Proposition 2.1.
Proposition 2.2. If x− y ∈ N, then{y

x

}
=

{
y − 1

x− 1

}
+ x

{
y − 1

x

}
.

Proof. Since {
y − 1

x− 1

}
=

(y − 1)!

(x− 1)!

1

2πi

∮
|z|=s

z−y(ez − 1)x−1dz

and

x

{
y − 1

x

}
=

(y − 1)!

(x− 1)!

1

2πi

∮
|z|=s

z−y(ez − 1)xdz



STIRLING NUMBERS FOR COMPLEX ARGUMENTS 75

we have {
y − 1

x− 1

}
+ x

{
y − 1

x

}
=

(y − 1)!

(x− 1)!

1

2πi

∮
|z|=s

z−y(ez − 1)x−1ezdz.

Integrating by parts gives

(y − 1)!

(x− 1)!

{
0− −y

2πix

∮
|z|=s

z−y−1(ez − 1)xdz

}
=
{y
x

}
;

hence the proposition is proven.
Remarks. The Γ function has singularities at the negative integers. The Stirling

functions do not, however, because the integrals in their definitions are zero when y
is a negative integer. The recursions in Propositions 2.1 and 2.2 can define the values
for y as a negative integer (this can also be done using a limiting argument).

We now establish a result which suggests that with suitable restrictions many
classical identities generalize to complex cases. See section 6.1 of Graham, Knuth,
and Patashnik [3] and [4, 5] by Knuth for a fascinating survey of identities for Stirling
numbers. Perhaps the most interesting one is the one below.

Proposition 2.3. If x− y ∈ Z then[−y
−x

]
=

{
x

y

}
.

Proof. Set u = 1− et, du = −etdt in the definition[y
x

]
=

y!

x!

1

2πi

∮
C1

u−y−1

(
ln

(
1

1− u

))x

du

to obtain

y!

x!

1

2πi

∮
C2

(
(−1)

(
et − 1

))−y−1
(−t)x (−et) dt,

where C2 is a closed path with the origin in its interior (u = 0 ⇐⇒ t = 0). If we set
t = eα+2πiz, α a real number,

y!

x!

∫ 1
2

− 1
2

(−1)x−y
(
ee

α+2πiz − 1
)−y−1 (

eα+2πiz
)x+1

ee
α+2πiz

dz.

Here we observe that (−1)a is, unless a is an integer, a multivalued function. We have
not derived an identity for general a so we will not do so for general x and y. With
our hypothesis we have

y!

x!
(−1)x−y

∫ 1
2

− 1
2

(
ee

α+2πiz − 1
)−y−1 (

eα+2πiz
)x+1

(
ee

α+2πiz − 1 + 1
)
dz

=
y!

x!
(−1)x−y

{∫ 1
2

− 1
2

(
ee

α+2πiz − 1
)−y (

eα+2πiz
)x+1

dz

+

∫ 1
2

− 1
2

(
ee

α+2πiz − 1
)−y−1 (

eα+2πiz
)x+1

}
.
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Then [−y
−x

]
=

(−y)!
(−x)!

(−1)y−x
{∫ 1

2

− 1
2

(
ee

α+2πiz − 1
)y (

eα+2πiz
)−x+1

dz

+

∫ 1
2

− 1
2

(
ee

α+2πiz − 1
)y−1 (

eα+2πiz
)−x+1

}
,

and using the identity (−x)! = 1/((x− 1)! sin(πx)),

sin(πx)

sin(πy)
(−1)y−x

(
y

{
x− 1

y

}
+

{
x− 1

y − 1

})
.

If x − y is an integer then sin(πx)/ sin(πy) = (−1)x−y, and by applying Proposition
2.2 we conclude our proof.

If x − y is not an integer, since the integrand is not single valued, the values of
r and s become important. We choose to define r and s by saddlepoint conditions,
that is, by 1/((1− r) ln(1/(1− r))) = y/x and s exp(s)/(exp(s)− 1) = y/x. We then
choose the contour z = s exp(iθ) or z = r exp(iθ) and integrate from θ = −π to θ = π.
(When x and y are real this ensures that, as will be seen, the asymptotic behavior
of the Stirling numbers can be obtained from the formulas for integer n and k by
replacing n and k by y and x.) When x and y are complex we again propose defining
r and s by the same equations. (They are defined as analytic functions of x and y by
the implicit function theorem since the derivatives of the left-hand side with respect
to r or s are not zero for r and s sufficiently close to the positive real axes (thus for x
and y sufficiently close to the real axes).) We now choose the contours z = r exp(iθ)
or z = s exp(iθ), where again θ goes from −π to π. Note that for r and s small we can
expand the integrand as a power series in z and integrate term by term. This gives a
uniformly convergent series of analytic functions of x and y. Note that when x and y
are positive integers we get the standard Stirling numbers. The analytic function can
be analytically continued.

Remark. It seems to us that the ideas used to derive identities and recurrences
when x and y differ by an integer lead to complicated formulas in general. There are
significant terms resulting from the fact that the integrands are not single valued and
also from the fact that the contours change with x and y.

We found that the contour integrals in the above definitions can be evaluated
readily using Maple (see [1]) if they are written as an integral over z from −1/2 to
1/2, as was done in the proof of Proposition 2.3. All the propositions above were
checked for several values of x and y. For example, when y = 7.675 and x = 3.675 we
have

{
y
x

} ≈ 1011.174104 and [−x−y ] ≈ 1011.174040. Finally, note that Sprugnoli and

Del Lungo [9] considered the problem of generalizing the identity∑
k

(
n

k

){
k

m

}
=

{
n + 1

m + 1

}
to real n and m. They showed that such a generalization would only be possible
for |m| < 1 using asymptotic estimates. We had difficulty evaluating the relevant
integrals and consequently could not test the identity. Nevertheless, our definition
gives the same asymptotic behavior they obtained, so with our definition we also
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need −1 < m < 1 for the identity to be true. We do not continue to prove generalized
recurrences and identities for other combinatorial counting functions here; rather, we
give examples showing that they generalize results concerning unimodality and log
concavity. They also simplify the analytic proofs of such results.

3. Log concavity and unimodality results. The definitions in section 2 are
implicit in the asymptotic analysis of many combinatorial numbers since the Cauchy
integral formula is often used. The analytical approach to prove that an,k is unimodal,
i.e., that

an,1 ≤ an,2 ≤ · · · an,k ≥ an,k+1 ≥ · · · ≥ an,n,

or to prove that an,k is log concave, i.e., that

an,k+1an,k−1 ≥ a2
n,k,

involves studying the asymptotic behavior of the first difference of an,k or the second
difference of ln an,k. When the saddlepoint method is used to do this the contour
chosen depends upon n and k, so when k changes so does the contour. The change
in contour usually is not important but it is necessary to prove this. If k is a real
variable we can study the derivative of an,k, which gives us a different point of view
and, as we shall see, the same contour may be used for all the derivatives.

We illustrate this with the entries in convolution matrices, where

an,k =
n!

k!
[tn]h(t)k.

We have seen that the Stirling numbers of both kinds are of this form. The asymptotic
behavior of such an,k has been studied by many authors. We shall rely heavily upon
the paper by Gardy [2], which includes an excellent survey of the results so far. Gardy
[2] defines

∆f(z) = z
d

dz
ln f(z) = z

f ′(z)
f(z)

, δf(z) =
f ′′(z)
f(z)

−
(
f ′(z)
f(z)

)2

+
f ′(z)
zf(z)

and supposes that f satisfies the following properties (f(z) = f0 + f1z + f2z
2 + · · ·).

Assumption 3.1. The function f has real positive coefficients with f0 6= 0 and
f1 6= 0 and a strictly positive, possibly infinite, radius of convergence R.

Gardy also supposes that Ψ satisfies the following property (her assumption is
more general than that below but we do not need the more general form).

Assumption 3.2. The function Ψ has positive coefficients such that Ψ(0) = 0 and
has a strictly positive radius of convergence.

The following theorems of Gardy [2] will be very useful to us (Theorems 8, 5, and
6 of [2]).

Theorem 3.3. Let f satisfy Assumption 3.1, and let Ψ satisfy Assumption 3.2.
Assume that the equation ∆f(z) = n/d has a real positive solution ρ smaller than the
radius of convergence of f and of Ψ. Then for n, d→∞ and η ≤ n/d ≤M , where η
and M are positive constants,

[zn]
{
fd(z)Ψ(z)

}
=

fd(ρ)Ψ(ρ)

ρn+1
√

2πdδf(ρ)
(1 + o(1)).
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Theorem 3.4. Let f be a function satisfying Assumption 3.1 such that

f(z) = eP (z),

where P (z) =
∑

0≤j≤q pjz
j is a polynomial of degree q > 1 with positive coefficients.

Let n, d→∞ in such a way that d = o(n) but (lnn)3qn2q−3 = o
(
d2(q−1)

)
, and define

ρ as the unique real positive solution of ρP ′(ρ) = n/d. Then

[zn]edP (z) =
edP (ρ)

ρn
√

2πn
(1 + o(1)).

Theorem 3.5. Let f be a meromorphic function with positive coefficients whose
singularity of smallest modulus is a pole at 1 of order p: f(z) = g(z)/(1− z)p, where
g is a function analytic for |z| ≤ 1 and with positive coefficients. Assume that f1 6= 0
and define ρ by ∆f(ρ) = n/d. Then if d = o(n) and ln(n/

√
d) = o(d1/3) we have

[zn]fd(z) =

√
ρd

2π

fd(ρ)

nρn
(1 + o(1)) .

We shall make some minor changes to these three theorems for our purposes.
Note that these theorems are proven by the saddlepoint method and are true when n
and d are real numbers with our definition of [zn]fd(z).

Suppose ay,x is defined by

ay,x =
y!

x!

1

2π

∫ π

−π
e−y(α+iθ)+x lnh(eα+iθ)dθ =

y!

x!

1

2π

∫ π

−π
f(x, y, θ)dθ,

where ∆h(eα) = y/x. Then

day,x
dx

= y!
−(x!)′

(x!)2
1

2π

∫ π

−π
f(x, y, θ)dθ

+
y!

x!

∫ π

−π
f(x, y, θ)

(
−y dα

dx
+ lnh(eα+iθ) + x

h′(eα+iθ)

h(eα+iθ)
eα+iθ dα

dx

)
dθ.

If we consider the proof of Theorem 3.3 (8 of [2]), we see that one difference is the
factor lnh(ρeiθ) in the integrand, where ρ = eα. while Gardy shows that δh(ρ) ∼ cy
and

lnh(ρeiθ) = lnh(ρ) + iθ∆h(ρ)− θ2δh(ρ) + · · · .
She also shows that the integral over θ = −α to θ = α, where α = ln y/

√
y, gives

the asymptotic behavior of the whole integral. Note, however, that the coefficient of
θ2 in lnh(ρeiθ) is 1/x times that in x lnh(ρeiθ). Thus with this choice of α we have
δh(ρ)α2 = o(1) and the terms involving higher powers of θ are even smaller, while
Gardy shows that all the coefficients of the powers of θ are the same size. Now∫ α

−α
e−xρ lnh(ρ)θ2

θdθ = 0.

Thus

y!

x!

∫ π

−π
f(x, y, θ) lnh(eα+iθ)dθ = lnh(ρ)

y!

x!

∫ π

−π
f(x, y, θ)dθ

(
1 + O

(
ln2 y

y

))
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= ay,x lnh(ρ)

(
1 + O

(
ln2 y

y

))
.

Since |h(ρeiθ)| ≤ |h(ρ)| by Assumption 3.2 and since h(ρeiθ)x lnh(ρeiθ) = 0 for x > 0,
if h(ρeiθ) = 0 then the lnh(eα+iθ) term is unimportant for Gardy’s analysis for
|θ| > |α|; hence this range of θ is negligible. Similar considerations apply to

h′(ρeiθ)
h(ρeiθ)

dρ

dx
eiθ =

dρ

dx

(
h′(ρ)
h(ρ)

+ iθρ ln(ρ)− θ2 d3 lnh(ρeiθ)

d3θ

∣∣∣∣
θ=0

+ · · ·
)
eiθ.

Furthermore,∫ π

−π
f(x, y, θ)

h′(eα+iθ)

h(eα + iθ)
eα+iθ dα

dx
dθ =

∫ π

−π
f(x, y, θ)

h′(eα)

h(eα)
eα

dα

dx
dθ

(
1 + O

(
ln2 y

y

))
.

If ρ = eα then dα/dx = ρ−1dρ/dx. Thus

−y dα
dx

+ x
h′(eα)

h(eα)
eα

dα

dx
=

(−y
ρ

+ x
h′(ρ)
h(ρ)

)
dρ

dx
= 0

since ∆h(eα) = y/x. Thus

day,x
dx

= ay,x

(
d

dx
(− ln Γ(x + 1)) + ln(ρ)

)(
1 + O

(
ln2 y

y

))
.

Moreover,

d2ay,x
d2x

=
y!

x!

d2 (− ln Γ(x + 1))

d2x

1

2π

∫ π

−π
f(x, y, θ)dθ

+2
y!

x!

d (− ln Γ(x + 1))

dx

1

2π

d

dx

∫ π

−π
f(x, y, θ)dθ

+
y!

x!

1

2π

d2

d2x

∫ π

−π
f(x, y, θ)dθ.

We again can evaluate all the derivatives with respect to x at θ = 0. We also use the
fact that the expression −y/ρ + (xh′(ρ)/h(ρ))(dρ/dx) and its derivative equal zero.
Hence

d2ay,x
d2x

= ay,x

(
− 1

x
− 2 lnxh(ρ) +

(
ln2 h(ρ) +

h′(ρ)
h(ρ)

dρ

dx

))(
1 + O

(
ln2 y

y

))
.

Note also that

d ln ay,x
dx

=
(ay,x)

′

ay,x
,

d2 ln ay,x
d2x

=
(ay,x)

′′

ay,x
−
(

(ay,x)
′

ay,x

)2

.

Using the fact that the asymptotic expansion for ln Γ(x) may be differentiated
term by term, we obtain the following theorem.
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Theorem 3.6. Under the assumptions of Theorem 3.3 (see above)

day,x
dx

∼ ay,x (lnh(ρ)− lnx) ,

d2 ln ay,x
d2x

∼ ay,x

(
− ln2 x− 1

x
+

h′(ρ)
h(ρ)

dρ

dx

)
.

Let us now consider the proof of Theorem 3.4 (5 of [2]). The arguments concerning
lnh(ρeiθ) and h′(ρeiθ)/h(ρeiθ) in the proof of Theorem 3.6 are valid. With Gardy’s
choice of α we have α2xδh(ρ) →∞ but α2δh(ρ) → 0. The analysis of Gardy is easily
modified to handle the case q = 1; we found that α =

√
ln y/y works if q = 1. We

therefore conclude the following.

Theorem 3.7. The conclusions of Theorem 3.6 hold when h(z) = exp(P (z)),
where P (z) is a polynomial of degree q ≥ 1 with positive coefficients provided x, y →∞
in such a way that x > yε, ε a positive constant, if q = 1 and x > ya+ε, a =
(2q − 3)/(3(q − 1)), if q ≥ 2.

We now consider the proof of Theorem 3.5 (6 of [2]). First of all, when p ≥ 1
the singularity may be of the form g(z) ln(1/(1 − z))/(1 − z)p since ln(1/(1 − z))
is a slowly-varying function. Furthermore, since d ln(1/(1 − z))/dz = (1 − z)−1 the
analysis of Gardy is easily modified to handle the case in which the singularity is of
the form g(z) ln(1/(1− z)). The derivatives of ln ln(1/(1− z)) are much like those for
a singularity 1/(1− z); there are various powers of ln(1/(1− z)) which do not matter.
Also, | ln(1/(1− ρeiθ))| ≤ | ln(1/(1− ρeiα))| for θ ≥ α (this seems to be well known).
The terms lnh(ρeiθ) and h′(ρeiθ)/h(ρeiθ) may be handled as above, so we conclude
the following.

Theorem 3.8. The conclusions of Theorem 3.6 hold when h is a meromorphic
function with positive coefficients whose singularity of smallest modulus is at r and
is of the form g(z) ln(1/(r − z))/(r − z)p, where p ≥ 0, or of the form g(z)/(z − r)p,
where p ≥ 1. Here g(z) is a function analytic for z ≤ r and with positive coefficients.
Assume [z]h(z) 6= 0 and define ρ by ∆f(ρ) = y/x. Then if x = o(y) but x ≥ yε, ε a
constant, the conclusion of Theorem 3.6 holds.

With Theorems 3.6, 3.7, and 3.8, the following corollary is useful.

Corollary 3.9. If

1

ρ
+

h′′(ρ)
h′(ρ)

− h′(ρ)
h(ρ)

> 0,

then dρ/dx < 0 and since h′(ρ) > 0 it follows that ay,x is log concave (hence uni-
modal).

Proof. From the saddlepoint condition

ρ
h′(ρ)
h(ρ)

=
y

x
or ln ρ + lnh′(ρ)− lnh(ρ) = ln y − lnx.

Hence (
1

ρ
+

h′′(ρ)
h′(ρ)

− h′(ρ)
h(ρ)

)
dρ

dx
=
−1

x
.
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4. Applications. In the applications we shall use the fact that ay−x,x defined
with a certain f(z) (h(z) in our definition) is equal to ay,x defined with h(z) = zf(z).
Since the integrand is the same in both cases we shall apply Theorems 3.6, 3.7, or 3.8
with h(z)/z so that Assumption 3.1 holds but use h(z) in Corollary 3.9. We consider
some examples of Merlini, Sprugnoli, and Verri [8]. Our log concavity results hold for
every y sufficiently large, of course.

4.1. Stirling numbers of the second kind. Set h(z) = exp(z)− 1. Then

h′′(ρ)
h′(ρ)

= 1,
h′(ρ)
h(ρ)

=
eρ

eρ − 1
.

Thus

1

ρ
+ 1− eρ

eρ − 1
=

1

ρ
− 1

eρ − 1
=

1

ρ
− 1

ρ + ρ2

2 · · ·
> 0.

Thus the Stirling numbers of the second kind are log concave for yε ≤ x ≤ y since the
conditions of Theorems 3.6 and 3.7 are satisfied (Corollary 3.9 also holds). Note also
that the maximum is achieved at x0, where

ln(eρ − 1) = lnx0 or eρ = x0 + 1.

Also, since y/x0 = ∆ ln(eρ − 1) = ρeρ/(eρ − 1), we have

y

x0
= ρ

x0 + 1

x0
= ln(x0 + 1)

x0 + 1

x0
.

Thus x0 ∼ y/ ln y, a well-known result, of course.
The same analysis obviously holds for h(z) = exp(P (z)) and identifies the maxi-

mum. For the Stirling numbers it is easy to see that
{
y
x

}
= yx/Γ(x+1)(1+o(y−δ)) if

x = O(yε), y →∞, x ≥ 1, so we can conclude that
{
y
x

}
is log concave for 1 ≤ x ≤ y.

4.2. Stirling numbers of the first kind. If h(z) = ln(1/(1− z)) then

h′′(ρ)
h′(ρ)

− h′(ρ)
h(ρ)

=
1

1− ρ
− 1

(1− ρ) ln
(

1
1−ρ

) > 0,

so
[
y
x

]
is log concave for yε ≤ x ≤ y since Theorem 3.8 applies. We see, however,

that the maximum would be at ln(1/(1 − ρ)) = x, so ρ = 1 − 1/ρ + o(1/ρ2) and
hence x ∼ ln y. This is correct but all we have proven is that

[
y
x

]
is log concave and

monotone decreasing for yε ≤ x ≤ y using Theorem 3.8 and Corollary 3.9.

4.3. Tree polynomials. Let h(z) = ln(1/(1 − T (z))), where T (z) is the tree
function defined by T (z) = z exp(T (z)). We are now studying the tree polynomials of
Knuth and Pittel [6]. It is not hard to see that Theorem 3.8 and Corollary 3.9 apply.
Furthermore,

h′(ρ)
h(ρ)

=
T ′(ρ)

ln
(

1
1−T (ρ)

)
(1− T (ρ))

,
h′′(ρ)
h′(ρ)

=
T ′′(ρ)
T ′(ρ)

+
T ′(ρ)

1− T (ρ)
,

so

h′′(ρ)
h′(ρ)

− h′(ρ)
h′(ρ)

> 0.
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Thus the tree polynomials are log concave and monotone decreasing for yε < x < y.
(The results of Meir and Moon [7] apply to the case x < yε for x and y integers, so
hopefully one can prove that the Knuth–Pittel tree polynomials are log concave by
proving their results for real x and y.)

Remark. The range x > yε can be replaced by x > (ln y)M in Theorems 3.7 and
3.8 if q = 1 (and Gardy specifies the M in the latter case). The saddlepoint method
does not deal well with x = O(ln y)M . It would be useful to extend the range of
Theorems 3.7 and 3.8 to this range of x so that the log concavity results would hold
for all interesting real values of x and y. This would seem feasible since it amounts
to extending the results for finite x (provable by standard methods) to x = O(ln y)M

and y →∞.
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Abstract. Given m ≥ 3 alternatives and n ≥ 2 voters, let σ(m,n) be the least integer k
for which there is a set of k strict preference profiles for the voters on the alternatives with the
following property: Arrow’s impossibility theorem holds for this profile set and for each of its strict
preference profile supersets. We show that σ(3, 2) = 6 and that for each m, σ(m,n)/4n approaches
0 monotonically as n gets large. In addition, for each n and ε > 0, σ(m,n)/(log2 m)2+ε approaches
0 as m gets large. Hence for many alternatives or many voters, a robust version of Arrow’s theorem
is induced by a very small fraction of the set of all (m!)n strict preference profiles.

Key words. Arrow’s impossibility theorem, voter preference profiles, minimum profile sets
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1. Introduction. Arrow’s celebrated impossibility theorem [2], which occurs
in a variety of forms [6, 7, 9], says that if a domain of voter preference profiles is
sufficiently diverse and if each profile in the domain is mapped into a social order
on the alternatives that satisfies a few appealing conditions, then a specific voter is
a dictator in the sense that all of his or her strict preferences are preserved by the
mapping. In this paper we consider the smallest domains of profiles of linear orders
(strict rankings with no ties) for voters that induce an Arrovian dictator and are such
that every superset domain also induces an Arrovian dictator. The latter restriction
is motivated by an example in Bordes and Le Breton [5] which shows that domain
enlargement can change a dictatorial conclusion into nondictatorship. Although their
example uses weak orders (rankings that allow ties) rather than linear orders for
voters, their point remains valid in our restricted context of linear orders for voter
preferences. Further analysis of the domain-enlargement anomaly of [5] is provided
in Kelly [11].

Our present concern is diametric to the search for social choice rules for large
domains that satisfy Arrow’s conditions, including no dictator [1, 3, 6, 8, 12]. Exam-
ples of such domains arise from restrictions on profiles which ensure that the pairwise
simple majority relations based on the profiles will be transitive.

We consider a finite set X of m ≥ 3 alternatives and a set of n ≥ 2 voters, indexed
by i = 1, 2, . . . , n. Let R denote the set of all weak orders (transitive and complete
binary relations) on X, and let S be the set of all strict rankings or linear orders
(transitive, asymmetric, and weakly connected binary relations) on X. A profile of
voter preference orders is an n-tuple d = (S1, S2, . . . , Sn) in Sn. A domain D is a set
of profiles: D ⊆ Sn. A social choice rule on D is a mapping f : D → R that assigns
a weak order f(d) =�∼d on X to every d ∈ D. When S ∈ S, xSy means that x is
preferred to y, and S = x1x2 · · ·xm means that xj is preferred to xk whenever j < k.
The strict or asymmetric part of a social weak order �∼d is denoted by �d. That is,

x �d y if x �∼d y and not (y �∼d x).
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When the profile d is clear from the context, we often write � in place of �d. The
restriction to Y ⊆ X of R on X is denoted by R|Y .

Since we are concerned with the impossibility side of Arrow’s result, we say that
domain D is Arrovian if there does not exist a social choice rule f that satisfies the
following three conditions proposed by Arrow:

(P) Pareto condition. For all x, y ∈ X and all d ∈ D, (xSiy in d for i =
1, . . . , n) ⇒ x �d y.

(IIA) Independence of irrelevant alternatives. For all d, e ∈ D and all Y ⊆ X,

(d|Y = e|Y ) ⇒ (�∼d|Y = �∼e|Y ).

(ND) Nondictatorship. There is no i ∈ {1, . . . , n} such that �d= Si for all d ∈ D.
Given (m,n) ≥ (3, 2), let A denote the set of all Arrovian domains. It appears that
A has a very complex structure. It is not closed under supersets since the single-
profile unanimity domain D = {(S, S, . . . , S)} is Arrovian ((P) forces every i to be a
“dictator”) but many domains D′ that include D are not Arrovian. And it is easily
seen that A is not closed under unions.

Nontrivial examples of domains in A are Sn [6, p. 208] and every other domain
in the set T of free triple domains [4], where D ∈ T if for every n-tuple d∗ of linear
orders on any 3-element set Y ⊆ X there is a d ∈ D for which d|Y = d∗. Because
the free triple property is inherited by supersets, T provides an example of Arrovian
closure for supersets:

(D ∈ T , D ⊆ D+ ⊆ Sn) ⇒ D+ ∈ T ∩ A.

Kelly [10] describes an Arrovian domain that is smaller than every free triple domain
and for which every superset domain is also Arrovian.

The preceding observations suggest that interesting strengthenings of Arrow’s
theorem to small domains in A should satisfy a similar superset closure condition.
Accordingly, we say that a domain D is super Arrovian (for strict preferences) if
{D+ : D ⊆ D+ ⊆ Sn} ⊆ A. As just noted, every D ∈ T is super Arrovian. However,
much smaller domains are often super Arrovian. For example, the only member of T
for (m,n) = (3, 2) is S2, which has 36 profiles, but there are 6-profile super Arrovian
domains for (m,n) = (3, 2), as will be proved shortly.

We focus on the smallest possible super Arrovian domains by defining σ(m,n)
as the least positive integer t such that some domain D ⊆ Sn with |D| = t is super
Arrovian. A super Arrovian domain is minimum when D is super Arrovian and
|D| = σ(m,n). We have not confirmed exact values of σ for (m,n) ≥ (3, 2) apart
from σ(3, 2) = 6. However, bounds that reveal interesting aspects of σ’s behavior are
obtained.

Consider the case in which the number m of alternatives is fixed. For three
alternatives we will show that σ(3, n+1)/4n+1 ≤ 13

14 [σ(3, n)/4n], from which it follows
that

σ(3, n)

4n
→
n

0 monotonically.

For larger fixed m we prove the generalization

σ(m,n)

4n
→
n

0 monotonically.
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Thus, as n gets large for fixed m, the proportion of the (m!)n profiles in Sn needed
for a super Arrovian domain becomes vanishingly small. Indeed, since a free triple
domain for (m,n) has at least 6n profiles, the number of profiles needed for a super
Arrovian domain for fixed m becomes a tiny fraction of the number needed to generate
a free triple domain.

A result used in the monotone convergence proofs is combined with other obser-
vations to yield a general bound on σ that summarizes much of what we know about
σ.

Proposition 1. For all (m,n) ≥ (3, 2),

σ(m,n) ≤ 3n−2am + (3n − 2n− 5)/4,

where

am =

{
6(2m−3) for m ≤ 9,

(7 log2 m)2 for m ≥ 10.

This includes σ(3, 2) ≤ 6, σ(3, 3) ≤ 22, and σ(4, 2) ≤ 12. It also implies for each
fixed n and ε > 0 that

σ(m,n)

(logm)2+ε
→
m

0.

Here, and later, logarithms are to base 2. Since (logm)2+ε � m! for large m, for any
fixed n the number of profiles in a minimum super Arrovian domain is a tiny fraction
of the number of possible linear orders for any one voter when m is large relative
to n.

The next section proves that σ(3, 2) = 6 and σ(3, 3) ≤ 22. Section 3 establishes
the monotone convergence result for fixed m = 3 as n → ∞, showing along the way
that 2n−2 < σ(3, n) ≤ 3σ(3, n−1)+n+1. Section 4 proves monotone convergence in
n for larger fixed m. Section 5 gives results for variable m that lead to Proposition 1.
A brief discussion in section 6 that features open problems concludes the paper.

We end this introduction with a lemma, a theorem, and a comment. The lemma
and the theorem give insight into the structure of super Arrovian domains. The
comment says something important about later proofs. The lemma shows that every
two voters must disagree in some profile of a super Arrovian domain.

Lemma 1. Suppose D ⊆ Sn is super Arrovian. Then for all distinct i, j ∈
{1, . . . , n} there is a d = (S1, . . . , Sn) in D for which Si 6= Sj.

Proof. Suppose to the contrary that D is super Arrovian and two voters, say 1
and 2, have S1 = S2 for every profile in D. Let x, y, and z be three alternatives in X,
and if m ≥ 4 let r denote a fixed ranking of the other m− 3. Define two new profiles:

e1 = (xyzr, yxzr, xyzr, . . . , xyzr),

e2 = (yzxr, yxzr, yxzr, . . . , yxzr).

Define a social choice rule f on D ∪ {e1, e2} by

f(d) = S1 = S2 for every d ∈ D,

f(e1) = yxzr,

f(e2) = yzxr.
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It is easily seen that (P), (IIA), and (ND) hold: f(e1) shows that none of voters
1, 3, 4, . . . , n is a dictator, and f(e2) shows that voter 2 is not a dictator. But this
contradicts D as super Arrovian.

The following theorem characterizes Arrovian domains that are also super Arro-
vian. We say that an n-tuple d′ of linear orders on {x, y} is nonunanimous if it is
neither (xy, . . . , xy) nor (yx, . . . , yx); i.e., both xy and yx appear in the n-tuple. Then
D ⊆ Sn satisfies the near-free doubles condition if for every nonunanimous n-tuple d′

of linear orders on any 2-element Y ⊆ X there is a d ∈ D for which d|Y = d′.
Theorem 1. D ⊆ Sn is super Arrovian if and only if it is Arrovian and satisfies

the near-free doubles condition.
Proof. Suppose D does not satisfy the near-free doubles condition. Without loss

of generality, assume that there exists a nonunanimous n-tuple d′ = (xy for voters
i ≤ j, yx for voters i > j) for a fixed j ∈ {1, . . . , n− 1} which is not the restriction to
Y = {x, y} for any d ∈ D. Let r be a fixed ranking on X\Y and define profile e by

e = (xyr for i ≤ j, yxr for i > j).

Note that e|y = d′|y. Define f on D ∪ {e} by

f(d) = S1 for every d = (S1, . . . , Sn) in D,

f(e) = yxr.

Suppose D is super Arrovian. Then, by Lemma 1, none of 2, . . . , n is a dictator; by
the definitions of e and f(e), individual 1 is not dictatorial in D∪{e}. But it is easily
seen that (P) and (IIA) hold for f , so we contradict the supposition that D is super
Arrovian. This proves that if D is super Arrovian then it must satisfy the near-free
doubles condition.

To prove the converse, suppose that D is Arrovian and satisfies the near-free
doubles condition. Let f be a social choice rule for D that satisfies (P) and (IIA), and
let i be a dictator for f . If e is any profile not in D, the only way to preserve (P) and
(IIA) in extending f to e is f(e) = Si when Si is i’s order in e, for if e is unanimous
on a pair then (P) implies that f(e) agrees with the unanimous order on the pair,
and if e is nonunanimous on a pair then the near-free doubles condition coupled with
(IIA) and i’s dictatorship implies that f(e) agrees with Si on the pair. It follows that
every superset of D is also Arrovian, hence, that D is super Arrovian.

In working with super Arrovian or potentially super Arrovian domains, it is often
convenient to consider a social choice rule f that satisfies conditions (P) and (IIA),
as in the preceding proof. We refer to such an f as a P+IIA rule. These rules always
exist because dictatorial functions satisfy (P) and (IIA). Whether they are necessarily
dictatorial depends on their domains. This is summarized in the following corollary,
which is an easy consequence of our definitions and the proof of Theorem 1.

Corollary 1. Let D be a domain in Sn and let F be the set of all P+IIA rules
on D. Then

(1) D is Arrovian if and only if no f ∈ F satisfies (ND), i.e., if and only if there
is a dictator for every f ∈ F ;

(2) if D is super Arrovian, then for every f ∈ F there is a unique dictator who
is also the dictator for every P+IIA rule on every superset of D whose restriction to
D is f .

2. Three alternatives and few voters.
Lemma 2. σ(3, 2) = 6.
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Table 1

Profile Pareto Conclusion

d1. (zyx, yxz) y � x z1x or y2z

d2. (yzx, xyz) y � z y1x or x2z

d3. (yxz, xzy) x� z y1z or x2y

d4. (xyz, zxy) x� y x1z or z2y

d5. (xzy, zyx) z � y x1y or z2x

d6. (zxy, yzx) z � x z1y or y2x

Proof. Let

D∗ = {(zyx, yxz), (yzx, xyz), (yxz, xzy), (xyz, zxy), (xzy, zyx), (zxy, yzx)}.

Note that for each (S1, S2) in D∗, S1 and S2 never have the same alternative ranked
in the same position. Moreover, the six S1 orders are the six linear orders on {x, y, z},
and similarly for the six S2 orders. We show that D∗ is super Arrovian (Part 1) and
then prove that it is a minimum super Arrovian domain (Part 2). Both parts assume
that f : D → R is a P+IIA rule.

Part 1. Let � denote unanimous preference, so a� b if both voters prefer a to b.
If a� b in profile d, then a �d b by (P). Also let aib mean that a � b whenever aSib.
In other words, aib means that i is a dictator for the ordered pair (a, b). By definition,
i is a dictator if aib for all six ordered pairs in {(x, y), (y, x), (x, z), (z, x), (y, z), (z, y)}.

Consider profile (zyx, yxz) in D∗. Since y � x we have y � x by (P), and
therefore the assumption of weak order for f requires either z � x or y � z. If z � x,
then (IIA) and (P) imply z1x; if y � z, (IIA) and (P) imply y2z. A similar analysis
for each profile in D∗ yields Table 1.

Suppose z1x from d1. We cannot also have x2z, for then d1 yields z � x and
x � z, a violation of asymmetry. It then follows from d2 that y1x. We cannot also
have x2y, so y1z by d3. Continuation gives x1z, x1y, and z1y, so individual 1 is a
dictator. Similarly, if we begin with y2z from d1, we conclude that individual 2 is a
dictator.

Therefore, the other conditions show that one individual dictates all preferences
for f , so D∗ is Arrovian. It is super Arrovian by Theorem 1.

Part 2. To prove that D∗ is a minimum super Arrovian domain, let D0 be a
domain of five or fewer profiles. We claim that D0 is not super Arrovian; i.e., either
it or a superset is not Arrovian. Let

A = {(x, y), (y, x), (x, z), (z, x), (y, z), (z, y)}.

We begin by examining three cases. These are then used to examine general situations
for D0.

Case 1. Hypothesis: D0 does not satisfy the near-free doubles condition. Then
D0 is not super Arrovian by Theorem 1.

Case 2. Hypothesis: there is an (a, b) ∈ A such that (ab, ba) is in exactly one
profile in D0 (every other profile has (ab, ab) or (ba, ba) or (ba, ab)), and for this profile
a and b are adjacent (not separated by the third alternative) in at least one voter’s
order; moreover, the hypothesis of Case 1 is false. Let (a, b) = (x, y) for definiteness
and, without loss of generality (by symmetry considerations), assume that the special
profile has (xyz, yx). To show that this situation admits a P+IIA rule f that is not
dictatorial for D0 or some superset, let �d= yxz for the special profile, and let f
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assign voter 1’s order to the other profiles in D0. Then D0 is non-Arrovian with the
possible exception that voter 2 is a dictator. If so, S2 = S1 for all profiles other
than the special profile, which must have yxz for voter 2. In this case, add to D0

the new profile (xyz, yzx) with f assignment yxz to negate dictatorship and render
D0 ∪ {(xyz, yzx)} non-Arrovian.

Case 3. Hypothesis: there is an (a, b) ∈ A such that (ab, ba) is in exactly two
profiles in D0, and for at least one voter, a and b are adjacent in both profiles;
moreover, the hypotheses of Cases 1 and 2 are false. Let (a, b) = (x, y) for defi-
niteness. There are two subcases to consider. In the first, a voter with the x, y
adjacencies in the two special profiles has the same order, e.g., zxy for the two.
This subcase is explained by the analysis of Case 2. For the second subcase, we as-
sume without loss of generality that the special profiles have (zxy, yx) and (xyz, yx).
Let f assign zyx to the first of these profiles, yxz to the second, and voter 1’s or-
der to the other profiles in D0. Then D0 is non-Arrovian unless S2 = S1 on the
other profiles and, in the special profiles, we have (zxy, zyx) and (xyz, yxz). If so,
voter 2’s dictatorial status is negated by adding (zxy, yzx) to D0 with f assignment
zyx.

We now use our cases to examine general situations for D0. Given |D0| ≤ 5,
consider voter 1’s orders in the profiles of D0. At least one of the six strict or-
ders on {x, y, z} is absent. Suppose without loss of generality that zyx is absent,
so

S1 ∈ {xyz, xzy, yxz, yzx, zxy}.

Suppose all five orders are present, so |D0| = 5. Focus on zx in the last two. To
avoid the conclusion that D0 is not super Arrovian, Case 1 requires voter 2 to have
xz in at least one of (yzx, ·) and (zxy, ·); Case 2 then requires voter 2 to have xz
in both, but then Case 3 yields the conclusion that, in fact, D0 is not super Arro-
vian.

If D0 has more than two instances of yzx and zxy for voter 1 in its profiles,
then the natural extension of Case 3 shows that it is not super Arrovian. The same
thing is true if it has no (Case 1) or one (Case 2) occurrence of yzx and zxy in its
profiles.

Since this covers all possible cases, we conclude that no domain with fewer than
six profiles is super Arrovian.

Remark. Up to permutations of alternatives and voters, D∗ is the only minimum
super Arrovian domain that has been verified for (m,n) ≥ (3, 2).

Lemma 3. σ(3, 3) ≤ 22.
In the following proof, we say that a pair of voters is decisive within a designated

subset of profiles if for this subset the social preference on every ordered pair of
alternatives is the same as their preference when they agree.

Proof. As before, we work with P+IIA rules. Consider a group of 6 profiles for
three voters in which the first two voters have the profile orders d1 through d6 in
Table 1, and S3 = S2 in each profile. By the Part 1 analysis, either voter 1 is a
dictator or the combination of voters 2 and 3 is decisive. Similarly, by pairing 1 and
3, we have another 6-profile group in which either 2 is a dictator or {1, 3} is decisive;
by pairing 1 and 2 we get a third sextet of profiles in which 3 is a dictator or {1, 2}
is decisive.

Add profile (zxy, yzx, zyx) to the 18 used above which have a duplicated order.
If voter 1 is dictatorial in the first group of 6 profiles, then at the new profile we have
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x � y since the restriction of the profile to {x, y}, namely (xy, yx, yx), fits the group-1
set and (IIA) applies. Similarly, y � z if 2 is dictatorial in the second group of 6,
which includes restricted profile (zy, yz, zy). Transitivity then forces x � z, contrary
to z � x and (P). So, with the new profile, we cannot have both 1 dictatorial versus
{2, 3} and 2 dictatorial versus {1, 3}.

In a similar manner, two more special profiles show that 1 dictatorial in group 1
and 3 dictatorial in group 3 are incompatible, as are 2 in group 2 and 3 in group 3.

We have 21 profiles thus far. The 22nd is the cyclic profile (zxy, yzx, xyz). This
shows that we cannot simultaneously have {2, 3} decisive for group 1, {1, 3} decisive
for group 2, and {1, 2} decisive for group 3; otherwise y � z, x � y, and z � x,
contrary to transitivity for �.

The only possible dictatorial and decisive matches left are

[1 from group 1; {1, 3} from group 2; {1, 2} from group 3], or

[{2, 3} from group 1; 2 from group 2; {1, 2} from group 3], or

[{2, 3} from group 1; {1, 3} from group 2; 3 from group 3].

In each case, the voter who is listed for all three groups is a dictator overall, so the
22-profile domain is Arrovian. For example, if this is true for voter 1 then a � b
whenever 1 prefers a to b, regardless of the preferences of 2 and 3 on {a, b} for all
(a, b) ∈ A. It follows from Theorem 1 that the domain is super Arrovian since it
satisfies the near-free doubles condition.

3. Three alternatives and many voters. We continue toward our main result
for three alternatives with two lemmas that apply to all n ≥ 2. Let D be any nonempty
set of profiles for voter set N = {1, 2, . . . , n}.

Lemma 4. σ(3, n) > 2n − 2.

Proof. Assume that D is super Arrovian. Let fi be the P+IIA rule that coincides
with i’s preferences throughout D. By Corollary 1, every P+IIA rule for D is one of
the fi. Whichever it might be, Theorem 1 says that every nonunanimous n-tuple of
preferences for every pair from {x, y, z} must appear in some profile in D.

There are exactly 2n − 2 n-tuples in {xyz, zyx}n that are not unanimous, and
these 2n − 2 profiles satisfy the near-free doubles condition. This cannot be true
for a smaller set of profiles. Moreover, if a domain D0 has 2n − 2 members and
satisfies the near-free doubles condition, then it has no profile with unanimity on
some pair, and no two distinct members of D0 have the same preference pattern on
some pair.

It follows that |D| ≥ 2n − 2. Moreover, |D| > 2n − 2, for if |D| = 2n − 2, we can
choose a profile p in D at which voters 1 and 2 differ. Then let f agree with voter 1 on
all profiles except p, and let f agree with voter 2 at p. Then f is not dictatorial and,
by the observations in the preceding paragraph, it is a P+IIA rule. Consequently,
every super Arrovian D has |D| > 2n − 2, so σ(3, n) > 2n − 2.

Our next lemma completes most of what will be needed to show that σ(3, n)/4n

converges monotonically to 0.

Lemma 5. σ(3, n+ 1) ≤ 3σ(3, n) + n+ 2.

Proof. Lemmas 2 and 3 confirm this for n = 2. Assume henceforth that n ≥ 3.
Let D be a minimum super Arrovian domain for N = {1, 2, . . . , n}, so |D| = σ(3, n).
We construct a super Arrovian domain for N ′ = N ∪ {n+ 1} that uses no more than
3σ(3, n) + n+ 2 profiles.
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For each profile p = (v1, v2, . . . , vn) in D, form three profiles for N ′ as follows:

p1 = (v1, v1, v2, v3, . . . , vn),

p2 = (v1, v2, v1, v3, . . . , vn),

p3 = (v2, v1, v1, v3, . . . , vn).

Let Di = {pi : p ∈ D} so |Di| = σ(3, n) for i = 1, 2, 3. Because D is super Arrovian,
D1 is super Arrovian under the restriction that voters 1 and 2 always have the same
preference order in an N ′ profile, i.e., when {1, 2} behaves like a single voter. Similar
remarks apply to D2(S1 = S3) and D3(S2 = S3).

Suppose D+
1 is any superset of D1 in which voters 1 and 2 always have the same

order. Considering {1, 2} = 12 as a unit, it follows from Corollary 1 that every P+IIA
rule on D+

1 has a unique dictator d1 ∈ {12, 3, 4, . . . , n+1} and that all nonunanimous
preference patterns on each pair in {x, y, z} (voter 1 agrees with voter 2) can be
found in the profiles of D+

1 . Similar remarks apply to D+
2 ⊇ D2 with unique dictator

d2 ∈ {13, 2, 4, . . . , n+1} and to D+
3 ⊇ D3 with unique dictator d3 ∈ {23, 1, 4, . . . , n+1}

for P+IIA rules on D+
2 and D+

3 , respectively.
Now for each i ∈ {4, 5, . . . , n + 1} let pi be a profile with xyz for i and zyx for

all other voters. There are n− 2 such special profiles. Let their set be D0 and define
D′
i = Di ∪ D0 for i = 1, 2, 3. Then each D′

i is a D+
i as defined above. Also let

D∗ = D′
1 ∪D′

2 ∪D′
3, with

|D∗| ≤ 3σ(3, n) + n− 2.

Let f∗ be a P+IIA rule for D∗, with restriction f∗i to D′
i for i = 1, 2, 3, and dictator

di for D′
i. Because D0 is common to each D′

i, we must have either
(I) d1 = d2 = d3 = k for some k ≥ 4, or
(II) each di ⊆ {1, 2, 3}.
Suppose (I) holds and, for definiteness, let k = 4. Suppose p is an (n + 1)-tuple

preference pattern for a pair of alternatives that is not unanimous. Then p will be
found in some profile of D∗ since at least two of voters 1, 2, and 3 have the same
preference on the pair. It then follows from (P) and (IIA) for unanimous patterns
that voter 4 is the unique dictator for any P+IIA rule that extends f∗ to a superset
of D∗. Consequently, D∗ is super Arrovian when (I) holds.

Suppose (II) holds, so

d1 ∈ {12, 3}, d2 ∈ {13, 2}, d3 ∈ {23, 1}.

We follow the lead of the proof of Lemma 3. Add profile

(zyx, yzx, zxy, zxy, . . . , zxy)

to D∗ if it is not already in D∗ and extend f∗ by P+IIA. Suppose d1 = 3 and d2 = 2.
Then the order � assigned by the rule to the new profile has x � y (use d1 = 3
and the fact that yx holds for voters 1 and 2, along with (IIA) and the availability
of patterns for D′

1) and y � z (use d2 = 2; zy holds for voters 1 and 3; (IIA)), and
therefore x � z by transitivity. However, this violates (P) since z � x. Hence the
given profile prohibits the combination of d1 = 3 and d2 = 2.

In a similar manner, two other profiles can be added to D∗ if they are not already
present to prohibit {d1 = 3, d3 = 1} and {d2 = 2, d3 = 1}. Finally, profile

(zxy, yzx, xyz, . . .)
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shows that we cannot simultaneously have d1 = 12, d2 = 13, and d3 = 23, or else
z � x, x � y, y � z for a cycle.

Let D∗∗ equal D∗ in union with the four special profiles from the preceding two
paragraphs, so

|D∗∗| ≤ 3σ(3, n) + n− 2 + 4 = 3σ(3, n) + n+ 2.

Let f∗∗ be a P+IIA rule for D∗∗ that extends f∗ for D∗ under (II). Then either

(d1, d2, d3) = (12, 13, 1), or

(d1, d2, d3) = (12, 2, 23), or

(d1, d2, d3) = (3, 13, 23).

In each case, the voter who appears in all three di is a dictator overall and will continue
to be the dictator for any P+IIA extension of f∗∗ to a superset of D∗∗. For example, if
(d1, d2, d3) = (12, 13, 1) and voter 1 prefers x to y, then x � y: all patterns that begin
with xy, yx, yx are guaranteed by D3, all that begin with xy, xy, yx are guaranteed
by D1, all that begin with xy, yx, xy are guaranteed by D2, and all that begin with
xy, xy, xy are guaranteed either by all three Di (if nonunanimous) or by (P).

Hence D∗∗ suffices to show that, regardless of whether (I) or (II) holds for f∗,
every P+IIA rule f on a superset of D∗∗ has a unique dictator. We conclude that
D∗∗ is super Arrovian for N ′ = {1, 2, . . . , n + 1} and therefore that

σ(3, n+ 1) ≤ 3σ(3, n) + n+ 2.

We conclude this section with the following theorem.
Theorem 2. σ(3, n)/4n converges monotonically to 0 as n increases.
Proof. Monotonic convergence to 0 follows from

σ(3, n+ 1)

4n+1
≤ 13

14

(
σ(3, n)

4n

)
,

which is true by Lemmas 2 and 3 for n = 2 and by Lemmas 4 and 5 [σ(3, n + 1) ≤
3σ(3, n) + n + 2 ≤ 3σ(3, n) + 5(2n − 1)/7 ≤ 3σ(3, n) + 5σ(3, n)/7 = 4(13/14)σ(3, n)]
for n ≥ 3.

4. More alternatives and many voters.
Theorem 3. For each m ≥ 4, σ(m,n)/4n→

n
0 monotonically.

The proof is similar to the proof of Theorem 2 with minor changes for the greater
number of alternatives. We indicate these changes here.

Lemma 6. σ(m,n) > 2n − 2.
Proof. In the first paragraph of the proof of Lemma 4, replace {x, y, z} by

X = {x1, x2, . . . , xm}. In the second paragraph, replace {xyz, zyx}n by {x1x2 · · ·
xm, xm · · ·x2x1}n.

Lemma 7. σ(m,n+ 1) ≤ 3σ(m,n) + n+ 2 for each n ≥ 2.
Proof. Let {x, y, z} be a 3-alternative subset of X and let r be a fixed ranking of

the other m− 3 alternatives.
Suppose n = 2. Modify the proof of Lemma 3 as follows. In the first paragraph,

replace the set of six profiles which verify σ(3, 2) = 6 by a set of σ(m, 2) profiles for a
minimum super Arrovian domain for (m, 2). This change carries through the rest of
the proof of Lemma 3.
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In the second paragraph of that proof, replace the profile (zxy, yzx, zyx) by
(zxyr, yzxr, zyxr). Two more special profiles bring the total to 3σ(m, 2)+3. The final
profile is (zxyr, yzxr, xyzr), which replaces the cyclic profile (zxy, yzx, xyz). The rest
of the Lemma 3 proof applies with 22 replaced by 3σ(m, 2) + 4.

Suppose n ≥ 3. Refer to the proof of Lemma 5. Take D as minimum for (m,n)
and replace σ(3, n) by σ(m,n). In the fourth paragraph, replace “xyz for i and zyx
for all. . .” by “xyzr for i and (r inverse)zyx for all . . ..” In (II)’s analysis, replace the
special profiles by similar profiles that conclude with r for every voter.

Using Lemmas 6 and 7, the method in the final paragraph of the preceding section
gives

σ(m,n+ 1)

4n+1
<

15

16

(
σ(m,n)

4n

)
,

and monotone convergence to 0 for each fixed m ≥ 4 follows.

5. Variable numbers of alternatives. We use two more lemmas in conjunc-
tion with Lemma 7 to yield Proposition 1. The lemmas focus on two voters and one
voter, respectively.

Lemma 8. σ(m, 2) ≤ 6(2m−3) for all m ≥ 3.
Proof. Equality holds atm = 3 withD∗ of Lemma 2. Let Xm = {x, y, z, v4, . . . , vm}

and, with D3 = D∗, define Dm for m ≥ 4 as D
(1)
m ∪ D

(2)
m , where |D(1)

m | = |D(2)
m | =

|Dm−1| with each D
(j)
m formed from a copy of Dm−1 as follows:

D
(1)
m is obtained by inserting vm as voter 1’s second element and

voter 2’s penultimate element in each profile of Dm−1.

D
(2)
m is obtained by inserting vm as voter 2’s second element and

voter 1’s penultimate element in each profile of Dm−1.

Thus |Dm| = 2|Dm−1| = 6(2m−3). The 12 profiles in D4 are as follows:

D
(1)
4 D

(2)
4

(zv4yx, yxv4z) (zyv4x, yv4xz)
(yv4zx, xyv4z) (yzv4x, xv4yz)
(yv4xz, xzv4y) (yxv4z, xv4zy) .
(xv4yz, zxv4y) (xyv4z, zv4xy)
(xv4zy, zyv4x) (xzv4y, zv4yx)
(zv4xy, yzv4x) (zxv4y, yv4zx)

By inspection, D4 satisfies the near-free doubles condition. Hence, by Theorem 1, it
is super Arrovian if it is Arrovian.

To show that D4 is Arrovian, let f be a P+IIA rule on D4. The restriction of f

to D
(1)
4 includes a P+IIA rule on D3. By Corollary 1, one voter, whom we assume

without loss of generality is voter 1, dictates social preferences on {x, y, z} within D
(1)
4

and, by (IIA), within D
(2)
4 . We show that 1 is also a dictator for every ordered pair

of distinct alternatives in X4 that involves v4.
Consider profile (xzv4y, zv4yx). Then x1z ⇒ x � z, z � v4 ⇒ z � v4, and

therefore x � v4, so x1v4. For profile (yv4zx, xyv4z) we have v4 � z by v4 � z, and
z � x by z1x, so v4 � x and therefore v41x. Four more profiles establish y1v4, v41y,
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z1v4 and v41z in a similar manner. (If we had begun with 2 as the {x, y, z} dictator,
the other six profiles in D4 would be used.) It follows that 1 dictates on all ordered
pairs, hence, that D4 is Arrovian. Therefore σ(4, 2) ≤ 12.

For m ≥ 5, it is easily seen from our recursive definition for Dm that it includes
the following 12 profiles in which r′ = vmvm−1 · · · v4 and r = v4v5 · · · vm:

(zr′yx, yxrz) (zyrx, yr′xz)
(yr′zx, xyrz) (yzrx, xr′yz)
(yr′xz, xzry) (yxrz, xr′zy)

.
(xr′yz, zxry) (xyrz, zr′xy)
(xr′zy, zyrx) (xzry, zr′yx)
(zr′xy, yzrx) (zxry, yr′zx)

A similar list holds for Dm−1 when vm is removed.

By inspection, Dm satisfies the near-free doubles condition, so it is super Arrovian
if it is Arrovian. To show that it is Arrovian let f be a P+IIA rule on Dm. The

restriction of f to D
(1)
m induces a P+IIA rule on Dm−1. By Corollary 1, one voter,

again assumed to be voter 1, dictates social preferences on Xm−1 within D
(1)
m and, by

(IIA), within D
(2)
m . It remains to show that 1 is also a dictator for every ordered pair

of distinct alternatives in Xm that includes vm.

We treat separately the comparisons of vm with {x, y, z} and with {v4, . . . , vm−1}.
The first comparisons are similar to those for v4 given earlier. For example, for
(zyrx, yr′xz), (z1y, y � vm) ⇒ (z � y, y � vm) ⇒ z � vm ⇒ z1vm and for
(xr′yz, zxry), (vm � y, y1z) ⇒ (vm � y, y � z) ⇒ vm � z ⇒ vm1z.

For the other case, consider vm versus vj , 4 ≤ j < m. The presence of
(yvm−1 · · · v4zx, xyv4 · · · vm−1z) in Dm−1 ensures

(yvm−1 · · · v4zvmx, xvmyv4 · · · vm−1z) ∈ Dm.

This profile has vj � z, which with z1vm yields vj � vm and therefore vj1vm. In a
similar manner, the presence of (yxv4 · · · vm−1z, xvm−1 · · · v4zy) in Dm−1 ensures

(yvmxv4 · · · vm−1z, xvm−1 · · · v4zvmy) ∈ Dm.

Here we have vm1x and x � vj to obtain vm � vj and vm1vj . It follows that
σ(m, 2) ≤ |Dm| = 6(2m−3).

For our final lemma, which is Theorem 2.2.1 in Spencer [13], we define λ(m) as
the least integer k such that some k linear orders on m alternatives contain every
ranking on every subset of three alternatives. It follows for n voters that there is
a free triple domain in T that has [λ(m)]n profiles. As noted earlier, such a do-
main is super Arrovian, but when n is much larger than m there are super Arro-
vian domains with far fewer profiles. Hence we are mainly concerned here with m
large in relation to n. Theorem 1 and remarks in Kelly [10] suggest that somewhat
smaller super Arrovian domains than those with [λ(m)]n profiles exist for m � n,
but we shall see that Spencer’s theorem already gives powerful results for this case
within T .

LEMMA 9 (Spencer). For all m ≥ 3, logm < λ(m) < 7 logm.

Exact values of λ(m) are known only for small m. In particular, λ(3) = λ(4) = 6
and λ(5) = 7 as shown by
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m = 4 m = 5

1234 51234
4231 54231
2143 21543
3142 31542
4132 41532
3241 32451

14235

and two auxiliary results: (1) the displayed realization of λ(4) = 6 is unique up to
permutations on the alternatives, and (2) it is impossible to insert a fifth alternative
into the six orders shown for m = 4 so that every ranking of the fifth alternative
and any two others appears in some augmented order. The proofs of (1) and (2) are
elementary but involve detailed consideration of cases.

Lemma 9 and the super Arrovian property for T imply that σ(m, 2) ≤ (7 logm)2.
For comparison with Lemma 8 let

am = min{6(2m−3), (7 logm)2}

so that for all m ≥ 3, σ(m, 2) ≤ am. Computation gives

am =

{
6(2m−3) for m ≤ 9,

(7 logm)2 for m ≥ 10.

By Lemma 7, σ(m, 3) ≤ 3am + 4, σ(m, 4) ≤ 3(3am + 4) + 5, and in general

σ(m,n) ≤ 3n−2am +
n∑
i=3

3n−i(i+ 1)

= 3n−2am + (3n − 2n− 5)/4,

which is the conclusion of Proposition 1.
Theorem 4. For each n ≥ 2 and ε > 0, σ(m,n)/(logm)2+ε→

m
0.

Proof. For m ≥ 10 and ε > 0, Proposition 1 gives

σ(m,n)

(logm)2+ε
≤ 49(3n−2)

(logm)ε
+

(3n − 2n− 5)/4

(logm)2+ε
.

The right side vanishes for fixed n and ε as m gets large.
For each m ≥ 3 and ε > 0, Proposition 1 also says that σ(m,n)/(3 + ε)n→

n
0, but

we cannot assert that the convergence is monotone when ε is small.

6. Discussion. Super Arrovian domains were introduced as a meaningful way of
extending Arrow’s classic impossibility theorem to a greater variety of domains. We
have focused on the cardinality σ(m,n) of the smallest super Arrovian domains for
m alternatives and n voters. As either m or n gets large, the proportion of the (m!)n

preference profiles in Sn needed to construct a super Arrovian domain goes quickly
to 0. Some bounds on σ(m,n) were derived for the general case.

The only specific σ value verified in the paper is σ(3, 2) = 6. We noted also that
σ(4, 2) ≤ 12 and σ(3, 3) ≤ 22. Other best current bounds for m = 3 are
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σ(3, 4) ≤ 66, σ(3, 5) ≤ 133, and σ(3, 6) ≤ 362.

Proofs for these do not appear in the paper.
Feasible open problems include determination of the exact values of σ(4, 2) and

σ(3, 3), along with a better lower bound on σ(m,n) than that of Lemmas 4 and 6. We
are also interested in tighter bounds that will yield a good asymptotic approximation
to σ(m,n).

Other open questions concern the structure of minimum and minimal super Ar-
rovian domains, where a super Arrovian domain D is minimal if no proper subset
of D is super Arrovian. One question is whether there exist minimal super Arrovian
domains that are not also minimum, i.e., for which |D| > σ(m,n). Another is whether
minimum super Arrovian domains are unique up to permutations of alternatives and
voters.
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Abstract. In this paper we modify Buchberger’s S-pair reduction algorithm for computing
a Gröbner basis of a toric ideal so as to apply it to an integer program (IP) in inequality form
with fixed right-hand sides and fixed upper bounds on the variables. We formulate the algorithm
in the original space and interpret the reduction steps geometrically. In fact, three variants of
this algorithm are presented, and we give elementary proofs for their correctness. A relationship
among these (exact) algorithms, iterative improvement heuristics, and the Kernighan–Lin procedure
is established. Computational results are also presented.

Key words. integer programming, upper bounds, test sets, Buchberger algorithm, Gröbner
bases, iterative improvement heuristics
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1. Introduction. In this paper we consider an integer programming (IP) prob-
lem of the type

max {cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral},
where A ∈ Nm×n is a given matrix, b ∈ Nm is the right-hand-side vector, u ∈ Nn

denotes a vector of upper bounds for the variables, and c ∈ Zn is the objective
function. (Here and in the following N denotes the natural numbers including 0.) We
assume that ci > 0 for all i: otherwise we can set xi = 0 for the corresponding variable
and eliminate a column from our program. If upper bounds are not explicitly given,
they may be generated by setting ui := min{bj/aij : aij > 0}. The algorithms and
proofs that we present can easily be adapted to the solution of families of IPs with
varying right-hand sides b, as long as finite upper bounds for the variables are given.

Integer programs can, in principle, be solved by applying the Buchberger algo-
rithm [4] for computing the Gröbner basis of a toric ideal. The connection between
test sets for IP and Gröbner bases of certain ideals was first established by Conti
and Traverso [5]. For details on this approach we refer to Thomas [15], Thomas and
Weismantel [16], Pottier [13], and Hoşten and Sturmfels [10]. Whereas the algorithms
of [5] and [15] deal with families of IP problems of the form Ax = b, x ≥ 0 for varying
right-hand-side vectors b, here we show how to handle the case of a fixed right-hand
side and fixed upper bounds on the variables. This is essential, since most IPs arising
“in practice” have upper bounds, often ui = 1.

Moreover, the procedures formulated in [5] and [15] are applied to an “extended”
IP with additional variables of the form

min {cTx+M1T y : Ax+ Ey = b, x ∈ Nn, y ∈ Nm, x, y integral},(EIP (b))
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where M ∈ N is a “large” integer, E is the m × m identity matrix, and 1 denotes
the vector of all ones. In practice the additional variables may lead to a considerable
increase in the space and time requirements of the algorithms considered. The original
proofs for correctness and finiteness of those algorithms needed an algebraic machinery
(which only applies in the case c ≥ 0); however, the geometric version by Thomas [15]
only needed the Gordan–Dickson lemma.

We formulate our algorithm in the original space and interpret all steps geomet-
rically. In fact, three variants of a (simple) algorithm are presented, and we give
elementary geometric proofs for their correctness. A relationship among these (ex-
act) algorithms, iterative improvement heuristics, and the Kernighan–Lin procedure
is established as well. Finally, preliminary computational results show that this type
of algorithm has potential for becoming a useful tool in the solution of practical IP
problems.

As mentioned above, our variant of the Buchberger algorithm deals with an IP
problem of the type

max {cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral}.(1)

In order to handle more general programs

max {cTx : Ax ≤ b, Cx = d, 0 ≤ x ≤ u, x integral},(2)

we apply the following simple transformation. We define c′ := c+M1TC (where 1 is
the vector with all components equal to 1 and M is a sufficiently large integer) and
solve the IP problem

max {c′Tx : Ax ≤ b, Cx ≤ d, 0 ≤ x ≤ u, x integral}.(3)

Then every optimal solution x0 of (3) will satisfy Cx0 = d, provided that the program
(2) is feasible. If (2) is infeasible, then the objective function value of an optimal
solution to (3) is less than M1T d. Therefore, in terms of optimal solutions both
formulations (2) and (3) are in a one-to-one correspondence, and we can always assume
that the IP problem is given in the form (1).

Throughout the paper we use the following notation. N denotes the set {1, . . . , n}.
We say that x ≤ y holds for vectors x, y ∈ Zn if xi ≤ yi for all i ∈ N . Thus “≤” is a
partial order on Zn.

From the objective function c we obtain a linear order on Zn as follows: we choose
an arbitrary term order ≺0 (for example, lexicographic) and use it as a “tie breaker”
on the points that have the same objective function value under c; that is, we define

x ≺c y :⇐⇒
{
cTx < cT y or
cTx = cT y and x ≺0 y.

In the following “≺” always denotes a linear order ≺c that refines the (fixed) objective
function c in this way. One might note that ≺ is a term order in the sense of Gröbner
basis theory if and only if c ≥ 0. (In case of doubt we write “≺c” for “≺”.)

For a vector d ∈ Zn we define d� := d if d � 0; in the case where d ≺ 0, we
set d� := −d. For v ∈ Zd we denote by v+ the vector with v+

i = vi if vi ≥ 0 and
v+
i = 0 otherwise. Accordingly, v− is the vector with v−i = −vi if vi ≤ 0 and v−i = 0

otherwise. Clearly v = v+ − v−.
Definition 1.1. Given a matrix A ∈ Nm×n, objective function vector c ∈ Zn,

and a right-hand-side vector b ∈ Nm, we denote by IPA,b,c,u the optimization problem

max{cTx : Ax ≤ b, 0 ≤ x ≤ u, x integral}.(IPA,b,c,u)
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We say that x is feasible for IPA,b,c,u if Ax ≤ b, 0 ≤ x ≤ u, and x is integral.
A subset B ⊆ Zn is a test set for IPA,b,c,u if and only if v � 0, the vectors v+,

v− are feasible for all v ∈ B, and for every nonoptimal point x ∈ Nn there is some
v ∈ B such that x+ v is feasible.

The paper is organized as follows. In section 2 we present the new variants of
the Buchberger algorithm to compute test sets for IPs. A link of these variants to
iterative improvement heuristics and to the Kernighan–Lin heuristic is established in
section 3. We also show computational results when our algorithms are applied to
small- and medium-sized real world problems in section 4.

2. Three variants of the Buchberger algorithm. In this section we present
three variants of an algorithm that compute a test set for the IP problem

max{cTx : Ax ≤ b, xi ∈ {0, 1, . . . , ui}, i ∈ N},(IPA,b,c,u)

where A ∈ Nm×n, c ∈ Nn, b ∈ Nm is a fixed right-hand-side vector, and u is the vector
of upper bounds on the variables. In the following ≺ always denotes a term order
refining c.

We start with an outline of the basic form of the algorithm. Having proved that
this version of the algorithm terminates after finitely many steps with a test set for
IPA,b,c,u, we show how to speed up the computations by excluding certain vectors in
the computation of the test set.

Roughly speaking, a test set B can be computed as follows. Start with the n
unit vectors B := {ei : i ∈ N}. Iteratively, compute the difference vectors between
all pairs of vectors in B and direct each such difference vector such that it is greater
than 0 with respect to the order. All such difference vectors that are not in B and
that are differences of feasible vectors for IPA,b,c,u are added to B. The algorithm
terminates if no more vectors are added to B.

Algorithm 2.1.

(1) Set Bold := ∅, B := {ei : i ∈ N}.
(2) While Bold 6= B perform the following steps:

(2.1) Set Bold := B.
(2.2) For all pairs of vectors v, v′ ∈ B with v ≺ v′, (v′−v)+, (v′−v)− feasible,

set B := B ∪ {v′ − v}.
Whenever step 2 of this algorithm is executed (except for the last time), a new

vector is added to the set B. Since the number of different vectors w = v′ − v
satisfying −u ≤ w ≤ u is bounded by

∏
i∈N (2ui + 1), the above algorithm terminates

after finitely many steps.
We now show that the set B generated by Algorithm 2.1 is a test set for IPA,b,c,u.

Suppose that x is a feasible point (Ax ≤ b, 0 ≤ x ≤ u) that is not optimal and that
cannot be improved by adding an element in B. Let x′ be some feasible vector with
x′ � x. Then x′ − x can be written as an integral combination of unit vectors: we
can decrease from x to reach 0 (staying feasible), then increase to reach x′, using
only vectors in B. Hence, there is a sequence P = (x0, . . . , xp) of vectors xi with the
following properties:

(i) x0 = x, xp = x′,
(ii) for all i = 1, . . . , p, (xi − xi−1)� ∈ B, and
(iii) all the points xi ∈ P are feasible.

In fact, in the specific current situation, we know more for (ii): there is some i0 such
that −(xi − xi−1) ∈ B for i ≤ i0, and xi − xi−1 ∈ B for i > i0.
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In the following sketches, the vertical direction “upward” represents increasing
objective function. Thus the small vectors, depicting elements of B, are directed
upward.

x = x0

cx1

x2

xp = x′

xi0

Among all sequences that satisfy (i), (ii), and (iii), let P = (x0, . . . , xp) be a sequence
such that the minimum point in P , xi0 , is maximal with respect to the order ≺. (Such
a sequence exists since the number of feasible points is finite. The minimum point xi0
is unique since � is a total order.)

We have i0 6= 0 (otherwise x = x0 could be improved by x1 − x0 ∈ B) and i0 6= p
(otherwise we would have x′ = xp ≺ x0 = x).

Both vectors xi0+1 and xi0−1 are feasible. It follows that

w :=
(
(xi0+1 − xi0) − (xi0−1 − xi0)

)�
= (xi0+1 − xi0−1)�

is a difference of two feasible vectors. Moreover, since xi0−1−xi0 ∈ B and xi0+1−xi0 ∈
B, the difference vector w has been computed in step 2.2 of Algorithm 2.1 and was
added to B.

x = x0

c

xi0−1

xi0
xi0+1

w

xp = x′

Thus

P ′ := (x0, . . . , xi0−1, xi0+1, . . . , xp)

again satisfies properties (i)–(iii); yet the minimum element in P ′ is larger than xi0 ,
which is a contradiction.

With this we have proved the following theorem.
Theorem 2.2. Algorithm 2.1 terminates after a finite number of steps. The

output is a test set for the IP problem IPA,b,c,u.
Example 2.3. Consider the 0/1 knapsack problem

max{x1 + 3x2 + 2x3 : x1 + 2x2 + 3x3 ≤ 3, xi ∈ {0, 1}, i = 1, 2, 3}.
The algorithm starts with the vectors e1, e2, e3. Then the vectors e2− e1, e3− e1, and
e3 − e2 are added to the set B. In the next iteration the vector e1 + e2 − e3 is added.
The algorithm terminates with the set

B = {e1, e2, e3, e2 − e1, e3 − e1, e2 − e3, e1 + e2 − e3},
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since in step 2 no new vectors are found.

This set is, indeed, a test set for the above 0/1 knapsack problem. Yet not all of
these vectors are really needed to guarantee that one can go from any feasible point of
this program to the optimal solution without decreasing the objective function value
in each step. Namely, the vector e1 + e2 − e3 can always be replaced by the two
vectors e1 and e2− e3, both being elements in B. In this situation we call e1 + e2− e3
reducible. Elimination of reducible vectors from the computation of a test set is a
very important issue in order to keep the size of the test set small. We now formalize
this situation.

Definition 2.4. For an IP problem IPA,b,c,u, let B be a family of improvement
vectors (that is, v � 0, v+, v− are feasible for all v ∈ B).

A vector w 6= 0 can be reduced by v ∈ B if v+ ≤ w+, v− ≤ w−, and (Av)+ ≤
(Aw)+. In this situation, we say that we obtain (w − v)� by reducing w.

v

w

(w − v)�

In this situation, a trivial computation shows that if at any feasible point x ∈ Zn

the vector w can be applied (that is, if x+ w is feasible as well), then one could also
apply v instead of w and obtain a feasible point x + v � x (and after that one can
apply w − v to reach x+ w). Thus we note

• if x and x+ w are feasible, then so is x+ v;
• |v|1 ≤ |w|1, with equality only if v = w, and |w − v|1 < |w|1; and
• x+ v � x.

We have not assumed that w � 0, because in the following proofs of this section we
need to reduce difference vectors of the form w − w′.

Algorithm 2.5 (reduction). This algorithm computes the reduction w
B

of a
vector w ∈ Zn by a set B of improvement vectors.

(1) Input B ⊆ (Zn)�0, w ∈ Zn.
(2) As long as possible, find v ∈ B such that r ∈ {w,−w} can be reduced by v,

and replace r by r − v.

(3) Output w
B

:= r�.

The vector w
B

is called the reduced vector of w with respect to B.

Proposition 2.6. Assume that x and x+w are feasible and compute w
B
. Then

there is a sequence of distinct integral points x = y0, y1, . . . , yk−1, yk = x + w, with
the following properties:

• each yj is feasible;
• y0 ≺ y1 ≺ · · · ≺ yj0 � · · · � yk = x+ w for some 0 ≤ j0 ≤ k;
• in particular, for 0 < j < k we get yj � x or yj � x+ w or both;

• (yj − yj−1)� ∈ B for each 1 ≤ j ≤ k, except that if w
B 6= 0, then we either

have yj0 − yj0−1 = w
B

or yj0 − yj0+1 = w
B

; and
• |yj − yj−1|1 ≤ |yk − y0|1 = |w|1, with equality only if k = 1.

The following sketch shows how this sequence of points yi may be generated by
reducing by v, v′, and v′′ (in that order).
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y1

x = y0

w
yk = x+ w

w
B

v

v′

v′′

Using reduction, we can modify our initial algorithm as follows.
Algorithm 2.7.

(1) Set Bold := ∅, B := {ei : i ∈ N}.
(2) While Bold 6= B repeat the following:

(2.1) Set Bold := B.
(2.2) For all pairs of vectors v, v′ ∈ Bold such that v ≺ v′ perform the following

steps:
(2.2.1) If (v′ − v)+ and (v′ − v)− are feasible, set w := v′ − v.

(2.2.2) Compute r := w
B

by Algorithm 2.5.
(2.2.3) Set B := B ∪ {r}.

Again, Algorithm 2.7 terminates after finitely many steps, since there exists an
upper bound on the number of different vectors that can be added to the set B.

To show that it computes a test set, we can nearly proceed as before. For any
nonoptimal feasible point x that cannot be improved by a vector in B, and every
feasible x′ � x, there is a sequence P = (x0, . . . , xp) that satisfies properties (i)–(iii)
above for which the minimum point xi0 occurring in P is maximal (with respect to
≺). We again have 0 < i0 < p, which means that the difference vector

w = (xi0+1 − xi0−1)�

was considered in Algorithm 2.7. Thus, by Proposition 2.6 we get a new sequence of
feasible points

P ′ := (x0, . . . , xi0−1 = y0, y1, . . . , yk = xi0+1, . . . , xp),

where the minimum point of P ′ is larger than that of P .

Thus we have proved the following theorem.
Theorem 2.8. Algorithm 2.7 terminates after a finite number of steps. The

output is a test set for the IP problem IPA,b,c,u.
As a postprocessing step, the size of the final output B of Algorithm 2.7 can be

further reduced by the following theorem.
Theorem 2.9 (postprocessing). Let B be any test set for IPA,b,c,u. Then suc-

cessively for each w ∈ B, one can perform the following operations:
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• if w is reducible by some v ∈ B\w, replace B by B\w and

• if −w is reducible by some v ∈ B\w, replace B by (B\w)∪{wB\w} otherwise.
After these operations, B is still a test set.

Next we deal with the following question: what are sufficient conditions for a
vector b to be successively reducible to 0? This question is of computational relevance,
because vectors that can be reduced to 0 (by a sequence of reduction steps) need not
be added to the set B during the run of Algorithm 2.7 but can be excluded in advance.

The first criterion in this respect can be adapted from Buchberger [4] (see also
[6]). Suppose that v, w ∈ B are two vectors in the current set B of Algorithm 2.7
with v � w. If the following three conditions are satisfied

• the vectors v+ and w+ have disjoint support,
• the vectors v− and w− have disjoint support,
• the vectors (Av)+ and (Aw)+ have disjoint support,

then the vector d = v − w (to be computed in step 2.2 of Algorithm 2.7) is reducible
by v and can be reduced to 0 (see step 2.2.2). This follows because under the above
assumptions we obtain

d+ = v+ + w−, d− = v− + w+, and (Ad)+ = (Av)+ + (Aw)−.

Hence, every component in v− is less than or equal to the corresponding component of
d−, every component in v+ is less than or equal to the corresponding component of d+,
and every component in (Av)+ is less than or equal to the corresponding component
of (Ad)+. Therefore, d is reducible by v and since r := v − d = w can be reduced to
0 by w, the statement follows.

Though such criteria help in reducing the running time of the overall procedure,
the main bottleneck is that iteratively for every pair of vectors in the current set
B the associated difference vector needs to be computed. Excluding parts of these
computations in advance is one of the main issues for applying this algorithm to the
solution of IP instances of nontrivial size.

We have found one such criterion. Namely, we show that for every element in the
current set B it is sufficient to compute just n difference vectors instead of |B| − 1.
Then, however, a difference vector v of two elements in the current set B can be
reduced only by a vector v′ ∈ B that satisfies v′+ ≤ v+, v′− ≤ v−, (Av′)+ ≤ (Av)+,
and v′ ≤ v.

Algorithm 2.10.

(1) Set Bold := ∅, E := {ei : i ∈ N}, B := E.
(2) While Bold 6= B repeat the following:

(2.1) Set Bold := B.
(2.2) For every v := (w − ei)

� with
(2.2.1) w ∈ B, ei ∈ E with w 6= ei,
(2.2.2) v+, v− feasible, and
(2.2.3) v is not reducible by any v′ ∈ B with v − v′ ≥ 0

set B := B ∪ {v}.
Theorem 2.11. Algorithm 2.10 terminates after a finite number of steps. The

output is a test set for IPA,b,c,u.
Proof. Finiteness of the algorithm is clear.
Suppose that there exists a nonoptimal feasible point x that cannot be improved

by any element of the set B that is computed by Algorithm 2.10. Let x′ be the
feasible vector with x′ � x. As for Algorithm 2.1, there exists a sequence P =
(x0, x1, . . . , xi0 , . . . , xp) with 0 < i0 < p and
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(i) x0 = x, xp = x′;
(ii) xi−1 − xi ∈ E for i ≤ i0, and xi+1 − xi ∈ E for i ≥ i0 (except that one of

xi0−1 − xi0 and xi0+1 − xi0 is permitted to be in B\E);
(iii) every point xi is feasible.

x = x0

x1

x2

xp = x′

xi0

v
v′

Now choose a sequence of points P with these properties such that its minimum
point xi0 is maximal.

In the course of Algorithm 2.10, one has computed the difference vector v :=
(xi0+1 − xi0−1)�. This vector clearly satisfies steps 2.2.1 and 2.2.2. If it fails 2.2.3
then it can be written in the form v = v′ +

∑s
k=1 eik for v′ ∈ B and ei1 , . . . , eis ∈ E.

Furthermore, we have that xi0±1 + v = xi0∓1 (where the sign “±” is “+” if xi0+1 ≺
xi0−1 and “−” otherwise), and thus all the points in the sequence

xi0±1, xi0±1 + v′, xi0±1 + v′ + ei1 , . . . , x
i0±1 + v′ +

s∑
k=1

eik = xi0∓1

are feasible. From this we obtain a new sequence P ′ that again satisfies the above
properties, yet the minimal point in this sequence is larger than xi0 : a contradic-
tion.

It is shown in [16] that the minimal reduced test set B for IPA,b,c,u is unique.
This test set is computed by Algorithm 2.7. Algorithms 2.1 and 2.10 produce test
sets for IPA,b,c,u that are in general supersets of B. After applying the postprocessing
Theorem 2.9, these test sets coincide with B. However, these algorithms proceed in
different orders. While Algorithms 2.1 and 2.7 might produce exchange vectors of
`1-norm 2k in their kth iteration of step 2, Algorithm 2.10 will generate improvement
vectors according to increasing `1-norm: it produces all improvement vectors of `1-
norm k in the kth iteration of step 2.

3. A relation to iterative improvement heuristics. To simplify the discus-
sions we will now only consider 0/1 problems, which have ui = 1 for all i ∈ N .
(Generalizations of what follows to arbitrary upper bounds are straightforward.) We
furthermore assume that Aei ≤ b for all i ∈ N and that for i, j ∈ N the vectors Aei
and Aej do not have disjoint support. These assumptions are usually satisfied by
instances coming from traveling salesman problems, graph partitioning problems, or
knapsack problems, etc.

One approach for obtaining good solutions for the problem

max

n∑
i=1

cixi,

Ax ≤ b,
xi ∈ {0, 1} for i = 1, . . . , n
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is to start with some feasible solution, i.e., a set S ⊆ N such that AχS ≤ b. (For any
subset S ⊆ N , χS denotes the incidence vector, with χSi = 1 if i ∈ S and χSi = 0
otherwise.) Iteratively we replace items which belong to S by items which are not in
the current solution via a certain rule such that the incidence vector of the resulting
set, S′ say, is feasible. Exchange the role of S with S′ and repeat these steps until a
certain stopping criterion is satisfied.

This procedure is certainly too general to be analyzed and needs specification of
(a) the rule according to which items are replaced by others and (b) the stopping
criterion.

In most implementations, exchange operations are allowed only if the number
of items involved is less than or equal to a certain threshold value, λ say. More
precisely, the cardinality of the symmetric difference between the sets S and S′ must
not exceed λ. The reason for that is simply to keep the running time of the procedure
in acceptable limits. Indeed, usually a value of λ = 2 or λ = 3 is chosen. (The
resulting algorithms are the “2-OPT” and “3-OPT” heuristics.) In addition, iterative
improvement heuristics only allow exchanging items of S with items not in S if the
objective function value cχS increases by this. Those algorithms terminate if the
current solution x cannot be improved by replacing items with xi = 1 against items
with xi = 0 such that the number of items involved is less than or equal to λ.

In the case where λ = 2 or λ = 3 there is a nice relationship between iterative
improvement heuristics and our Algorithm 2.7. Similar statements can be made for
Algorithms 2.1 and 2.10.

Proposition 3.1. Let v ∈ {0,−1, 1}n be a vector such that
∑n

i=1 |vi| ≤ 3,
−b ≤ Av ≤ b, and v � 0. After performing step 2 in Algorithm 2.7 twice, the set B
either contains v or v is the sum of vectors in B.

Proof. We start initially with the n unit vectors. When step 2 is performed the
first time all the vectors ei − ej � 0, i, j ∈ {1, . . . , n} are computed and added to B.
Note that under the assumptions introduced at the beginning of this section those
vectors cannot be reduced. Thus, after a first processing of step 2 all vectors y � 0
with entries 0,+1,−1, and

∑n
i=1 |yi| ≤ 2, −b ≤ Ay ≤ b have been generated.

Now let v ∈ {0, 1}n be a 0/1 vector such that
∑n

i=1 |vi| = 3, −b ≤ Av ≤ b, and
v � 0. v can be written in one of the following forms: (i) v = ei − (eu − ew) with
(eu − ew) � 0, (ii) x = (eu − ew) − ei with (eu − ew) � 0, (iii) x = (eu − ew) + ei
with (eu − ew) � 0, or (iv) v = eu + ew + ei where i, u, w ∈ {1, . . . , n}, i 6= u 6= w 6= i.
Suppose that (iii) or (iv) holds. Then v is a sum of elements in B. Otherwise, (i) or
(ii) is true. Then v is the difference vector of elements in B. This difference vector
was computed by processing step 2 of Algorithm 2.7 a second time. Since (iii) and
(iv) are not true, this difference vector is not reducible via the elements in the current
set B.

As a corollary we obtain that via Algorithm 2.7 certain iterative improvement
heuristics can be simulated. In fact, this algorithm is a strong generalization of
the idea of iterative improvement heuristics and it is obvious that by restricting the
number of times step 2 is to be processed, the output can be used to (iteratively)
improve feasible solutions.

Instead of admitting exchanges that always improve the current objective function
value, Kernighan and Lin [11, 12] used a slightly different strategy. Again suppose
that a set S ⊆ N is given such that AχS ≤ b. Iteratively we either exchange one item
which belongs to S by one item which does not so that the new solution is feasible
again or we add to the current set S a new item if this yields a feasible solution. In
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other words, in order to move from a feasible solution x to a feasible solution x′ we
either have that x + (ei − ej) = x′ or x + ei = x′ for some i ∈ N (and j ∈ N \ {i}).
Let B2 := {ei : i ∈ N} ∪ ⋃ei−ej�0{ei − ej} and B2

− =
⋃
b∈B2{−b}. Then, at

a current feasible point x, Kernighan and Lin choose a vector v in B2 ∪ B2
− with

cT v = max{cT b : b ∈ B2 ∪B2
−, x+ b is feasible}. The procedure terminates if a given

number of iterations have been performed.
Following this approach it is clear that at some point x an exchange operation

may be performed that (locally) yields a decrease in the objective function. However,
by a sequence of exchanges, some of which might have a negative objective function
value and some of which have a positive objective function value, we might reach some
feasible point x′ � x. Suppose this is the case and in order to make our analysis easy
let us also assume that x′ can be reached from x by first applying an exchange step
v ∈ B2

− and then an exchange step w ∈ B2. We have already seen that the set B2

is generated by performing step 2 in Algorithm 2.7 once. Therefore, −v ∈ B2 and
w ∈ B2 and as x′ � x, so is v+w � 0. Since v+w = w−(−v), with (−v), w ∈ B2, the
vector x′−x is computed by performing step 2 in Algorithm 2.7 a second time. Either
x′ − x is not reducible or it is. In the first case, it is added to our set B generated by
Algorithm 2.7. In the latter case we can reach a point x̃ by using elements in B such
that in each step the objective function is not decreased.

Computing a difference vector w between pairs of elements in a current improve-
ment set B and directing it such that w � 0 can be viewed as a two step procedure,
first locally getting worse, but afterward globally improving the objective function
value.

4. Computational results. In this section we present preliminary computa-
tional results with Algorithms 2.7 and 2.10. We have applied both algorithms to
small- and medium-sized instances coming from set covering problems (Steiner triple
systems; see [14]), knapsack and multidimensional knapsack problems (see [8]), set
partitioning problems [9], and experimental design problems (see [1]). For all exam-
ples, except for those arising in experimental design problems, the number of columns
is in the range of 6 to 105 and the number of rows is between 1 and 331. The set par-
titioning instances reported in [9] involve up to several thousand columns and rows.
From these original data we took subsets of the rows and columns and solved the set
partitioning problem associated with this subset. For the instances of experimental
design problems the number of columns varies from 147 to 2,205 and the number of
rows is between 28 and 121.

We always start the computations with the vector 0, which is feasible for all
instances (via the transformation of section 1 we replace conditions Ax = b by Ax ≤
b). Iteratively we improve the current (feasible) solution by elements in the set B
(computed according to Algorithms 2.7 and 2.10) until either we prove optimality or
we exceed a time limit. We performed all tests on a SUN Sparc10 workstation with
a limit of 30 minutes CPU time.

Tables 1 and 2 summarize our results. In order to distinguish the instances we
use the following convention: “knap” means that the instance is a (multidimensional)
knapsack problem. The prefix “cov” and “part” stands for instances of set covering
and set partitioning problems, respectively. The “des” is used for experimental design
problem instances. The first number following the prefix corresponds to the number
of columns. The second number is the number of rows. For example, knap.20.1 is an
instance of a knapsack problem consisting of 20 items and 1 row, etc.

Column 2 of the tables gives the optimal value of the corresponding problem. The
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Table 1

EXAMPLE OPT SOL (2.7) TIME (2.7) SOL (2.10) TIME (2.10)

cov.9.13 5 5 0:00 5 0:00
cov.15.36 9 9 0:00 9 0:00
cov.27.118 18 18 0:00 18 0:00
cov.45.331 30 30 23:16 29 0:00
knap.6.10 3800 3800 0:00 3800 0:00
knap.10.10 87061 87061 0:00 87061 0:00
knap.15.10 4015 4015 0:00 4015 0:00
knap.20.10 6120 6120 0:00 6120 0:00
knap.28.10 12400 12400 0:00 12400 0:00
knap.39.5 10618 10618 15:34 10605 5:59
knap.49.5 15223 15205 0:20 15223 26:22
knap.20.1 7708 7708 0:00 7708 0:00
knap.50.1 19928 19928 0:02 19928 0:02
knap.100.1 41773 41773 2:30 41773 2:38
knap.30.5 4561 4561 0:00 4561 0:01
knap.40.5 5557 5557 0:06 5557 0:05
knap.50.5 6159 6159 0:03 6159 0:03
knap.60.5 6954 6954 0:19 6954 0:16
knap.60.5 7486 7486 1:37 7486 1:28
knap.60.5 7289 7289 0:27 7289 0:28
knap.60.5 8633 8633 1:09 8633 1:09
knap.70.5 7698 7698 1:00 7698 0:54
knap.80.5 8947 8947 0:10 8947 0:10
knap.80.5 8344 8344 31:28 8341 1:08
knap.90.5 9492 9492 0:40 9492 0:45
knap.28.4 3418 3418 1:17 3418 2:49
knap.35.4 3186 3186 0:12 3186 0:12
knap.27.4 3090 3090 9:40 3090 2:53
knap.34.4 3186 3186 0:03 3186 0:03

optimal values for the set partitioning problems were obtained by the cutting plane
code of [3]. For the knapsack problems this value was obtained with the cutting plane
code reported in [7]. For the experimental design problem we refer to [1] for the opti-
mal values. The optimal values for the set covering instances are taken from MIPLIB
[2]. Columns 3 and 4 report on the objective function value of the best solution found
via Algorithm 2.7 and the corresponding time that was needed. Accordingly, columns
5 and 6 show the appropriate values if Algorithm 2.10 is applied.

The results show that in all examples except for four instances the solution com-
puted by Algorithm 2.10 is the same as the one given by Algorithm 2.7. In fact,
both procedures behave quite similarly concerning both running time and quality
of the solution. It seems that neither of the two variants is significantly superior
over the other. Algorithm 2.10 can prove optimality for the nine instances cov.9.13,
knap.6.10, knap.10.10, knap.15.10, knap.20.1, part.10.4, part.24.11, part.30.9, and
part.39.3 within five minutes of CPU time, whereas Algorithm 2.7 terminates with a
provably optimal solution in only seven cases. For the remaining examples both pro-
cedures did not succeed in proving optimality. Nevertheless for 56 out of 59 examples
Algorithm 2.7 or 2.10 found an optimal solution.

A special behavior can be observed when the two algorithms are applied to the
experimental design data: either the optimal solution is found immediately or we do
not find any feasible solution.

Summarizing our experiments, we think that on very hard combinatorial prob-
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Table 2

EXAMPLE OPT SOL (2.7) TIME (2.7) SOL (2.10) TIME (2.10)

knap.29.2 95168 95168 0:00 95168 0:00
knap.20.10 2139 2139 0:08 2139 6:19
knap.40.30 776 776 0:03 776 0:03
knap.37.30 1035 1035 0:21 1035 0:21
knap.28.2 130883 130883 0:06 130883 0:06
knap.105.2 624319 624319 0:15 624319 0:15
knap.60.30 7772 7772 0:08 7772 0:08
part.10.4 –4248 –4248 0:00 –4248 0:00
part.24.11 –7983 –7983 0:00 –7983 0:00
part.30.9 –1816 –1816 0:00 –1816 0:00
part.39.3 –2874 –2874 0:00 –2874 0:00
part.40.16 –8061 –8061 0:00 –8061 0:00
part.42.23 –35818 –35818 0:05 –35818 0:05
part.43.18 –11493 –11493 0:00 –11493 0:00
part.48.14 –7634 –7634 0:01 –7634 0:01
part.47.20 –6792 –6792 0:01 –6792 0:01
part.49.15 –22959 –22959 0:01 –22959 0:01
part.49.15 –5782 –5782 0:00 –5782 0:00
part.59.8 –2698 –2698 0:01 –2698 0:01
part.67.12 –4942 –4942 0:00 –4942 0:00
part.74.16 –11268 –13820 0:37 –13820 0:38
part.77.22 –16812 –16812 0:03 –16812 0:03
part.86.22 –9933 –9933 4:54 –9933 4:49
part.92.10 –2800 –2800 0:00 –2800 0:00
des.147.28 21 21 0:00 21 0:00
des.294.35 42 42 0:00 42 0:01
des.432.48 36 36 0:00 36 0:01
des.675.60 90 — — — —
des.1014.91 78 78 0:03 78 0:02
des.2205.126 210 — — — —

lems such as experimental design problems we are still far from having an “effective”
optimization algorithm. It is not good enough to run Algorithm 2.10 as a “black box”
that will hopefully find a good solution. Here, a combinatorial understanding of the
test set B seems to be indispensable. For the knapsack, multidimensional knapsack,
set partitioning, and set covering problems that we tested, the situation is different.
Algorithms 2.7 and 2.10 work quite well on those instances and usually produce very
good solutions. Moreover, the performance is stable. Certainly the running times
are still too high and our implementation cannot in reasonable time handle instances
with a couple of hundred columns. Storing and computing all the difference vectors
would exceed the memory requirements.

To conclude, the algorithms that we presented here are very general; they are not
adapted to special purpose problems and we implemented the routines straightfor-
wardly. The quality of the solutions that were produced on many of the test samples
is quite high and very stable. We think that there is still a lot of research to be done in
order to understand test sets combinatorially, but the results certainly indicate that
the construction, analysis, and adaptation of such methods are worth further efforts.

Conclusions. Whereas dual methods like cutting plane algorithms have proven
to be extremely successful in the solution of (large-scale) IP problems, there is a lack of
primal algorithms that have the potential to prove optimality of an IP. In particular,
it would be desirable to have both primal and dual algorithms that make it possible
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to systematically and simultaneously improve current primal and dual solutions. The
three Buchberger algorithms that we presented in this paper might have the potential
to satisfy those needs and requirements.

Yet we are still far from applying our algorithms to large-scale problems. From our
point of view the computational results in section 5 show that the “Buchberger-type”
algorithms generate very good solutions starting from scratch. Certainly the running
time and the memory requirements form a bottleneck. The number of exchange
vectors that are generated might even be squared when proceeding from one single
iteration to the next. Hence, further research must concentrate on the combinatorial
understanding of the exchange vectors that need to be contained in the test set.
Then one could work with “classes of exchange vectors” implicitly rather than have
to generate all such vectors explicitly. This would be analogous to the treatment of
“classes of facets” in a cutting plane approach.

If one can make progress in this direction, then primal algorithms based on ideas
as presented in this paper might become a powerful tool in the solution of IP problems.
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[4] B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in Multi-
dimensional Systems Theory, N. K. Bose, ed., D. Reidel, 1985, pp. 184–232.

[5] P. Conti and C. Traverso, Buchberger algorithm and integer programming, Lecture Notes
in Comput. Sci., 539 (1991), pp. 130–139.

[6] D. A. Cox, J. B. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in
Mathematics, Springer-Verlag, New York, 1992.

[7] C. E. Ferreira, A. Martin, and R. Weismantel, Solving multiple knapsack problems by
cutting planes, SIAM J. Optim., 6 (1996), pp. 858–877.

[8] H. Heitkotter, Personal communication, Universität Dortmund, 1993.
[9] K. L. Hoffman and M. Padberg, Solving airline crew-scheduling problems by branch-and-cut,

Management Science, 39 (1993), pp. 657–682.
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Abstract. Let C be a family of cliques of a graph G = (V,E). Suppose that each clique C of
C is associated with an integer r(C), where r(C) ≥ 0. A vertex v r-dominates a clique C of G if
d(v, x) ≤ r(C) for all x ∈ C, where d(v, x) is the standard graph distance. A subset D ⊆ V is a clique
r-dominating set of G if for every clique C ∈ C there is a vertex u ∈ D which r-dominates C. A clique
r-packing set is a subset P ⊆ C such that there are no two distinct cliques C′, C′′ ∈ P r-dominated
by a common vertex of G. The clique r-domination problem is to find a clique r-dominating set
with minimum size and the clique r-packing problem is to find a clique r-packing set with maximum
size. The formulated problems include many domination and clique-transversal-related problems as
special cases. In this paper an efficient algorithm is proposed for solving these problems on dually
chordal graphs which are a natural generalization of strongly chordal graphs. The efficient algorithm
is mainly based on the tree structure and special vertex elimination orderings of dually chordal
graphs. In some important particular cases where the algorithm works in linear time the obtained
results generalize and improve known results on strongly chordal graphs.

Key words. graphs, hypergraphs, tree structure, hypertrees, covering and packing problems,
transversal and matching problems, dually chordal graphs, clique hypergraphs, generalization of
strongly chordal graphs
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1. Introduction. Strongly chordal graphs introduced in [13, 9] and [19] are a
well-known subclass of chordal graphs [10] for which several problems remaining NP
complete for chordal graphs are efficiently solvable. Among them are the problems of
r-domination [7], clique transversal [8], and k-neighborhood covering [17] which are
solved in linear time if a strong elimination ordering of a strongly chordal graph is
given together with the input graph. The best algorithms for finding strong elimina-
tion orderings are not linear time.

A very natural generalization of strong elimination orderings is given by maximum
neighborhood orderings [2]. These orderings lead to dually chordal graphs [5, 12, 24]—
a generalization of strongly chordal graphs. For a dually chordal graph a maximum
neighborhood ordering can be computed in linear time.

For dually chordal graphs in [4] a linear time solution of the r-domination problem
is given using only a maximum neighborhood ordering.

In this paper we present a unified method to solve different types of clique r-
domination and clique r-packing problems on dually chordal graphs. In some par-
ticular cases the obtained results generalize and improve results of [7, 8] and [17] on
strongly chordal graphs.

2. Problem formulations. Let G = (V,E) be a finite connected simple (i.e.,
without loops and multiple edges) and undirected graph. A clique is a subset of
pairwise adjacent vertices of V . A maximal clique is a clique that is not a proper
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subset of any other clique. The distance d(u, v) between vertices u, v ∈ V is the length
(i.e., number of edges) of a shortest path connecting u and v. The disk centered at
vertex v with radius k is the set of all vertices having distance at most k to v:

Nk[v] = {u ∈ V : d(v, u) ≤ k}.

For a clique C and vertex v ∈ V we denote by

δ(v, C) = max{d(v, u) : u ∈ C}

the deviation of v from C. Evidently, δ(v, C) is the smallest integer k ≥ 0 such that
C ⊆ Nk[v].

Let C be a family of cliques of a graph G. Suppose that each clique C of C is
associated with an integer r(C), where r(C) ≥ 0 and r(C) > 0 for cliques with size
|C| > 1. A vertex v r-dominates a clique C of G if δ(v, C) ≤ r(C), i.e., C ⊆ Nr(C)[v].
(For cliques of size |C| > 1 and r(C) = 0 there is no vertex v which r-dominates C.)
A subset D ⊆ V is a clique r-dominating set of G if for every clique C ∈ C there is a
vertex u ∈ D which r-dominates C. A clique r-packing set is a subset P ⊆ C such that
there are no two distinct cliques C ′, C ′′ ∈ P r-dominated by a common vertex of G.
The clique r-domination problem is to find a clique r-dominating set with minimum
size γC,r(G), and the clique r-packing problem is to find a clique r-packing set with
maximum size πC,r(G). Then γC,r(G) and πC,r(G) are called the clique r-domination
and clique r-packing numbers of G.

The formulated problems include many domination and clique-transversal-related
problems as special cases. First, if C is the family of maximal cliques of G and r(C) =
1 for all C ∈ C then we obtain the clique-transversal and the clique-independence
problems [8]. If C is a family of edges of G and r(C) = k (where k is an integer) for all
C ∈ C then we obtain the k-neighborhood covering and k-neighborhood independence
problems considered in [17]. Finally, if C consists only of single vertices of G then we
obtain the r-domination and r-packing problems [22, 19, 7, 12, 11, 4] whose particular
instances are the domination, k-domination, packing, and k-packing problems [14, 9].

3. Dually chordal graphs. In this section we recall the definitions and some
results and algorithms on dually chordal graphs, which we use in what follows.

For a vertex v ∈ V of a graphG = (V,E) we denote byN(v) the open neighborhood
N(v) = {v : uv ∈ E} and by N [v] = N(v) ∪ {v} the closed neighborhood. For
Y ⊆ V let G(Y ) be the subgraph induced by Y . For a graph G with the vertex set
V = {v1, . . . , vn} let Gi = G({vi, vi+1, . . . , vn}) and Ni[v] (Ni(v)) be the closed (open)
neighborhood of v in Gi.

A vertex v is simplicial if and only if (iff) N [v] is a clique. The ordering (v1, . . . , vn)
of V is a perfect elimination ordering iff for all i ∈ {1, . . . , n} the vertex vi is simplicial
in Gi. The graph G is chordal iff G has a perfect elimination ordering [15].

The ordering (v1, . . . , vn) is a strong elimination ordering iff for all i ∈ {1, . . . , n}
Ni[vj ] ⊆ Ni[vk] when vj , vk ∈ Ni[vi] and j < k. The graph G is strongly chordal iff G
has a strong elimination ordering [13].

A vertex u ∈ N [v] is a maximum neighbor of v iff for all w ∈ N [v] the inclusion
N [w] ⊆ N [u] holds (note that u = v is not excluded). The ordering (v1, . . . , vn) is a
maximum neighborhood ordering if for all i ∈ {1, . . . , n} there is a maximum neighbor
ui ∈ Ni[vi]:

for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.



CLIQUE DOMINATION ON DUALLY CHORDAL GRAPHS 111

The graph G is dually chordal [5] iff G has a maximum neighborhood ordering. The
graph G is doubly chordal [20] iff G is chordal and dually chordal.

There is a close connection between chordal and dually chordal graphs which
can be expressed in terms of hypergraphs (for hypergraph notions we follow [3]).
Let N (G) = {N [v] : v ∈ V } be the (closed) neighborhood hypergraph of G, and
let C(G) = {C : C is a maximal clique of G} be the clique hypergraph of G. By
D(G) = {Nk[v] : v ∈ V , k a nonnegative integer} we denote the disk hypergraph of G.

Now let E be a hypergraph with underlying vertex set V , i.e., E is a set of subsets
of V . The dual hypergraph E∗ has E as its vertex set and {e ∈ E : v ∈ e} (v ∈ V )
as its edges. The underlying graph (or two-section graph) Γ(E) of the hypergraph E
has vertex set V and two distinct vertices are adjacent iff they are contained in a
common edge of E . The line graph L(E) = (E , E) of E is the intersection graph of
E , i.e., ee′ ∈ E iff e ∩ e′ 6= ∅. A partial hypergraph of hypergraph E has V as the
underlying vertex set and some edges of E .

A hypergraph E is a hypertree (called arboreal hypergraph in [3]) iff there is a
tree T with vertex set V of E such that every edge e ∈ E induces a subtree in T .
Equivalently, E is a hypertree iff the line graph L(E) is chordal and E has the Helly
property, i.e., any pairwise intersecting subfamily of edges of E has a common vertex;
see [3]. A hypergraph E is a dual hypertree (α-acyclic hypergraph) iff there is a tree
T with vertex set E such that for all vertices v ∈ V Tv = {e ∈ E : v ∈ e} induces a
subtree of T , i.e., E∗ is a hypertree.

Theorem 3.1 (see [12], [5]). Let G = (V,E) be a graph. Then the following
conditions are equivalent:

(i) G is a dually chordal graph,
(ii) N (G) is a hypertree,
(iii) D(G) is a hypertree,
(iv) C(G) is a hypertree,
(v) G is the underlying graph of a hypertree.

It is well known [6] that G is chordal iff C(G) is a dual hypertree, i.e., G is
the underlying graph of some dual hypertree. Therefore the equivalence of parts (i)
and (iv) of Theorem 3.1 justifies the name “dually chordal graphs” for graphs with
maximum neighborhood ordering.

Since hypertrees are the dual hypergraphs of α-acyclic hypergraphs by Theorem
3.1 we immediately get that dually chordal graphs can be recognized in time propor-
tional to the size of the corresponding hypergraph. This is a consequence of the linear
time algorithm for testing α-acyclicity of hypergraphs [25]. It is easy to see that the
hypergraph N (G) used in Theorem 3.1 has size proportional to the number of edges
of the corresponding graphs. Therefore it can be tested in linear time O(|E|) whether
a graph G = (V,E) is dually chordal.

Below we present a special algorithm for determining a maximum neighborhood
ordering of dually chordal graphs. Its complexity is O(|E|); for more details and a
correctness proof we refer to [4].

Algorithm 3.2. MNO (Find a maximum neighborhood ordering of G)

Input: A dually chordal graph G = (V,E) with |V | = n > 1.
Output: A maximum neighborhood ordering of G.

(0) initially all v ∈ V are unnumbered and unmarked ;
(1) choose an arbitrary vertex v ∈ V , number v with n, i.e., vn = v, and let

mn(vn) := v;

repeat
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(2) among all unmarked vertices select a numbered vertex u such that N [u] con-
tains a maximum number of numbered vertices ;

(3) number all unnumbered vertices x from N [u] consecutively with maximal pos-
sible numbers between 1 and n− 1 which are still free;
for all of them let mn(x) := u;

(4) mark u;
until all vertices are numbered

The meaning of mn(x) is a maximum neighbor of x. Note that the algorithm
also yields a maximum neighbor for each vertex, and all vertices of N [vn] occur con-
secutively in the ordering on the left of vn and have vn as their maximum neighbor.
Furthermore, since G is assumed to be connected, for all vi with i ≤ n−1, mn(vi) 6= vi
holds.

Maximum neighborhood orderings of graphs produced by the MNO algorithm
immediately lead to optimal algorithms for computing the distance matrix for all
graphs having such orderings. Let (v1, . . . , vn) be a maximum neighborhood ordering
of a graph G produced by the MNO algorithm. Subsequently we only use such
maximum neighborhood orderings. This assumption is of crucial importance for the
correctness of the main algorithm. The maximum neighbor mn(vi) of the vertex vi
in G({vi, vi+1, . . . , vn}) has an important metric property: for every vertex vj , j > i,
which is nonadjacent to vi there exists a shortest path of G({vi, vi+1, . . . , vn}) between
vi and vj which passes through mn(vi).

To see this assume by way of contradiction that all shortest paths between vi
and vj contain vertices not in Gi. Among these paths choose a path P whose left-
most vertex u with respect to the maximum neighborhood ordering (v1, . . . , vn) has
rightmost position. Let v, w be the neighbors of u in P . Since P is a shortest path
the distance of v, w is 2. Now the maximum neighbor mn(u) which according to the
MNO algorithm is distinct from u is also adjacent to v and w and on the right of
u. Thus replacing u by mn(u) in P we obtain a shortest path P ′ between vi and vj
whose leftmost vertex is on the right of u—a contradiction.

In particular, we obtain that every graph G({vi+1, vi+2, . . . , vn}) is a distance-
preserving subgraph ofG({vi, vi+1, . . . , vn}). Thus it follows thatG({vi, vi+1, . . . , vn})
is a distance-preserving subgraph of G for all i ∈ {1, . . . , n}.

Let G = (V,E) be a dually chordal graph, and let D(G) = (d(vi, vj))i,j∈{1,...,n}
denote the distance matrix of G. By Di+1(G) we denote the submatrix of D(G) which
contains the distances between the vertices vi+1, . . . , vn. The next submatrix Di(G)
is obtained from Di+1(G) by adding the ith row and ith column according to the
following rule:

for all k > i define

d(vi, vk) = d(vk, vi) =

{
1 if vi and vk are adjacent,
d(mn(vi), vk) + 1 otherwise.

Evidently, this procedure correctly finds the whole matrix D(G) in optimal time
O(n2). Moreover, the maximum neighborhood ordering of G for every two query
vertices u and v allows us to find in time O(c · d(u, v)) a shortest path between u and
v (c is the necessary time to verify the adjacency of two vertices). Let num(v) = i if
v = vi in the maximum neighborhood ordering of G.

Procedure 3.3 (sh–path(u, v)).
if u and v are adjacent then return (u, v)
else
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if num(u) < num(v) then
return (u,sh–path(mn(u), v))

else
return (sh–path(u,mn(v)), v))

According to [4] the shortest path between two vertices u and v of a dually
chordal graph G computed by procedure sh–path(u, v) is called a maximum neighbor
path. Such a path P (u, v) has an important property: it splits into two subpaths
P ′ = (u0, u1, . . . , up) and P ′′ = (v0, v1, . . . , vq), where u0 = u and v0 = v such that
each ui is the maximum neighbor of ui−1 and each vi is the maximum neighbor of
vi−1 and vertices up, vq are adjacent.

We conclude this section with the following property of cliques of dually chordal
graphs.

Lemma 3.4. Let G be a dually chordal graph and C be a clique of G. If the
vertex v r-dominates C then there exists a vertex v∗ with d(v, v∗) = δ(v, C)− 1 which
1-dominates C.

Proof. If d(v, u) < δ(v, C) for some vertex u ∈ C, then u is the required vertex.
Thus assume that all vertices of C are equidistant from v. Applying the Helly prop-
erty to the family of pairwise intersecting disks consisting of N δ(v,C)−1[v] and closed
neighborhoods of vertices of C, we obtain a vertex v∗ adjacent to all vertices of C and
satisfying the required equality d(v, v∗) = δ(v, C)− 1.

4. Hypergraph approach to clique r-domination and clique r-packing.
For a family of cliques C of a graph G and a function r : C → N ∪ {0} with r(C) > 0
for cliques of size |C| > 1 define the hypergraph DC,r(G) as follows:

DC,r(G) =

{⋂
v∈C

Nr(C)[v] : C ∈ C
}

where
⋂

v∈C Nr(C)[v] = {x : x r-dominates C}. (Note that this notation can be used
in the same way for families of arbitrary vertex sets instead of cliques.)

Using this notation, the clique r-domination and clique r-packing problems on
G may be formulated as the transversal and matching problems on the hypergraph
DC,r(G). Recall that a transversal of a hypergraph E is a subset of vertices which
meets all edges of E . A matching of E is a subset of pairwise disjoint edges of E . For
a hypergraph E , the transversal problem is to find a transversal with minimum size
τ(E), and the matching problem is to find a matching with maximum size ν(E). From
the definitions we obtain the following lemma.

Lemma 4.1. D is a clique r-dominating set of a graph G iff D is a transversal
of DC,r(G). P is a clique r-packing set of a graph G iff P is a matching of DC,r(G).
Thus τ(DC,r(G)) = γC,r(G) and ν(DC,r(G)) = πC,r(G) hold for every graph G and
every function r : C → N ∪ {0} defined on every family C of cliques.

The parameters γC,r(G) and πC,r(G) are always related by a min–max duality
inequality γC,r(G) ≥ πC,r(G). The next result shows that for dually chordal graphs
the converse inequality holds.

Lemma 4.2. For every family of cliques C of a dually chordal graph G and every
function r : C → N ∪ {0} the hypergraph DC,r(G) is a hypertree. In particular, the
equality γC,r(G) = πC,r(G) holds.

Proof. By definition each edge of the hypergraph DC,r(G) is the intersection of
some disks of G. By Theorem 3.1 the disk hypergraph D(G) of G is a hypertree.
This means that there exists a tree T such that each edge of D(G) is a subtree of T .
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Since the intersection of subtrees is a subtree too, all edges of DC,r(G) are subtrees
of T . Therefore the hypergraph DC,r(G) is a hypertree. It is well known [3] that the
equality τ(E) = ν(E) holds for every hypertree. By Lemma 4.1 we obtain the required
equality.

Note that Lemma 4.2 is true not only for families of cliques but also for arbitrary
families of vertex sets of a dually chordal graph assuming only that the given r-values
do not lead to empty hyperedges. (For hypergraphs with empty edges there is no
transversal.)

It is known that in a hypertree E the transversal and matching problems can
be solved in time proportional to the size of E [25]. The hypergraph DC,r(G) can
be computed in O(|V |2 + |V |∑p

i=1 |Ci|) time for C = {C1, C2, . . . , Cp}. This can be
done by applying the distance matrix of G. As we already mentioned this matrix
can be computed in optimal time O(|V |2). In the worst case the hypergraph DC,r(G)
has size O(|V ||C|). Thus the whole time to solve the clique r-domination and clique
r-packing problems is O(|V |2 + |V |∑p

i=1 |Ci|). Below we present an algorithm of
the same complexity for solving these problems, which avoids the construction of the
hypergraph DC,r(G). For two particular cases when C consists only of maximal cliques
or only of vertices of G its complexity becomes linear. The algorithm simultaneously
finds a clique r-dominating set D and a clique r-packing set P such that |D| = |P |.
This provides an algorithmic proof of duality results between these two problems on
dually chordal graphs.

We refer also to [1], where similar duality results were used to provide efficient
algorithms for three covering and packing problems on families of subtrees of a tree.

5. The algorithm. Let G = (V,E) be a dually chordal graph, C be an arbitrary
family of cliques of G, and (v1, . . . , vn) be the ordering of V generated by the MNO
algorithm. By r(C1), . . . , r(Cp) we denote the dominating radii of the corresponding
cliques of C. The algorithm processes the vertices in the order from v1 to vn. In
iteration i the algorithm decides whether the vertex vi has to be put into the clique r-
dominating set D. If vi is included in D then a certain clique C which is r-dominated
by vi is included in the clique r-packing set P . Initially, both sets D and P are empty.
After processing, vertex vi is deleted from the graph and information concerning
whether or not vi was included in D is given to its maximum neighbor mn(vi) and/or
to its other neighbors and cliques from Ni(vi).

For technical reasons we extend the initial family of cliques C by including in
C as one-vertex cliques all vertices v ∈ V such that {v} /∈ C. For each of them
initially r({v}) = ∞. Let C(v) be a set of all cliques of C that contain the vertex v.
At the next step we redefine the r-dominating radii of one-vertex cliques by putting
r({v}) = min{r(C) : C ∈ C(v)}. As in [7, 4] we associate to each clique C ∈ C the
dominating radius r(C) and the nonnegative integer a(C). Initially a(C) = ∞ for
all C ∈ C. a(C) keeps decreasing during the execution of the algorithm, while the
dominating radii decrease only for one-vertex cliques. At each step r({v}) becomes
the current radius within which the clique {v} and all other yet undominated cliques
from C(v) must be r-dominated in the remaining graph. Unlike the dominating radii
of cliques the value a(C) indicates an upper bound for the distances of vertices v ∈ D
from the current clique r-dominating set D to the clique C; i.e., there is a v ∈ D
such that d(v, C) ≤ a(C). The value of r({vi}) decreases in the case where vi is the
maximum neighbor of a vertex vj , j < i, such that there is a clique C ∈ C(vj) that is
not properly r-dominated by a vertex of D within distance r(C) in iteration j. Then
necessarily r(C) = r({vj}); for a proof see Lemma 5.5. In this case, r({vi}) is set to
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be r({vj})−1. Similarly, in a previous iteration, r({vj}) is set to be r({vk})−1, k < j.
Continuing this argument, we find that there is a smallest (i.e., leftmost) vertex vi∗
and a clique C∗ ∈ C(vi∗) that forces . . . , k, j, i to decrease their r(·) values, although
r({vi∗}) never changes. We use fn({vi}) (clique furthest neighbor of {vi}) to denote
this initial clique C∗ from which r({vi}) decreases.

In step i the algorithm processes vertex vi according to the following rules. When
r({vi}) = 0 then vi must be in D because no other vertex r-dominates {vi}. Moreover,
we include fn({vi}) in P and set a({vi}) = 0. Otherwise, if r({vi}) > 0 then we
distinguish between two cases. Either we find a clique C ∈ C(vi) which is not yet
r-dominated (lines (8) and (9)) or we establish that all cliques of C(vi) are properly
r-dominated by vertices of D in iteration i. In the second case we do nothing. So
suppose that the first case holds. Then either C coincides with {vi} or C contains vi
as the smallest vertex in the MNO ordering and r(C) = r({vi}). In both cases we
update r({mn(vi)}) by

r({mn(vi)}) = min{r({mn(vi)}), r({vi})− 1}.
At each step we have to update a(C) for all C ⊆ Ni(vi):

a(C) = min{a(C), a({vi}) + 1}.
The algorithm solves the transversal and matching problems on the hypergraph

DC,r(G) without constructing this hypergraph and works in linear time when C con-
sists only of maximal cliques or only of vertices of G.

Algorithm 5.1. (CRDP) (Find a minimum clique r-dominating set and a
maximum clique r-packing set of a dually chordal graph G)
Input: A dually chordal graph G = (V,E) with a maximum neighborhood ordering

(v1, . . . , vn) obtained by the MNO algorithm and a family C = {C1, . . . , Cp}
of cliques in G with radii r(C1), . . . , r(Cp) ≥ 0 and r(Ci) > 0 for |Ci| > 1

Output: A minimum clique r-dominating set D and a maximum clique r-packing set
P of G

(1) D := ∅;P := ∅;
(2) for all v ∈ V such that {v} /∈ C do begin C := C ∪ {{v}}; r({v}) := ∞ end;
(3) for all C ∈ C do begin a(C) := ∞; fn(C) := C end;
(4) for all v ∈ V do

begin
choose a clique C from C(v) with minimal radius r(·);
r({v}) := r(C); fn({v}) := C

end;
(5) for i := 1 to n− 1 do

begin
par := 1;

(6) if r({vi}) = 0 then
begin

(7) D := D ∪ {vi};P := P ∪ {fn({vi})}; a({vi}) := 0
end

else
begin

(8) if a({vi}) > r({vi}) and ∀v ∈ Ni(vi) a({v}) + 1 > r({vi}) and r({v}) > 0
then C := {vi}

else
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(9) if ∃C ′ ∈ C(vi) such that [i = min{num(v) : v ∈ C ′} and a(C ′) > r(C ′)
and (∀v ∈ Ni[vi]

(a({v}) + 1 > r(C ′) or (a({v}) + 1 = r(C ′) and C ′ 6⊆ N [v]))
and (r({v}) > 0 or r({v}) = 0 and r(C′) = 1 and C ′ 6⊆ N [v]))]

then C := C ′

else
(10) par := 0;
(11) if par = 1 and r({mn(vi)}) ≥ r({vi}) then

begin
(12) r({mn(vi)}) := r({vi})− 1;
(13) fn({mn(vi)}) := fn(C)

end;
end;

(14) for all C ∈ C such that C ⊆ Ni(vi) do a(C) := min{a(C), a({vi}) + 1};
end;

(15) if r({vn}) < a({vn}) then D := D ∪ {vn} and P := P ∪ {fn({vn})}
Subsequently for one-vertex cliques the brackets { and } are omitted.

Theorem 5.2. Algorithm CRDP is correct.

Proof. In order to prove that the set D constructed by the algorithm is clique
r-dominating we use the following reformulation of the clique r-domination problem
in terms of r(C) and a(C):

find a minimum size set D ⊆ V such that for every clique C ∈ C
(a) a(C) ≤ r(C), or
(b) δ(v, C) ≤ r(C) for some v ∈ D, or
(c) δ(u,C) + a(u) ≤ r(C) for some u ∈ V (D dominates C via vertex u).

(Note that the cases (a),(b),(c) do not exclude each other—this case distinction
is useful subsequently for technical purposes.)

The proof of the theorem is based on some auxiliary results. In all of them let
C1 = C and Ci+1 = Ci \ C(vi), where C(vi) are all cliques of C which contain the vertex
vi.

Lemma 5.3. If r(vi) = 0 then D is a clique r-dominating set of Ci in Gi iff
D = D′ ∪ {vi}, where D′ is a clique r-dominating set of Ci+1 in Gi+1 with a(C) := 1
for all cliques C ⊆ Ni(vi) and a(C) := a(C) otherwise, and r(C) := r(C) for all
cliques C ∈ Ci+1.

Proof. If r(vi) = 0 then the one-vertex clique {vi} is not r-dominated by any
other vertex of Gi. So, necessarily vi belongs to every clique r-dominating set of Gi,
in particular vi ∈ D. Then vi r-dominates every clique C ⊆ Ni[vi] with r(C) > 0.
Let D′ = D \ {vi}. Assume that D′ is not a clique r-dominating set for Ci+1, i.e.,
some clique C ∈ Ci+1 is not dominated by D′. Evidently, C 6⊆ Ni[vi]. Then in both
graphs Gi and Gi+1 the clique C has the same values for r(C) and a(C). Since C
is r-dominated by D this is possible only if δ(u,C) + a(u) ≤ r(C) for some u of Gi

or δ(vi, C) ≤ r(C). Consider the second case. By Lemma 3.4 there exists a vertex
v∗ with d(vi, v

∗) = δ(vi, C)− 1 which dominates C. Let w be a neighbor of vi which
belongs to a shortest path between vi and v∗i . Since C 6⊆ Ni[vi] such a vertex w always
exists. Then in Gi+1 a(w) = 1 and δ(w,C) + a(w) ≤ r(C). This means that C is
r-dominated by D′. Next suppose that δ(u,C)+ a(u) ≤ r(C). Necessarily u ∈ Ni(vi)
or u = vi. In the first case we obtain a similar inequality δ(u,C) + a(u) ≤ r(C) in
Gi+1 too because a(u) does not increase in Gi+1. Otherwise, if δ(vi, C)+a(vi) ≤ r(C)
then for the vertex w ∈ Ni(vi) introduced above we have δ(w,C) = δ(vi, C) − 1 and
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a(w) ≤ a(vi) + 1. This means that δ(w,C) + a(w) ≤ r(C). Thus D′ is a clique
r-dominating set of Ci+1 in Gi+1. Conversely if δ(u,C) + a(u) ≤ r(C) for some clique
C ∈ Ci+1 and some vertex u ∈ Ni(vi) then δ(vi, C) ≤ r(C) and C is r-dominated in
Gi from vi. Therefore if D′ is a clique r-dominating set for Ci+1 then D′ ∪ {vi} is a
clique r-dominating set for Ci in Gi.

Lemma 5.4. Suppose that r(vi) ≥ 1 and that the conditions of lines (8) and (9)
are not fulfilled. A subset D ⊆ {vi+1, . . . , vn} is a clique r-dominating set of Ci in Gi

iff D is a clique r-dominating set of Ci+1 in Gi+1 with r(C) := r(C) for all C ∈ Ci+1,
and a(C) := min{a(C), a(vi) + 1} when C ⊆ Ni(vi) and a(C) := a(C) otherwise.

Proof. Since the values of a(·) do not increase from left to right along the ordering
(v1, . . . , vn) each clique r-dominating set D ⊆ {vi+1, . . . , vn} of Ci in Gi is clique r-
dominating in Gi+1 too.

Conversely, suppose that D is a clique r-dominating set of Ci+1 in Gi+1. Pick
an arbitrary clique C of Ci. By the conditions of the lemma every clique of C(vi)
is already r-dominated: let C ∈ C(vi). Recall that the conditions of (8) and (9)
are not fulfilled. Condition (8) is not fulfilled iff a({vi}) ≤ r({vi}) or there exists
v ∈ Ni(vi)(a({v}) + 1 ≤ r({vi}) or r({v}) = 0). Consequently {vi} is dominated by
D. Condition (9) is not fulfilled iff

∀C ′ ∈ C(vi)(a(C
′) ≤ r(C ′))

(i.e., D dominates C ′) or

∃v ∈ Ni(vi)(a({v}) + 1 ≤ r(C ′) and (a({v}) + 1 6= r(C ′) or C ′ ⊆ N [v]))

(if even a({v}) + 2 ≤ r(C ′) holds then D dominates C ′ via v; if a({v}) + 1 = r(C ′)
then C ′ ⊆ N [v] and thus also D dominates C ′ via v) or

r({v}) = 0 and (r 6= 0 or r(C ′) 6= 1 or C ′ ⊆ N [v])

(r({v}) = 0 means that v ∈ D, r(v) 6= 0 does not hold; thus r(C ′) > 1 since r(vi) ≤ 1
by the suppositions of the lemma and thus because of r({v}) = 0 also C ′ is dominated
or (r(C ′) = 1 and C ′ ⊆ N [v]) in which case C ′ is also dominated).

Thus it is enough to consider only the case when C ∈ Ci+1. If a(C) ≤ r(C) in
Gi+1 then the same inequality holds in Gi too, except the case when C ⊆ Ni(vi).
Then a(vi) + δ(vi, C) ≤ a(vi) + 1 ≤ a(C) ≤ r(C). If the clique C is r-dominated by
a vertex v ∈ D in Gi+1 then v dominates C in Gi too. This is so because Gi+1 is a
distance preserving subgraph of Gi. Therefore it is sufficient to consider only the case
when δ(u,C) + a(u) ≤ r(C) holds in Gi+1 for some vertex u ∈ Ni(vi) (i.e., for some
one-vertex clique {u} ⊆ Ni(vi)). If min{a(u), a(vi) + 1} = a(u) then we are done.
Otherwise, since δ(vi, C) ≤ δ(u,C) + 1 we obtain that

δ(vi, C) + a(vi) ≤ δ(u,C) + a(vi) + 1 ≤ r(C).

Hence, D is a clique r-dominating set of Ci in Gi.
Lemma 5.5. Assume that C+ is a clique of C(vi) obtained in lines (8), (9) of the

algorithm. A subset D ⊆ ({vi+1, . . . , vn} \ {v ∈ Ni(vi) : r(v) 6= 0}) ∪ {mn(vi)} is a
clique r-dominating set of Ci in Gi iff D is a clique r-dominating set of Ci+1 in Gi+1

with a(C) := min{a(C), a(vi) + 1} for C ⊆ Ni(vi) and a(C) := a(C) for all other
cliques of Ci+1, and r(C) := r(C) for all C ∈ Ci+1 \ {{mn(vi)}} and r(mn(vi)) :=
min{r(vi)− 1, r(mn(vi))}.
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Proof. 1. “=⇒”: From our conditions we immediately get that if D′ is a clique
r-dominating set of Gi+1 then replacing all vertices of D′ ∩ {v ∈ Ni(vi) : r(v) 6= 0}
by mn(vi) we obtain a clique r-dominating set D with |D| ≤ |D′|.

First we prove that if the clique C+ is different from {vi} then r(C+) = r(vi).
Assume the contrary. Then r(C+) > r(vi) because for every vertex vi and every clique
C ∈ C(vi) during the first i − 1 steps of the algorithm the inequality r(C) ≥ r(vi)
holds; see lines (4) and (12) of the algorithm. If a(vi) ≤ r(vi) then

a(vi) + δ(vi, C) = a(vi) + 1 ≤ r(C+).

Next suppose that there exists a vertex v ∈ N(vi) such that either a(v) + 1 ≤ r(vi)
or r(v) = 0. In the first case we immediately get

δ(v, C+) + a(v) ≤ 2 + a(v) ≤ r(C+).

Otherwise, if r(v) = 0 then by the choice of C+ we obtain that r(C+) = 1. But then
r(vi) = 0, which is impossible. In all cases we get a contradiction with the choice of
the clique C+. Thus r(C+) = r(vi).

Let D ⊆ ({vi+1, . . . , vn} \ {v ∈ Ni(vi) : r(v) 6= 0}) ∪ {mn(vi)} be a clique r-
dominating set of Ci in Gi and let C be an arbitrary clique of Ci+1. First suppose
that C 6= {mn(vi)}. Since C is r-dominated by D in Gi in order to establish the same
property in Gi+1 it is enough to assume that δ(vi, C) + a(vi) ≤ r(C) in Gi; otherwise
we immediately get this. If C 6⊆ Ni(vi) then as in Lemma 5.4 we choose a vertex
w ∈ Ni(vi) such that δ(w,C) = δ(vi, C)− 1. In this case we have

δ(w,C) + a(w) ≤ δ(vi, C) + a(vi) ≤ r(C).

If C ⊆ Ni(vi) then as a(C) ≤ a(vi) + 1 and δ(vi, C) = 1 in Gi+1 we obtain that
a(C) ≤ r(C).

Next consider the one-vertex clique {mn(vi)} of Gi+1. We can suppose that

r(mn(vi)) = r(vi)− 1 = r(C+)− 1;

otherwise, we can apply the preceding arguments. In Gi the clique C+ is r-dominated
by D. By the choice of C+ this means that in Gi either δ(u,C+) + a(u) ≤ r(C+) for
some vertex u /∈ Ni[vi] or δ(u,C+) ≤ r(C+) for some u ∈ D\Ni[vi]. In both cases
the vertex mn(vi) is one step closer to u than the vertices of C+. This allows us to
conclude that in Gi+1 either

d(mn(vi), u) + a(u) ≤ r(C+)− 1 = r(mn(vi))

or

d(mn(vi), u) ≤ r(C+)− 1 = r(mn(vi)).

Therefore D is a clique r-dominating set of Ci+1 in Gi+1.
2. “⇐=”: Conversely, let D ⊆ {vi+1, . . . , vn} be a clique r-dominating set of Ci+1

in Gi+1. The arguments for proving that D is a clique r-dominating set of Ci in Gi are
the same as in Lemma 5.4 except when C is a clique of C(vi). For all such cliques we
have r(C) ≥ r(vi). Then every such clique is r-dominated by the same vertex as the
clique {mn(vi)} is r-dominated in Gi+1, except the case when a(mn(vi)) ≤ r(mn(vi))
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in Gi+1. Then mn(vi) r-dominates all cliques of C(vi) because for all C ∈ C(vi) we
have

δ(mn(vi), C) + a(mn(vi)) = 1 + a(mn(vi)) ≤ 1 + r(mn(vi)) ≤ r(vi) ≤ r(C).

Thus, D is a clique r-dominating set of Ci in Gi.
Lemma 5.6. The set D ⊆ V obtained by the algorithm is a clique r-dominating

set of C in G.
Proof. The proof follows from the preceding three lemmas by induction on the

number of vertices and by the fact that the clique r-dominating set of a larger family
of cliques remains clique r-dominating for every subfamily too.

Lemma 5.7. |P | = |D|.
Proof. By the algorithm we know that |D| ≥ |P |. If |P | < |D| then there are two

vertices u, v ∈ D and a clique C ∈ P such that fn(u) = C = fn(v). Let w be the
vertex of C with the minimal index num(w). By the algorithm, fn(u) and fn(v) reach
vertices u and v along maximum neighbor paths connecting w, u and w, v, respectively.
Let w+ be the vertex belonging to both paths that is furthest from w. Denote by u′

and v′ the next neighbors of w+ in these paths. Necessarily u′ = v′ since both are
the maximum neighbors mn(w+). Thus the unique maximum neighbor path from
w+ reaches the unique vertex u = v, which is a contradiction to the assumption that
there are two vertices u, v ∈ D with the property fn(u) = C = fn(v).

Lemma 5.8. Let R = (u0, u1, . . . , uk) be a path between vertices u0 and uk such
that ui = mn(ui−1), i = 1, . . . , k. If u is a vertex with num(u) > num(uk−1) then
either the maximum neighbor path between u0 and u contains R or u is adjacent to
all vertices uj , . . . , uk for some j < k.

Proof. By the conditions of the lemma we get that the procedure sh–path will
include in the maximum neighbor path between u0 and u all vertices of R until a
neighbor uj of u is achieved. If j = k then the whole path R belongs to the constructed
path. Otherwise, if j < k then because num(uj) < · · · < num(uk) < num(u) and
ui+1 = mn(ui) for each i ≤ k − 1, we obtain that u must be adjacent to all vertices
uj , uj+1, . . . , uk.

Lemma 5.9. P is a clique r-packing set of C in G.
Proof. First of all, note that P is a subset of the initial family of cliques C; see

line (4) of the algorithm.
Assume that P is not a clique r-packing set; i.e., there are two cliques C′, C ′′ ∈

P which are r-dominated by a common vertex of G. In particular we obtain that
d(w′, w′′) ≤ r(C ′) + r(C ′′) for arbitrary vertices w′ ∈ C ′ and w′′ ∈ C ′′. According
to the algorithm there are vertices x, y ∈ D such that C ′ = fn(x) and C ′′ = fn(y).
Let u ∈ C ′ and v ∈ C ′′ be vertices with minimal indices num(u) and num(v) in the
cliques C ′ and C ′′, respectively. By the algorithm fn(u) = C ′ and fn(v) = C ′′. Let
R′ and R′′ be maximum neighbor paths between u, x and v, y. Both of these paths
are increasing. By the algorithm we obtain that R′ and R′′ are disjoint; otherwise
a common vertex of R′ and R′′ is a “bottleneck” for the transmission of cliques
C ′ = fn(x) and C ′′ = fn(y) (see also Lemma 5.7). Moreover, the lengths of these
paths are r(C ′) and r(C ′′), respectively.

Let R be the maximum neighbor path between vertices u and v. As we know
already R splits into two increasing maximum neighbor paths Ru = (u, . . . , u+) and
Rv = (v, . . . , v+) and an edge u+v+. Comparing the paths R′, Ru and R′′, Rv we
conclude that they must be comparable with respect to ⊆. Because of d(u, v) ≤
r(C ′) + r(C ′′) = r(u) + r(v) at least one of the inequalities |R′| > |Ru| or |R′′| > |Rv|
holds. In particular, at least one of the incidences u+ ∈ R′ or v+ ∈ R′′ is satisfied.
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Case 1. u+ ∈ R′ and v+ ∈ R′′.
Let R′

0 and R′′
0 be subpaths of R′ and R′′ which connect vertices u+, x and v+, y,

respectively. Since d(u, v) ≤ r(C ′) + r(C ′′) at least one of these paths has an edge,
i.e., u+ 6= x or v+ 6= y. Among adjacent vertices u′ ∈ R′

0 and v′ ∈ R′′
0 with u′ 6= x or

v′ 6= y, we choose adjacent vertices u∗ ∈ R′
0 and v∗ ∈ R′′

0 whose sum d(u∗, x)+d(v∗, y)
is minimal. Assume without loss of generality that num(u∗) < num(v∗).

We claim that u∗ 6= u or v∗ 6= v holds. Assume to the contrary that u∗ = u and
v∗ = v. Then necessarily r(C ′) + r(C ′′) > 0. If r(C ′) > 0 then the vertex mn(u∗) of
R′ must be adjacent to v∗. We get a contradiction with the choice of u∗ and v∗ except
when mn(u∗) = x and v∗ = y. Then r(C ′) = 1 while r(C ′′) = 0 and thus C ′′ = {v}.
If v is not adjacent to some vertex u′ ∈ C ′ then d(v, u′) = 2 > r(C ′) + r(C ′′) in
contradiction to the choice of the cliques C ′ and C ′′. Otherwise if v is adjacent to all
vertices of C ′ then C ′ ⊆ N [v] and according to the algorithm we cannot transmit the
clique C ′ = fn(u) to the vertex mn(u). Next assume that r(C ′) = 0, i.e., C ′ = {u}
and x = u∗ = u. Again, as in the preceding case, if r(C ′′) = 1 then u must be
adjacent to all vertices of C ′′. Hence in step num(v) we have r(C ′′) = a(C ′′) = 1,
which is a contradiction. So let r(C ′′) ≥ 2. But then in step num(v) we have
δ(v, C ′′) + a(v) = 1 + 1 ≤ r(C ′′) and according to lines (8) and (9) of the algorithm
we cannot insert the clique C ′′ in P . Thus u∗ 6= u or v∗ 6= v holds.

Since num(u∗) < num(v∗) we get that either u∗ coincides with u or x or v∗

is adjacent to the maximum neighbor mn(u∗) of u∗. In the last case we obtain a
contradiction with our choice of an edge u∗v∗ except the case when mn(u∗) = x and
v∗ = y. In this case we conclude that y is adjacent to x. If r(C ′′) = 0 and C ′′ = {y}
then in step num(u∗) we have r(y) = 0 for y ∈ N(u∗). By the algorithm we cannot
transmit C ′ = fn(u∗) to x. So r(C ′′) > 0. Let y+ be the neighbor of y in P ′′. If
num(y+) < num(u∗) then in step num(y+) we obtain r(y) = 0. Therefore in step
num(u∗) we already have a neighbor of u∗ which violates the condition in line (8) of
the algorithm. Hence num(y+) > num(u∗); i.e., the vertex x = mn(u∗) is adjacent
to y+. Then r(x) = 0 in step num(y+) and again we can apply the condition in line
(8) in order to obtain a contradiction with C ′′ = fn(v) = · · · = fn(y).

Therefore we obtain that if num(u∗) < num(v∗) then u∗ coincides with x or u.
Consider the first case, i.e., u∗ = x. Then v∗ 6= y. Before step num(x) we have
r(x) = 0; after this step we obtain a(v∗) = 1. Then in step num(v∗) the condition in
line (8) of the algorithm is violated except the case when v∗ = v and r(C ′′) ≤ 1. By
the choice of cliques C ′ and C ′′

d(u, v′) ≤ r(C ′) + r(C ′′) ≤ r(C ′) + 1

holds for every vertex v′ ∈ C ′′. Because of num(x) = num(u∗) < num(v∗) =
num(v) < num(v′) we can apply Lemma 5.8 to path R′ and every vertex v′ ∈ C ′′.
If r(C ′′) = 0 then necessarily C ′′ = {v} and by this lemma we get that v is adjacent
to some vertex z 6= x of R′. Then in step num(z) we have a neighbor v of z with
r(v) = 0 and we can apply the condition in line (8) in order to obtain a contradiction
with C ′ = fn(u) = · · · = fn(z) = · · · = fn(x). So suppose that r(C ′′) = 1. If x
is adjacent to all vertices of C ′′ then in step num(x) we obtain a(C ′′) = 1. Then in
step num(v) we have a(C ′′) = r(C ′′) and we cannot include C ′′ in P . So there is a
vertex v′ ∈ C ′′ nonadjacent with x. By Lemma 5.8 the whole path R′ belongs to the
maximum neighbor path between u and v′. Then d(u, v′) ≥ d(u, x)+2 > r(C ′)+r(C ′′)
in contradiction with the choice of the cliques C ′ and C ′′.

Finally consider the case when u∗ = u. Then v∗ 6= v and u∗ 6= x; otherwise, the
conditions of the preceding cases are fulfilled. In particular we obtain that r(C ′) > 0.
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Since num(u∗) < num(v∗) the vertex v∗ must be adjacent to the vertex mn(u∗). By
the choice of vertices u∗ and v∗ and our conditions we get v∗ = y and the vertices
u∗ = u and x are adjacent. Thus r(C ′) = 1. Let z be the neighbor of v∗ in the subpath
of R′′ connecting the vertices v and v∗. If num(u∗) < num(z), then from v∗ = mn(z)
it follows that v∗ = mn(u∗). Then we get a contradiction with the disjointness of the
paths R′ and R′′. So suppose that num(u∗) > num(z). If y is adjacent to all vertices
of the clique C ′ then in step num(u) we have r(y) = 0 and C ′ ⊆ N [y]. This leads to
a contradiction with the fact that C ′ = fn(x) is included in P . So suppose that y is
nonadjacent to some vertex u′ ∈ C ′. Because of

num(u′) > num(u) > num(z) > · · · > num(v)

we can apply Lemma 5.8 to the vertex u′ and the path R′′. Then we obtain that

d(v, u′) ≥ d(v, y) + d(y, u′) ≥ r(C ′′) + 2 > r(C ′′) + r(C ′)

in contradiction with the choice of the cliques C ′ and C ′′.
Case 2. u+ ∈ R′ and v+ /∈ R′′ (the case when u+ /∈ R′ and v+ ∈ R′′ is similar).
Since the paths R′′ and Rv are comparable, the inclusion R′′ ⊆ Rv holds; i.e.,

the vertex y belongs to the path Rv. Let z be the neighbor of v+ in Rv. Then
v+ = mn(z) and z belongs to the subpath of Rv between v+ and y. Let d(u+, x) = l′

and d(v+, y) = l′′. Since d(u, v) ≤ r(C ′)+r(C ′′) and d(u, v) = r(C ′)−l′+1+l′′+r(C ′′)
holds, the inequality l′′ < l′ necessarily is fulfilled. Moreover since v+ 6= y and
2 + r(C ′′) ≤ d(u, v) ≤ r(C ′) + r(C ′′) holds we have r(C ′) ≥ 2.

If num(u+) < num(z) then the vertex mn(u+) ∈ R′ must be adjacent to both v+

and z. Then since u+ and z are adjacent to both vertices mn(u+) and v+ = mn(z)
by the MNO algorithm we conclude that v+ = mn(u+). By the CRDP algorithm in
step num(v+) we have a(v+) = l′′ and r(v+) = l′ − 1. Since l′′ < l′ the inequality
a(v+) ≤ r(v+) holds. Comparing with the conditions in lines (8) and (9) we get that
x = v+. But then

d(u, v) ≥ r(C ′) + d(x, y) + r(C ′′) > r(C ′) + r(C ′′),

which leads to a contradiction.
Now assume that num(u+) > num(z). If num(u+) < num(v+) then in step

num(u+) for vertex v+ we have a(v+) = l′′ < l′ = r(u+). Therefore in step num(u+)
a(v+) + 1 ≤ r(u+) and if u 6= u+ we cannot transmit the value fn(u+) = C ′ to the
maximum neighbor of u+. Otherwise if num(u+) > num(v+) and u+ 6= u then before
step num(u+) we already have a(u+) ≤ l′′+1. Then a(u+) ≤ r(u+) in step num(u+)
and again we can apply the condition in line (8) in order to obtain a contradiction
with C ′ = fn(u) = · · · = fn(u+) = · · · = fn(x).

Finally suppose that u+ = u and num(u) = num(u+) > num(z). First assume
that l′′ + 1 = l′. We claim that C ′ ⊆ N [v+]. Assume the contrary and let u′ be a
vertex of C ′ nonadjacent with v+. Since

num(u′) > num(u) > num(z) > · · · > num(v),

by applying Lemma 5.8 to the path Rv and the vertex u′ we get

d(u′, v) = d(v, v+) + d(v+, u′) ≥ r(C ′′) + l′′ + 2 > r(C ′′) + r(C ′),

which is a contradiction. So C ′ ⊆ N [v+]. Then in step num(u) we have a(C ′) ≤
l′′ + 1 = l′ = r(C ′) if num(u) > num(v+) and a(v+) + 1 ≤ l′′ + 1 = l′ = r(C ′)
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and C ′ ⊆ N [v+] if num(u) < num(v+). In both cases we get a contradiction with
C ′ = fn(u) = · · · = fn(x). So let l′′+1 < l′. Then in step num(u) we have 1+a(u) ≤
l′′ + 2 ≤ l′ = r(C ′′) if num(u) > num(v+) and 1 + a(v+) = l′′ + 1 < l′ = r(C ′) if
num(u) < num(v+). We obtain the same contradiction as in the preceding case. This
concludes the proof of the lemma.

From Lemmas 5.3–5.9 and the duality between the clique r-domination and clique
r-packing problems we immediately obtain that the sets D ⊆ V and P ⊆ C computed
by the algorithm CRDP are minimum clique r-dominating and maximum clique r-
packing sets.

6. Time bounds for special cases. In this section we consider the time bounds
for some important special input cases of the CRDP algorithm. The obtained results
are collected in the following.

Theorem 6.1. Let C = {C1, . . . , Cp} be a family of cliques of a dually chordal
graph G = (V,E) and r : C → N ∪ {0} be the radius function on C. Then the clique
r-domination and clique r-packing problem for C can be solved in time

(1) O(|E|+ |V |∑p
i=1 |Ci|) if C is an arbitrary family of cliques,

(2) O(|E|+∑p
i=1 |Ci|) if C is a family of maximal cliques,

(3) O(|E|) if C is a family of one-vertex cliques,
(4) O(|V ||E|) if C is a family of edges,
(5) O(|E|) if G is doubly chordal and C is a family of maximal cliques,
(6) O(|E|) if G is doubly chordal without induced sun S3 and C = E and r(e) ≡ k

for all e ∈ E.
The running time of the algorithm for an arbitrary family C = {C1, . . . , Cp} of

cliques of a dually chordal graph G = (V,E) can be estimated as follows. For a vertex
vi ∈ V let si be the degree of vi and ki be the number of cliques containing vi (i.e.,
ki = |C(vi)|) and li be the number of cliques of C which are dominated by vi, i.e.,

li = |{C ∈ C : C ⊆ N [vi]}|.

Evidently lines (2) and (3) of the algorithm use O(|C| + |V |) operations, while line
(4) takes O(|V |+∑p

i=1 |Ci|) time. The overall time bound of lines (5)–(8), (10)–(13),
and (15) is O(|E|). In order to implement lines (9) and (14) we compute in advance

in O(
∑|V |

i=1 kisi +
∑|V |

i=1 li) time the 0-1-matrix M = (mij)
i=1,...,|V |
j=1,...,|C| , where mij = 1 if

and only if Cj ⊆ N [vi]. Using this matrix, lines (9) and (14) can be executed in time

O(
∑|V |

i=1 kisi) and O(
∑|V |

i=1 li), respectively. So the total time of the algorithm is

O

|E|+ |V |∑
i=1

kisi +

|V |∑
i=1

li

 ,

which in the worst case can be estimated as O(|E|+ |V |∑|C|
i=1 |Ci|) because

∑|V |
i=1 ki =∑|C|

i=1 |Ci| and
∑|V |

i=1 li ≤ |V ||C|.
Now we consider the complexity of the algorithm CRDP in some important par-

ticular cases. First suppose that C consists only of all one-vertex cliques. Then we
obtain the r-domination and r-packing problems. Since

|C|∑
i=1

|Ci| = |C| ≤ |V |,
|V |∑
i=1

li =

|V |∑
i=1

si = 2|E|
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and line (9) is omitted the total time complexity for these problems is O(|E|).
Next let C be a family of maximal cliques of G. Then the time complexity of

all lines is the same as in the general case except lines (9) and (14). Line (14)
takes only O(|E|) time because the condition C ⊆ Ni(vi) is fulfilled only for the
additional one-vertex cliques and not for any maximal clique of G. Line (9) can
be implemented directly without computing the matrix M . For this purpose recall
that it is enough to verify the condition in this line only for cliques C ⊆ Ni[vi]
such that vi has minimal index in C and r(C) = r(vi); see the proof of Lemma
5.5. Using this fact first we can select all vertices v ∈ Ni[vi] such that either a(v) +
1 = r(vi) or r(v) = 0. This can be done in time O(si). After that for each clique
C ∈ C(vi) such that r(C) = r(vi) and vi has minimal index in C we decide whether
C 6⊆ N [v] for some selected vertex v. This operation can be implemented in time
O(ki +

∑
Ci∈C(vi)

|Ci|). So for each i, i ∈ {1, . . . , |V |} the time complexity of line

(9) is O(ki + li +
∑

Ci∈C(vi)
|Ci|). Since each clique is considered only once in step

min{num(v) : v ∈ C} we conclude that the overall time amount of line (9) and

of the whole algorithm is O(|E| +∑|C|
i=1 |Ci|). Assume that a dually chordal graph

G = (V,E) is also chordal; i.e., G is a doubly chordal graph. It is known that for

chordal graphs
∑|C|

i=1 |Ci| does not exceed O(|E|). So for doubly chordal graphs the
algorithm requires only O(|E|) time. Since strongly chordal graphs are doubly chordal
[5] this result improves and generalizes the algorithm for the clique transversal and
clique independence problem presented in [8].

Finally consider the case when C is a subset of edges of a dually chordal graph

G = (V,E). Since
∑|C|

i=1 |Ci| ≤ 2|E| the time complexity of the algorithm is O(|V ||E|).
Next assume that C = E and r(e) ≡ k for every edge e ∈ E, where k is a positive

integer. As we already mentioned these problems are known as the k-neighborhood
covering and k-neighborhood independence problems [17]. In [17] a linear time al-
gorithm for solving these problems in strongly chordal graphs is presented under
the assumption that a strong elimination ordering of such graphs is given. Unfortu-
nately the fastest known algorithms for deriving such orderings have time complexity
O(|V |2) [23] or O(|E| log |V |) [21]. Our algorithm can be modified in order to solve
the k-neighborhood covering and k-neighborhood independence problems on strongly
chordal graphs. In fact the approach presented below solves these problems on a more
general subclass of dually chordal graphs, namely on doubly chordal graphs containing
no induced sun S3 (see Figure 1). This is mainly due to the next result.

Denote by γE,k and πE,k the k-neighborhood covering and the k-neighborhood
independence numbers of G.

Lemma 6.2. Let G = (V,E) be a doubly chordal graph containing no induced sun
S3. Then

γE,k(G) = πE,k(G) = πC,k(G) = γC,k(G),

where C is the family of all maximal cliques of G and r(C) ≡ k for all C ∈ C.
Proof. By Lemma 4.2 we have

γE,k(G) = πE,k(G), πC,k(G) = γC,k(G).

Moreover for arbitrary graphs πE,k(G) ≤ πC,k(G) holds. In order to show this we
extend each edge of the k-neighborhood independent set to a maximal clique of G.
The obtained family of cliques represents a clique k-packing set of C. So it is enough
to show the converse inequality. Let P be a maximal clique k-packing set of G. By



124 ANDREAS BRANDSTÄDT, VICTOR D. CHEPOI, AND FEODOR F. DRAGAN

[18, Proposition 3] every maximal clique of a chordal graph G without induced sun
S3 has an edge which is not contained in any other maximal clique of G. Include
in the set I all such representative edges of cliques from P . We claim that I is
a k-neighborhood independent set of G. Let e′ = u′v′ and e′′ = u′′v′′ be edges
which represent cliques C ′, C ′′ ∈ P . Assume that there exists a vertex w such that
δ(w, e′) ≤ k and δ(w, e′′) ≤ k. We will show that δ(w,C ′) ≤ k and δ(w,C ′′) ≤ k.
Assume the contrary and let δ(w,C ′) > k. This means that d(w, v) > k for some
vertex v ∈ C ′. Then necessarily d(w, v′) = d(w, u′) = k. By Lemma 3.4 there is a
common neighbor w∗ of vertices v′ and u′ which is at distance k − 1 from w. Since
the edge e′ is contained in the unique clique C ′ we have w∗ ∈ C ′ and thus the vertices
w∗ and v must be adjacent. This contradicts the assumption that d(w, v) > k.

Thus in order to solve the k-neighborhood covering and k-neighborhood indepen-
dence problems on a doubly chordal graph G without induced sun S3 we can apply
the algorithm CRDP for the family of all maximal cliques C of G when r(C) ≡ k for
all C ∈ C. As we already mentioned for doubly chordal graphs this problem can be
solved in time O(|E|). Let D and P be the output of the algorithm. Evidently D is
a minimum k-neighborhood covering set too while the set I defined in the proof of
Lemma 6.2 is a maximum k-neighborhood independent set. Hence it remains only to
efficiently compute such a set I in O(|E|) time under the assumption that the set P
is given.

In order to do this we use the perfect elimination ordering of a chordal graph G
and obtain in O(|E|) time all representative edges for the family of maximal cliques;
see the procedure presented below. In each clique of the set P we select such an edge
and obtain the required set I.

Let G = (V,E) be a chordal graph and v1, . . . , vn be a perfect elimination ordering
of G. As before num(v) is the index of a vertex v in this ordering.

Procedure 6.3 (representative edges).

E∗ := ∅;
for all i ∈ {1, . . . , n} do Ai := Ni(vi);
for i := 1 to n− 1 do

if Ai is not empty then
begin
v := arbitrary vertex from Ai;
E∗ := E∗ ∪ viv;
for all vj ∈ Ni(vi) do Aj := Aj \Ni(vi);

end

Lemma 6.4. Let G = (V,E) be a chordal graph without induced sun S3. Then the
presented procedure correctly finds within O(|E|) steps a set of representative edges
for the family of all maximal cliques of G.

Proof. The correctness proof is based on two claims.

(a) Each maximal clique of G contains an edge selected by the procedure.

(b) The family of selected edges E∗ consists only of representative edges.

In order to prove (a) let C be an arbitrary maximal clique. By [18, Proposition 3],
C has a representative edge vivj , i < j. If this or any other edge of C is not selected
by the procedure then in step i we must have Ai = ∅. This means in particular that
in some step t < i the vertex vj must be deleted from Ai. By the procedure in this
step some edge vtvl must be included into E∗ where vl ∈ Nt(vt). Since the edge vivj
is representative for the clique C and vt is adjacent to both vi and vj , certainly vt is
a vertex of C. Moreover, since vt is simplicial in G({vt, vt+1, . . . , vn}) the vertex vl is
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adjacent to vi and vj . Using the same argument for the edge vivj , we conclude that
vl ∈ C and thus the edge vtvl ∈ E∗ is contained in C.

Next suppose that in E∗ there is an edge vivj , i < j which belongs to two
maximal cliques C ′ and C ′′. Let vt be the vertex with minimal index in C ′ ∪ C ′′.
Let, for example, vt ∈ C ′. Since both cliques C ′ and C ′′ are completely contained in
G({vt, . . . , vn}) and vt is a simplicial vertex of this graph, we obtain that vt /∈ C ′′.
Then vt is not adjacent to some vertex vl ∈ C ′′. By the procedure the edge vivj is
included in E∗ in step i. Therefore, before this step we have vj ∈ Ai. In particular,
vj remains in Ai after step t < i. This is possible only if At = ∅. Since initially both
vertices vi and vj belong to At they must be deleted from this set in some steps k′

and k′′. Necessarily k′ 6= k′′; otherwise we must delete the vertex vj from Ai in step
k′, which is impossible. But in this case the vertices v′k, vt, vi, vj , v

′′
k , vl induce a sun

S3. This is the case because G is chordal and there are no edges between the vertex
pairs (vl, vt), (v′k, vj) and (v′′k , vi).

Time bound. Let σ = (v1, . . . , vn) again be the perfect elimination ordering of G.
For every i ∈ {1, . . . , n} determine the position c(vi) of the leftmost neighbor of vi in
σ. Obviously this can be done in 2|E| steps.

Rearrange the vertices of V in increasing order with respect to the parameter
c(vi), i ∈ {1, . . . , n}. This can be done using bucket sort in O(|E|) time, obtaining
the ordering τ = (vj1 , . . . , vjn). Note that the nonempty elements of the family
Lk = {vi : c(vi) = k}, k ∈ {1, . . . , n}, represent a clique partition of the chordal graph
G along σ.

Using the ordering τ and the standard technique of how to get an ordered ad-
jacency list from a nonordered adjacency list of G (see, e.g., [16]) we get an ordered
representation of Ai as linearly linked list Li

j1
, . . . , Li

ji
, ordered with respect to τ , of

linearly linked lists Li
jk
⊆ Ljk , k ∈ {1, . . . , i}, called segments subsequently.

Then, having this structure for every Ai, the operation Aj := Aj \Ni(vi) can be
performed in the following way: due to claim (a) each maximal clique contains a repre-
sentative edge, and hence we have to delete only the leftmost segment (corresponding
to c(vi)) from the current list Aj .

Since for fixed j this can be done in constant time the whole procedure takes
linear time.

Unfortunately the equality in Lemma 6.2 does not hold for all dually chordal
graphs. Figure 2 provides an example of a doubly chordal graph G with γC,1(G) = 4
and γE,1(G) = 3.
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7. Conclusions. In this paper we presented a unified approach to solve differ-
ent types of clique r-domination and clique r-packing problems on dually chordal
graphs. For three particular cases of these problems, namely for r-domination and r-
packing, clique transversal and clique independence, and k-neighborhood covering and
k-neighborhood independence we obtain linear time algorithms. The corresponding
results generalize and improve results of [7, 8, 17] for the same problems on strongly
chordal graphs.

Concerning the clique transversal and clique independence problems, the com-
plexity of our algorithm is proportional to the sum of the sizes of all maximal cliques
of a dually chordal graph. Unlike chordal graphs where the number of maximal cliques
does not exceed the number of vertices, dually chordal graphs may have an exponen-
tial number of maximal cliques. The reason for this is that an arbitrary graph G can
be transformed into a dually chordal graph by adding a new vertex adjacent to all
vertices of G. Moreover, it is not known whether the clique transversal problem is in
NP .
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[5] A. Brandstädt, F. F. Dragan, V. D. Chepoi, and V. I. Voloshin, Dually Chordal Graphs,
Technical Report SM-DU-225, University of Duisburg 1993; Graph-Theoretic Concepts in
Computer Science, Lecture Notes in Computer Science 790, J. van Leeuwen, ed., Springer-
Verlag, Berlin, New York, 1994, pp. 237–251.

[6] P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
[7] G. J. Chang, Labeling algorithms for domination problems in sun–free chordal graphs, Discrete

Appl. Math., 22 (1988/89), pp. 21–34.
[8] G. J. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighbourhood numbers, SIAM

J. Discrete Math., 6 (1993), pp. 24–29.
[9] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability problems on sun-free

chordal graphs, SIAM J. Alg. Disc. Meth., 5 (1984), pp. 332–345.
[10] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[11] F. F. Dragan, Domination and packings in triangulated graphs, Metody Diskret. Analiz., 51

(1991), pp. 17–36. (In Russian.)
[12] F. F. Dragan, C. F. Prisacaru, and V. D. Chepoi, The location problem on graphs and the

Helly problem, Disk. Math., 4 (1992), pp. 67–73. (In Russian.) (The full version appeared
as preprint: F.F. Dragan, C.F. Prisacaru, and V.D. Chepoi, r-Domination and p-Center
Problems on Graphs: Special Solution Methods and Graphs for Which This Method is
Usable, Kishinev State University, preprint MoldNIINTI, N. 948–M88, 1987 (in Russian).)

[13] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–
189.

[14] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Dis-
crete Appl. Math., 7 (1984), pp. 115–130.

[15] D. R. Fulkerson and O. R. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965), pp. 835–855.

[16] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[17] S. H. Hwang and G. J. Chang, k-Neighbourhood Covering and Independence Problems, DI-
MACS Report 93-03, DIMACS Center, Rutgers University, New Brunswick, NJ, 1993.



CLIQUE DOMINATION ON DUALLY CHORDAL GRAPHS 127

[18] J. Lehel and Z. Tuza, Neighbourhood perfect graphs, Discrete Math., 61 (1986), pp. 93–101.
[19] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput., 16 (1987), pp. 854–879.
[20] M. Moscarini, Doubly chordal graphs, Steiner trees and connected domination, Networks, 23

(1993), pp. 59–69.
[21] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16

(1987), pp. 973–989.
[22] P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach., 23 (1976), pp. 446–450.
[23] J. P. Spinrad, Doubly lexical ordering of dense 0–1–matrices, Inform. Process. Lett., 45 (1993),

pp. 229–235.
[24] J. L. Szwarcfiter and C. F. Bornstein, Clique graphs of chordal and path graphs, SIAM J.

Discrete Math., 7 (1994), pp. 331–336.
[25] R. E. Tarjan and M. Yannakakis, Simple linear time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.



ON COSET WEIGHT DISTRIBUTIONS OF THE
3-ERROR-CORRECTING BCH-CODES∗

PASCALE CHARPIN† AND VICTOR ZINOVIEV‡

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 1, pp. 128–145, February 1997 010

Abstract. We study the coset weight distributions of the 3-error-correcting binary narrow-
sense BCH-codes and of their extensions, whose lengths are, respectively, 2m − 1 and 2m, m odd.
We prove that all weight distributions are known as soon as those of the cosets of minimum weight 4
of the extended code are known. We point out that properties of the cosets which are orphans yield
interesting properties on the other cosets. We describe the classes of cosets which are equivalent
under the affine permutations. At the end we produce significant numerical results, proving that the
number of distinct weight distributions of cosets increases with the length of the codes.
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1. Introduction. This paper was initiated by the papers of Camion, Courteau,
Fournier, and Kanetkar [6]; Camion, Courteau, and Montpetit [7]; and Charpin [9],
[10]. Charpin showed in [10] that there are eight distinct weight distributions of cosets
of 2-error-correcting binary primitive BCH-codes of length 2m − 1, m even, and of
length 2m for the extended such codes. For the length 2m−1, m odd, it is well known
[3], [20] that there are four such distinct weight distributions. We examine here the
coset weight distributions of the 3-error-correcting binary narrow-sense BCH-codes
of length 2m − 1 with m odd, also extended or not. The results of this paper were
announced in [11].

We denote by B the 3-error-correcting BCH-code and by B̂ its extension. For
length 32 the coset weight distribution of B̂ was given by Camion, Courteau, and
Montpetit [7]; this code is in fact the self-dual Reed–Muller code [32, 16, 8] and there
are eight distinct weight distributions for its cosets. Our main result is that the number
of weight distributions of cosets of B̂ (respectively, of B) increases with the value of
m. Of course, we suppose that this property holds also when m is even, although
we do not study this case here. At any rate, we prove that the code B̂ gives us an
example of an infinite class of codes whose dual distance is constant while the number
of distinct lines in the distance matrix increases with the length.

In section 2, we present the fundamental equations which give as solutions the
coefficients of the distance matrices of B and B̂. Throughout the equations (A.i) and
(E.i), what is easy and what is hard appear clearly, and the next sections are in fact
a precise explanation of both aspects.

We begin in section 3 with the easy cases. They are globally the cosets of weight
1, 2, 3, and 5. We don’t know all about the cosets of B of weight 3 and 5, but we
prove that any unsolved problem about these cosets is an unsolved problem about
the cosets of B̂ of weight 4 and 6. We consider these last cases as the hard cases. In
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section 4 we study the action of affine permutations on cosets of B̂. It is natural to do
that because it is well known that the code B̂ is invariant under these permutations.
We characterize the classes of equivalent cosets by their syndromes, and we give some
properties about the cosets of weight 4. The cosets of weight 4 and 6 are studied
in section 5. We point out the significant role of the cosets of B̂ which are orphans,
taking here the terminology of [5]. In section 6 we summarize our results, showing
clearly that our problem is reduced to the study of the weight distributions of cosets
of B̂ of weight 4. By using the classification of section 4, we were able to compute
the full weight distribution for length 128. That is given by Table 5 in section 7.
We found 12 distinct weight distributions for the cosets of B̂. Moreover, we found at
least 18 distinct weight distributions for the length 512. At the end we give several
conjectures.

The distance and the weight are the Hamming distance and the Hamming weight.
The weight of any code word x is denoted by wt(x), and the distance between any
two code words x and y is denoted by d(x, y). Denote by K the Galois field of order 2.
Let C be any binary code of length n. Recall that the covering radius of C, generally
denoted by ρ, is the following distance:

ρ = max
x∈Kn

min
c∈C

{ d(x, c) }.

Let D = x+C be a coset of C. The weight of the coset D is the minimum weight
of the code words of D. A leader of D is a code word of D of minimum weight.

2. The fundamental equations. Let C be any code of length n over K and
let ρ be its covering radius. We will say that such a code is uniformly packed, in the
sense of [3], if there exist rational numbers α0, . . . , αρ such that for any v ∈ Kn

ρ∑
k=0

αk fk(v) = 1,(1)

where fk(v) is the number of code words at distance k from v. Let B denote here
the 3-error-correcting primitive binary BCH-code of length n = 2m − 1, where m is
odd, and let B⊥ denote as usual the dual code of B. The minimal distance of B is
d = 7. It was shown by Kasami [17] that the external distance of B, i.e., the number
of nonzero weights in B⊥, is s = 5 (see also [19], p. 669). According to the well-known
result due to Delsarte [12], we have the following inequality for the covering radius of
B:ρ ≤ 5. But on the other hand, we know from the result of Gorenstein, Peterson,
and Zierler [14] that for these codes ρ ≥ 5. Hence we have ρ = 5 for the code B.
Note that this result was obtained by Helleseth [15], who proved even more: all binary
3-error-correcting BCH-codes have covering radius 5 (essential steps in this result also
belong to Assmus and Mattson [1] and van der Horst and Berger [16]). Now we use
the following result from the paper of Bassalygo and Zinoviev [4, Theorem 1]: the code
C is a uniformly packed code (in the sense of [3]) if and only if the covering radius ρ
of C is equal to the external distance s: ρ = s. Therefore B is a uniformly packed
code in the sense of [3]. Note that Goethals and Van Tilborg [13] have previously
showed that the code B is a uniformly packed code of order j = 2 (see [13, 21]). From
this last paper we have the following parameters αi for the code B:

α0 = α1 = 1,
α2 = α3 = −120/(n− 1)(n− 7),
α4 = α5 = 120/(n− 1)(n− 7).

(2)
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Now let B̂ be the 3-error-correcting primitive binary extended BCH-code of length
N = 2m, where m is odd; B̂ is obtained from B by overall parity check. Assume
that the position we add to the code words of B is always the first position of B̂.
The minimal distance of B̂ is d = 8, of course. Now we can use the following result
[4, Theorem 2]: an extension of a binary uniformly packed code with parameters αi,
i ∈ [0, ρ], is a uniformly packed code if and only if the parameters αi satisfy

αρ−2i = αρ−2i−1, i = 0, 1, . . . , [(ρ− 1)/2],

where [a] denotes the integer part of a. Applying this to the code B, the condition
above becomes α5 = α4, α3 = α2, and α1 = α0. So we deduce from (2) that the

code B̂ is uniformly packed with covering radius 6. Note that the external distance
of the code B̂ (respectively, of B) is equal to its covering radius. Then, by applying
the general result of Assmus and Pless, the weight distribution of cosets of weight 5
in B is uniquely determined, as are the weight distributions of cosets of weight 5 and
6 in B̂ [2, Corollary 1–2].

From now on, the notation for the parameters of codes B and B̂ will be as follows:
we will use the same symbols for both codes, but for B̂ all the corresponding symbols
will have a hat. The parameters α̂i of the code B̂ are connected with the parameters
αi. This connection is given by [4, Theorem 2]. That is,

α̂ρ−2i = αρ−2i, i = 0, 1, . . . , [ρ/2]

and for i = 0, 1, . . . , [(ρ+ 1)/2],

α̂ρ−2i+1 = ((ρ+ 1− 2i)αρ−2i + (n− ρ+ 2i)αρ−2i+2 )/(n+ 1),

where by convention α−1 = αρ+1 = αρ+2 = 0. We have

α̂0 = α̂1 = 1, α̂2 = 2(N − 68)/N(N − 8),
α̂3 = −120/(N − 2)(N − 8), α̂4 = 120/N(N − 2),
α̂5 = −α̂3, α̂6 = 720/N(N − 2)(N − 8).

(3)

Recall that N = 2m denotes here the length of the code B̂.
Let D be any coset of B. Recall that the weight of D is the minimum weight of

the code words of D. Since the covering radius of B is 5, the weight i of B is in the
range [0, 5]. We will denote by µi,j the number of code words of weight j in such a
coset of weight i:

µi,j = card { x ∈ D | wt(x) = j }.

Similarly, we will denote by µ̂i,j the number of code words of weight j in a coset of

B̂ of weight i, i ∈ [0, 6].
For a coset D with weight distribution

µi,i, µi,i+1, . . . , µi,n

we denote by Ai(x) the weight polynomial of D:

Ai(x) =

n∑
k=i

µi,k x
k.(4)
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To write out a general expression for the polynomial Ai(x) we need some results from
[3], which we give, for simplicity, only for the binary case. First denote by Pu(n, ξ)
the Krawtchouk polynomial of degree u:

Pu(n, ξ) =
u∑

j=0

(−1)u−j
(
n− ξ

j

)(
ξ

u− j

)
,

where (
a

b

)
=

a(a− 1) . . . (a− b+ 1)

b!

for any real a. Lloyd’s type theorem for the uniformly packed codes asserts (Theorem 1
in [3]) that the existence of a uniformly packed code C of length n with the parameters
αi, i = 0, 1, . . . , ρ, implies that the Lloyd polynomial Lρ(n, ξ),

Lρ(n, ξ) =

ρ∑
i=0

αi Pi(n, ξ),

has ρ distinct integer roots between 0 and n. Denote by ξi the ith root of Lρ(n, ξ),
where i = 0, 1, . . . , ρ. Now suppose that D is an arbitrary coset of C of weight i with
the weight polynomial A(x) of type (4). We want to know the weight distribution of
D (or, in other words, to know the coefficients of Ai(x)).

Theorem 2 in [3] gives us the following result: the weight polynomial Ai(x) of
a coset (of weight i) of a uniformly packed code C, with the roots ξj of the Lloyd
polynomial Lρ(n, ξ), might be written in the following general form:

Ai(x) =
|C|(1 + x)n

2n

+

ρ∑
j=1

ci,j(1 + x)n−ξj (1− x)ξj ,

where |C| is the cardinality of the code C and ci,j are constants depending on the initial
known coefficients of Ai(x) and therefore determined by solving the corresponding
system of linear equations. So to know the weight polynomial Ai(x) of C we must
know any ρ numbers µi,j for j ∈ [0, n] enough to find the unknown values ci,j from
the corresponding equations.

Now we return to our BCH-codes B and B̂. The determination of the coset weight
distribution of B is reduced to the resolution of the following equations, considered
separately. In other words, if we consider the weight distribution of the coset of weight
i, then we use the equation (A.i):

(A.1) α1 µ1,1 = 1,
(A.2) α2 µ2,2 + α5 µ2,5 = 1,
(A.3) α3 µ3,3 + α4 µ3,4 + α5 µ3,5 = 1,
(A.4) α4 µ4,4 + α5 µ4,5 = 1,
(A.5) α5 µ5,5 = 1,

where the numbers αi are given above by (2). These equations are obtained from (1)
for each weight i ∈ [1, 5] for the case when the vector v is a zero vector. Each equation
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(A.i) corresponds to the weight distributions of cosets of minimum weight i, implying
µi,j = 0 for j < i. Moreover, since the minimum weight of B is 7, the sum of two
weights in a given coset cannot be less than 7.

Now consider the corresponding equations for the code B̂. By the definition of the
extension, a coset of B̂ has either only even weights or only odd weights. Therefore, in
the same manner as we obtained the equations (A.i), we obtain from (1) the equations

(E.i) corresponding to the weights i ∈ [1, 6] of the cosets of B̂:

(E.1) α̂1 µ̂1,1 = 1,
(E.2) α̂2 µ̂2,2 + α̂6 µ̂2,6 = 1,
(E.3) α̂3 µ̂3,3 + α̂5 µ̂3,5 = 1,
(E.4) α̂4 µ̂4,4 + α̂6 µ̂4,6 = 1,
(E.5) α̂5 µ̂5,5 = 1,
(E.6) α̂6 µ̂6,6 = 1.

From the results of Kasami [17] and Bassalygo and Zinoviev [4] we have all the roots

ξ̂i of the Lloyd polynomial L̂6(N, ξ) for the code B̂ (these roots are exactly the values

of nonzero weights in the dual code B̂⊥):

ξ̂1 = N/2 − √
2N, ξ̂2 = N/2 − √N/2,

ξ̂3 = N/2, ξ̂4 = N/2 +
√
N/2,

ξ̂5 = N/2 +
√

2N, ξ̂6 = N.

Note that the five roots of the Lloyd polynomial L5(n, ξ) for the code B are the

first five roots ξ̂i, i ∈ [1, 5], of L̂6(N, ξ). This is so because the all-one vector, which

corresponds to the root ξ̂6, cannot belong to the code B⊥.
Now we give some definitions and notation which we will use in the next sections.
Let v ∈ Kn, v = (v1, . . . , vn). The support of v is

supp(v) = { ` | v` 6= 0 }.

Note that the Hamming weight wt(v) of v is equal to the cardinality of the support
of v.

We will use here the terminology of [5], where special cosets, so-called orphans,
are introduced.

Definition 2.1. Let C be an arbitrary linear code C of length n and let D be a
coset of C of weight i. Let D′ be the coset

D′ = D + v(j),

where v(j) denotes a binary vector with exactly one nonzero position at the jth coor-
dinate.

If the weight of D′ is i− 1, then D′ is said to be a child of D.
If the weight of D′ is i+ 1, then D′ is said to be a parent of D.
The coset D is said to be an orphan if and only if it has no parent. In other

words, an orphan of C is a coset D with the following property:⋃
v is a leader of D

supp(v) = { 1, . . . , n }.
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Notation. From now on let us denote by D (respectively, by D̂) the full set of the

cosets of B (respectively, of B̂). We will denote by Di (respectively, by D̂i) the subset

of D (respectively, of D̂) which consists of all the cosets of weight i.
The number of cosets of B will be denoted by Γ and the number of such cosets

of minimum weight i will be denoted by Γ(i). Similarly, for the extended code B̂, a
notation is as follows:

Γ̂ = |D̂| and Γ̂(i) = |D̂i|.
3. Cosets weight distribution: The easy cases. Since the dimension of both

codes B and B̂ is 2m − 3m− 1, m ≥ 5, we obviously obtain

Γ = 23m and Γ̂ = 23m+1.

The weight distribution of B is known, due to Kasami, who in [17] gave the weight
distribution of the dual of B. In fact, we use here the table given in [19, p. 669]; it

is the weight distribution of B⊥. Since we also need the weight distribution of B̂, we
give the weight distribution of the dual code in Table 1.

Table 1

The weight distribution of the dual of the binary 3-error-correcting extended BCH-code of
length 2m, m odd.

Weights Number of code words
0 1

2m−1 ± 2(m+1)/2 2m−3(2m − 1)(2m−1 − 1)/3

2m−1 ± 2(m−1)/2 2m−1(2m − 1)(5.2m−1 + 4)/3
2m−1 (2m − 1)(5.22m−1 + 7.2m−2(2m−1 − 1) + 2m+2 + 6)/3
2m 1

Remark. Recall that a tactical configuration T (n,w, `, β) is a set of binary vectors
of length n and weight w such that any `, 1 ≤ ` ≤ w, positions are simultaneously
occupied by ones in precisely β vectors of T (n,w, `, β). If β = 1, a configuration
T (n,w, `, 1) is called a Steiner system and is denoted by S(n,w, `).

Let B7 be the set of code words of weight 7 in B and B̂8 be the set of code words
of weight 8 in B̂. Using equation (1) for arbitrary vectors v of weights 2 and 3 we have

immediately the following: the set B̂8 is a tactical configuration T (N, 8, 3, β) and the
set B7 is a tactical configuration T (n, 7, 2, β), where

β =
1− α̂3

α̂5
=

(N − 2)(N − 8)

120
+ 1.(5)

This result can be also deduced from Theorem 3 in [4].

3.1. Cosets of minimum weights 1, 2, and 3. Since the minimum distance
of codes B and B̂ are, respectively, 7 and 8, any coset of weight i, 1 ≤ i ≤ 3, has only
one code word of weight i. So the number of such cosets of weight i is exactly the
number of code words of weight i in the ambient space. That is, for cosets of B and
B̂

Γ(1) = n, Γ(2) = n(n− 1)/2, and Γ(3) = n(n− 1)(n− 2)/6,(6)

Γ̂(1) = N, Γ̂(2) = N(N − 1)/2, and Γ̂(3) = N(N − 1)(N − 2)/6.(7)
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The condition µ̂i,i = 1 for i ∈ [1, 3] immediately gives us the solution of the corre-
sponding equations (E.i). We then obtain the values of µ̂2,6 and µ̂3,5. Similarly, the
condition µi,i = 1 for i ∈ [1, 2] immediately gives us the solution of the corresponding
equations (A.i). We can then obtain the value of µ2,5. Note that µ2,5 and µ̂3,5 are
also given by the remark above. These results can be summarized as follows.

Proposition 3.1. There is only one coset weight distribution for the cosets of
B of weight 1 and 2. The number of code words of weight 5 in the coset of weight 2
is µ2,5 = β (see (5)).

There is only one coset weight distribution for the cosets of B̂ of weight 1, 2, and
3. The number of code words of weight 6 in the coset of weight 2 is

µ̂2,6 =
1− α̂2

α̂6
=

(N − 2)(N2 − 10N + 136)

720
.

The number of code words of weight 5 in the coset of weight 3 is µ̂3,5 = β (see (5)).
Finally, we cannot describe the set D3 of cosets of B of weight 3; we only know

its cardinality. Moreover, according to (2), by using (A.2) and (A.3) we can state the
following relation:

µ3,4 + µ3,5 = µ2,5,(8)

where µ2,5 is known to be equal to β. Note also that µ2,5 = µ̂3,5. Hence we can

conclude that to describe D3 is equivalent to describing D̂4. Indeed, a coset of D3 can
be seen as a shortened coset of D̂4, with

µ3,4 = µ̂4,4 − 1.

Such a coset of D̂4 must have a leader which has zero in its first position (this position

is the parity check position of B̂). We will explain in section 4 that any coset of D̂4

is equivalent to such a coset.

3.2. Cosets of minimum weight 5. All cosets of D5 have the same weight
distribution—it is immediate from (A.5)(see also [1]). However, we are not able to

give the cardinality of D5; we only can say that it is equal to the cardinality of D̂6.
Proposition 3.2. There is only one weight distribution for the cosets of D5.

Any coset of D5 is an orphan, and it contains

µ5,5 =
1

α5
=

(n− 1)(n− 7)

120

code words of weight 5. Moreover, the cardinality of D5 is equal to the number of
cosets of B̂ of weight 6:

Γ(5) = Γ̂(6).

Proof. The value µ5,5 follows from (A.5). From Definition 2.1, we know that an
orphan is a coset without parent. Since the covering radius of B is 5, it is clear that
any coset G ∈ D5 is an orphan. Now for any coset H ∈ D̂6, we obtain a coset G ∈ D5

by deleting one position of H. We always delete the first position, which corresponds
to the overall parity checking position of B̂. Two such cosets G and G′ are distinct,
as soon as we got two distinct cosets H and H ′. Actually, this correspondence is
one-to-one: by the definition of the extension, two distinct cosets of D5 cannot give
the same extension. So Γ(5) = Γ̂(6).
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Now for D̂5, equations (E.i) involve a full description. Moreover, we will end this

section by explaining some links between D̂5 and D̂4.
Proposition 3.3. There are

Γ̂(5) = N(N − 1)(5N + 8)/6

distinct cosets of B̂ of weight 5. All of these cosets have the same weight distribution
and each of them contains

µ̂5,5 = (N − 2)(N − 8)/120(9)

vectors of weight 5. Note that µ̂5,5 = µ5,5.
Proof. All cosets of minimum weight 3 have the same weight polynomial. We

know from (E.3) that the number of the code words of weight 5 in the coset of
minimum weight 3 is

µ̂3,5 = β,

where β is defined in (5). From the equation (E.5) we have µ̂5,5 = 1/α̂5. Taking
into account the value of α̂5 in (3) we obtain (9). Now the total number of binary
vectors of length N and weight 5 is

T =

(
N

5

)
,

and we have

T = Γ̂(5) µ̂5,5 + Γ̂(3) µ̂3,5.

Then we can compute Γ̂(5) using the value of Γ̂(3) given by the equation (7).

Proposition 3.4. Let G ∈ D̂5, let F be a child of G, that is,

F = G + v(j), F ∈ D̂4

for some j ∈ { 1, . . . , N }, and let kj(G) denote the weight of the jth column of
the binary matrix formed by the leaders of G. Then the weight distribution of F is
defined by µ̂4,4 = kj(G), where kj(G) < N/4.

Proof. Consider the jth column of the matrix formed by all the leaders of G. So
we have kj(G) vectors us, s = 1, . . . , kj(G), which have “1” at jth position. Then
the coset F has weight 4 and the kj(G) vectors

us + v(j), s = 1, . . . , kj(G)

are the only vectors in F that have weight 4. Hence, such a coset F is not an orphan
since it has some parent. That gives the inequality at the statement, completing the
proof.

Note that any F ∈ D̂4, which is not an orphan, is a child of some coset of D̂5. In
this section we have proved that each unsolved problem on cosets of B can be seen
as an unsolved problem on cosets of B̂. We will see in section 5 that the general
problem we treat here is reduced to the determination of the weight distribution of
cosets of D̂4, more precisely to the determination of the possible values of µ̂4,4. The
proposition above suggests an equivalent point of view: we know all about the weight
distribution of cosets of D̂5, but we do not know, for such a coset, how much leaders
have for one given position in its support.
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4. Equivalent cosets. At the end of this paper we will give numerical results
on the coset weight distributions of the code B̂ for m = 7 and m = 9. We obtain these
results with the aid of a computer; however, the computation was possible because
of some properties on the equivalent cosets. In this section we want to present these
properties and their corollaries.

Let K and G be, respectively, the fields of order 2 and of order N . Since we treat
primitive binary codes, we can consider extended codes as K-subspaces in the group
algebra of the additive group of G. This representation is more convenient when we
want to describe the permutations on cosets which conserve the code B̂. So, in this
section, the ambient space is the group algebra A = K[{G,+}] and a code word is a
formal sum:

x =
∑
g∈G

xgX
g, xg ∈ K.

Recall that the code B̂ is invariant under the affine permutations on G. That means
that any permutation

σu,v :
∑
g∈G

xgX
g 7−→

∑
g∈G

xgX
ug+v , u 6= 0, u ∈ G, v ∈ G

is an automorphism of the code B̂ [18]. Therefore, for any coset D = x+ B̂, we have

obviously σu,v(D) = σu,v(x) + B̂. Let us define, for any integer s ∈ [0, N − 1], the
mapping φs(x),

φs : A → G, φs(x) =
∑
g∈G

xgg
s,(10)

where by convention φ0(x) =
∑

g∈G xg.

Definition 4.1. The extended 3-error-correcting BCH-code B̂ is the following
subspace of A:

B̂ = { x | φs (x) = 0, s ∈ {0} ∪ cl(1) ∪ cl(3) ∪ cl(5) },
where cl(t) is the cyclotomic coset of 2 (mod n) containing t and m ≥ 5. So the

dimension of B̂ equals N − 3m− 1, where N = 2m and n = N − 1.
Definition 4.2. There are 23m+1 cosets of B̂. Each coset x + B̂ is uniquely

defined by its so-called syndrome:

S(x) = ( φ0(x), φ1(x), φ3(x), φ5(x) ).

When φ0(x) = 0, all weights of the coset are even and we will say that the coset is
even; otherwise, all weights of the coset are odd and we will say that the coset is odd.

We will see that our problem is in fact the determination of the weight distribu-
tions of the cosets of B̂ of weight 4. Moreover, the odd cosets can be studied simply
from the even cosets. For this reason we now study even equivalent cosets. Recall
that we denote by D̂ the set of all cosets of B̂.

Lemma 4.3. Let us define the following subsets of D̂:

B1 = { x+ B̂ | φ0(x) = 0 and φ1(x) 6= 0 },(11)

B2 = { x+ B̂ | φ0(x) = 0 and φ1(x) = 0 },(12)
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B3 = { x+ B̂ | φ0(x) = φ1(x) = φ3(x) = 0 }.(13)

Then B1 is contained in the Reed–Muller code R(m − 1,m) of order m − 1 and not
contained in R(m − 2,m); B2 is contained in R(m − 2,m); B3 is contained in the
extended 2-error correcting BCH-code.

Proof. Recall the definition of the Reed–Muller code of length N and order r,
denoted by R(r,m). For any t ∈ [0, n] let us define the 2-weight of t to be ω2(t) =∑m−1

i=0 ti, where

t =
m−1∑
i=0

ti2
i

is the binary expansion of t. Let Ir be the set of integers from [0, n] such that
ω2(t) < m − r. The code R(r,m) is the set of code words x satisfying φt(x) = 0
for all t ∈ Ir. We have Im−1 = {0} and Im−2 = {0} ∪ cl(1). The extended 2-error
correcting BCH-code is the set of code words satisfying φt(x) = 0 for t in {0}∪cl(1)∪
cl(3).

Lemma 4.4. Let u and v be in G, where u 6= 0. Consider a coset x + B̂ whose
syndrome is S(x) = (0, δ, γ, λ). Then the syndrome of the coset σu,v(x) + B̂ is as
follows:

S(σu,o(x)) = (0, uδ, u3γ, u5λ)(14)

and

S(σ1,v(x)) = (0, δ, γ + δv2 + δ2v, λ+ δv4 + δ4v).(15)

Proof. For any code word x =
∑

g∈G xgX
g, we have

φt(σu,o(x)) =
∑
g∈G

xg(ug)
t = utφt(x).

Thereby (14) follows immediately. Now φt(σ1,v(x)) = φt(X
vx). So, for t = 1, 3 and 5

we obtain

φ1(X
vx) =

∑
g∈G

xg(g + v) = φ1(x) + v wt(x) = φ1(x) = δ,

φ3(X
vx) =

∑
g∈G

xg(g + v)3 = φ3(x) + v2φ1(x) + v(φ1(x))2 = γ + δv2 + δ2v,

φ5(X
vx) =

∑
g∈G

xg(g + v)5 = φ5(x) + v4φ1(x) + v(φ1(x))4 = λ+ δv4 + δ4v,

where the sums are computed modulo 2. Then we obtain (15), therefore completing
the proof.

Let us define an equivalence relation ∆ on the set D̂ of the cosets of B̂. Let u
and v be any elements in G, where u 6= 0; for any D1 ∈ D̂ and any D2 ∈ D̂,

D1∆D2 ⇔ ∃ u, v, u 6= 0 such that D1 = σu,v(D2).(16)
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From now on, D1 is equivalent to D2 means that D1∆D2. For a given D, we are
interested in the number of cosets D1 such that D∆D1. Moreover, we want to char-
acterize explicitly the cosets D1 by its syndromes. We here study even cosets; hence
the syndrome of D will always be of the form (0, δ, γ, λ), and the weight of such a
coset should be 2, 4, or 6.

Since m is odd then 3 (respectively, 5) and 2m − 1 are relatively prime. Hence
it follows from (14) that there are always N − 1 distinct cosets σu,0(D), u ∈ G∗.
Suppose that δ = 0, meaning D ∈ B2. It follows from (15) that σ1,v(D) = D for any
v. In this case the coset D is an orphan, because each coordinate position is covered
by at least one leader of D (see Definition 2.1). The weight of D could be 4 or 6.
When it is 4 the supports of two leaders cannot intersect, proving that the number
of leaders is N/4. Since B2 is contained in R(m − 2,m), the support of any code
word of weight 4 is an affine subspace of dimension 2. As there are (N − 1)(N − 2)/6
linear subspaces of dimension 2, there are the same number of cosets of weight 4 in
B2. On the other hand, there are N2 cosets in B2, implying that the number of cosets
of weight 6 in B2 is

N2 − (N − 1)(N − 2)/6− 1 = (N − 1)(5N + 8)/6.

Moreover, by definition, B3 is composed of N − 1 cosets of weight 6, if we except B̂
itself.

So we have proved the following.
Proposition 4.5. Let D ∈ B2. Then D is an orphan and

card { D1 | D∆D1 } = card { σu,0(D) | u ∈ G∗ } = N − 1.

When the weight of D is 4, D has N/4 leaders.
There are (N−2)/6 nonequivalent cosets of weight 4 and (5N+8)/6 nonequivalent

cosets of weight 6 in B2.
There is only one coset D of weight 6 in B3 up to equivalence. The cosets of B3

are σu,0(D), u = αk, whose syndromes are (0, 0, 0, αk) (α denotes here a primitive
element of G = GF (2m)).

Suppose now that δ 6= 0; i.e., we consider cosets D in B1. It comes from (15) that
D is invariant under a permutation σ1,v if and only if

δv2 + δ2v = 0 and δv4 + δ4v = 0.

The mapping v → δv2 + δ2v is linear; its kernel has dimension 1. Hence it takes
exactly 2m−1 distinct values. Since m is odd, we obtain the same result for the
mapping v → δv4 + δ4v. In both cases the kernel is {0, δ}; so, by applying σ1,v,
we obtain exactly 2m−1 different syndromes. Suppose that the weight of D is 4.
Whenever D contains the code words a whose support is { a1, a2, a3, a4 }, it
contains also the word Xδa whose support is { a1 + δ, a2 + δ, a3 + δ, a4 + δ }. These
code words do not intersect. Indeed, the equalities a1 = a2 + δ and a3 = a4 + δ would
imply

∑4
i=1 ai = 0, meaning that D is contained in R(m− 2,m) (i.e., δ = 0). So we

have proved the following.
Proposition 4.6. The set B1 contains N2(N − 1) elements. For any D ∈ B1

we have

card { D1 | D∆D1 } = N(N − 1)/2.

So there are 2N classes of nonequivalent cosets in B1.
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The permutation σ1,v leaves a coset D with the syndrome (0, δ, γ, λ) invariant if
and only if v = δ. Therefore, when the weight of D is 4, the number of leaders in D
is even: whenever D contains a word a, it contains also the word Xδa, which cannot
be equal to a.

There are N(N − 1)/2 distinct code words of weight 2 and each coset of weight 2
contains only one code word of weight 2. All cosets of weight 2 are in B1, because the
minimum weight of R(m− 2,m) is 4. Since the group of the σu,v is doubly transitive,
they are equivalent. The syndromes can be calculated from the formulas of Lemma
4.4.

Proposition 4.7. The cosets of weight 2 are in B1. The corresponding syn-
dromes are of the form

( 0, u, u3 + uv2 + u2v, u5 + uv4 + u4v ), u ∈ G\{0}, v ∈ G.

These cosets are the σu,v(D), where D is the coset whose leader is 1 + X and whose
syndrome is (0, 1, 1, 1).

Note that the coset σu,v(D) is equal to the coset σu,v′(D) if and only if v′ = v or
v′ = v + u. This gives us N(N − 1)/2 different cosets of weight 2.

5. Cosets weight distribution: The hard cases.

5.1. Cosets of minimum weight 4. We begin by giving the results we have
on cosets of weight 4 of B, the elements of D4. Moreover we claim that the weight
distributions of cosets of D4 can be precisely obtained from those of the cosets of D̂4.

Proposition 5.1. Let F be any coset of D4. The weight distribution of F is
uniquely defined by the value µ4,4, where µ4,4 is an even number in the interval

2 ≤ µ4,4 ≤ (n+ 1)/4 − 2.

Moreover,

µ4,4 + µ4,5 = µ5,5 =
(n− 1)(n− 7)

120
.

The coset F can be seen as a shortened coset of D̂4 with parameter µ̂4,4 = µ4,4.
Proof. From equation (A.4) and the equality α4 = α5 (see (2)) we have for an

arbitrary coset F of weight 4

µ4,4 + µ4,5 =
1

α5
=

(n− 1)(n− 7)

120
.

Extending F , we clearly obtain a coset of weight 4 of B̂, which has as its set of leaders
the set of leaders of F . So µ4,4 is even according to Proposition 4.6. Of course, F
cannot be an orphan, since n is an odd number, implying µ4,4 < n/4 and therefore
µ4,4 < (n+ 1)/4 − 1 (because (n+ 1)/4 − 1 is also odd).

Proposition 5.2. Let F be any coset of weight 4 of B̂, i.e., F ∈ D̂4. The weight
distribution of F is uniquely defined by the value µ̂4,4, where µ̂4,4 is an even number
in the interval

2 ≤ µ̂4,4 ≤ N/4.

Proof. Suppose that F is an arbitrary coset of B̂ of weight 4:F ∈ D̂4. Since
every weight of F is even we obtain from formula (E.4) the value µ̂4,6:

µ̂4,6 =
1− α̂4µ̂4,4

α̂6
.(17)
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Therefore, the weight distribution of F is uniquely determined from the value µ̂4,4.
Now note that two leaders of F have disjoint supports, since the minimum weight of
B is 8. Hence µ4,4 ≤ N/4. From Proposition 4.6 we have that the number µ̂4,4 is
always even.

It is clear that any coset F ∈ D̂4 with µ̂4,4 leaders has N − 4µ̂4,4 different parents

from D̂5. As we already know from Proposition 4.5, there are at least (N−1)(N−2)/6

cosets in D̂4 with weight distribution

µ̂4,4 = N/4 and µ̂4,6 = N(N − 8)(N − 32)/720.(18)

These cosets have no parent; they are orphans. There are N different cosets in D̂3

which are generated by any such orphan. They are the N children of the orphan.
Can two different orphans R and R′ give the same children? If yes, that implies that
the distance between these two cosets is 2, i.e., that the set of code words

R +R′ = { x+ x′ | x ∈ R, x ∈ R′ }

has minimum weight 2. So, if the set above has minimum weight 4 there is a contra-
diction. Particularly, if the orphans R and R′ are in the RM-code of order m− 2, the
set of the children of R and the set of the children of R′ do not intersect. In this way,
we obtain at least N(N − 1)(N − 2)/6 cosets of weight 3. In accordance with (7), we
have the following.

Proposition 5.3. Any coset in D̂3 is a child of some orphan of B̂ of weight 4
which is contained in the RM-code of order m− 2.

5.2. Cosets of minimum weight 6. At the end, we have to study the cosets
of D̂6. It is the same situation we had for cosets of D5. Although we know the weight
distribution of such cosets, we cannot give the cardinality of D̂6. However, we can
give a property analogous to those stated in Proposition 5.3.

Proposition 5.4. All cosets of B̂ of weight 6 have the same weight distribution.
Such a coset is an orphan and it contains

µ̂6,6 = N(N − 2)(N − 8)/720(19)

code words of weight 6.
Proof. It is clear that the equation (E.6) has only one solution (it can be deduced

also from [1]). That is µ̂6,6 = 1/α̂6. We deduce (19) from the formula (3), which gives

the value of α̂6. Then all cosets in D̂6 have the same weight distribution. Such cosets
are orphans since the covering radius of B̂ is 6.

Now take F ∈ D̂6 and consider its children. They are cosets G ∈ D̂5 such that

G = F + v(i)

for some i ∈ [1, N ]. So if we denote

supp(G) =
⋃

v is a leader of G

supp(v),

then we have for such a child of F

supp(G) ⊆ {1, . . . , N} \ {i}.
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Proposition 5.5. Let G be any coset from D̂5. Then G is not an orphan, and
there is i ∈ [1, N ] and a coset F ∈ B2 (i.e., a coset of weight 6, which belongs to Reed–
Muller code R(m − 2,m)) such that G is a child of F with G = F + v(i). Moreover,
we have

supp(G) = { 1, . . . , N } \ {i}.

Proof. Let F and F ′ be two arbitrary cosets from D̂6. Using the same idea we
used for the proof of Proposition 5.3, we can say if F + F ′ has minimum weight 4,
then the set of the children of F and the set of the children of F ′ do not intersect.
That is particularly true when we consider cosets in B2.

From Proposition 4.5 we know that there are (N −1)(5N +8)/6 distinct cosets of
weight 6 in B2. Each such coset has exactly N children because any coset of weight 6 is
an orphan. Since all children of such cosets are distinct, we obtain N(N−1)(5N+8)/6
distinct cosets of weight 5. But from Proposition 3.3 we know that this is exactly
the number Γ̂(5) of different cosets of weight 5. Therefore, any coset G from D̂5 is a

child of some coset F from D̂6. We have G = F + v(i) for some i. Clearly, a leader
of the coset G cannot have the position i in its support. So G is not an orphan and
we have supp(G) ⊆ { 1, . . . , N } \ {i}. Suppose now that there is another position
j which is not covered by supp(G). Then there is a contradiction with the fact that
any coset of D5 is an orphan. Indeed, we can suppose that j = 0 because of the
invariance of cosets of B under affine permutations. With this hypothesis, shortening
G we obtain a coset of B of weight 5 which is not an orphan because ith position is
not covered by the nonzero position of its leaders. According to Proposition 3.2 we
have a contradiction.

6. Summary of results. In this section we summarize the results we have about
the weight distribution of the cosets of the code B and of its extension. These results
are explained in sections 3, 4, and 5. In Table 2, the values we know for the number
of cosets of a given weight are presented. We give the distance matrices of B and B̂
in Tables 3 and 4. Let C be a code with the dual distance t. Recall that the distance
matrix of C is the u × (t + 1) matrix containing the t + 1 first coefficients of the u
distinct weight distributions of cosets of C. The weight distributions of the cosets of
C can be fully calculated from these elements [12].

Table 2

The number Γ(i) of cosets of B of weight i and the number Γ̂(i) of cosets of B̂ of weight i.

We denote by γ the number of cosets of B̂ of weight 4 which are not in R(m− 2,m).

i Γ(i) Γ̂(i)

1 n N
2 n(n− 1)/2 N(N − 1)/2
3 n(n− 1)(n− 2)/6 N(N − 1)(N − 2)/6
4 ? (N − 1)(N − 2)/6 + γ

5 = Γ̂(6) N(N − 1)(5N + 8)/6
6 0 ?

In Table 2, it clearly appears that the knowledge of γ involves the knowledge
of any Γ̂(i), implying the knowledge of any Γ(i) since we know the total number of
cosets. The coefficients of the distance matrix of B (see Table 3) depend only on

those of the distance matrix of B̂ (see Table 4). Moreover, we have proved that all
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Table 3

The distance matrix of the code B of length n, n = 2m − 1, m odd.

0 1 2 3 4 5
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 (n− 1)(n− 7)/120 + 1

0 0 0 1 µ̂4,4 − 1 µ̂3,5 − µ̂4,4 + 1
0 0 0 1 · · · · · ·
0 0 0 0 µ̂4,4 ≤ (n− 7)/4 µ̂5,5 − µ̂4,4

0 0 0 · · · · · · · · ·
0 0 0 0 0 (n− 1)(n− 7)/120

Table 4

The distance matrix of the code B̂ of length N , N = 2m, m odd.

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 (N − 2)(N2 − 10N + 136)/720
0 0 0 1 0 (N − 2)(N − 8)/120 + 1 0

0 0 0 0 µ̂4,4 ≤ (N − 8)/4 0 µ̂4,6

0 0 0 0 · · · 0 · · ·
0 0 0 0 N/4 0 N(N − 8)(N − 32)/720
0 0 0 0 0 (N − 2)(N − 8)/120 0
0 0 0 0 0 0 N(N − 2)(N − 8)/720

coefficients of the distance matrix of B̂ are known as soon as the possible values of
µ̂4,4 are known (see Proposition 5.2).

Therefore, we conclude that the problem of the weight distribution of the cosets
of the 3-error-correcting BCH-codes, extended or not (i.e., B or B̂), is reduced to the

problem of the weight distribution of the cosets of weight 4 of B̂, which are not in the
Reed–Muller code of order m− 2.

7. Numerical results and conjectures. For length 128 we have computed
the cosets weight distribution of B̂. We give in Table 5 the distance matrix and the
number of cosets for each weight. Note that in this case, we obtain 12 distinct weight
distributions, whereas we had 8 weight distributions for length 32. So we conjecture
that the number of weight distributions increases with the length. We will make our
conjecture precise later. Now we want to explain how Table 5 was completed.

• The number of cosets and the corresponding lines of the distance matrix are
known for cosets of weight 1, 2, 3, or 5 for any length (see sections 3 and 6).

• So it remains to determine the number of cosets of weight 4 or 6 and the
weight distributions of the cosets of weight 4. For the computation of weight distri-
butions we only need to determine the number of leaders. We use the definition of
cosets by syndrome (see Definition 4.2).

• We know the number of cosets of weight 4 or 6 contained in B2, i.e., in
R(m−2,m) (see Proposition 4.5). There are 127×21 cosets of weight 4 and 127×108
cosets of weight 6. Such a coset of weight 4 has 32 leaders; it is an orphan. Our
numerical results prove that all orphans of weight 4 are in B2.

• From now on we study the cosets of weight 4 or 6 contained in B1, i.e., in
R(m − 1,m)\R(m − 2,m). There are 127 × 214 cosets in B1, whose 127 × 64 have
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weight 2. So there remain 127 × 16320 cosets of weight 4 or 6. Actually, we have
computed the syndrome of any code word of weight 4 which is not in R(m − 2,m).
Taking into account the results of section 4 it is sufficient to consider the syndromes

( 0, 1, 0, λ ) and ( 0, 1, 1, λ ), λ ∈ GF (128).

Indeed, they define 128 + 127 cosets of weight 4 or 6; the syndrome (0, 1, 1, 1) corre-
sponds to a coset of weight 2. From Proposition 4.6 each of these cosets has 127× 64
equivalent cosets. Then we obtain

127× 64× (128 + 127) = 127× 16320

distinct cosets, and it is exactly the number of cosets of weight 4 or 6 in B1. So we
need to examine a few code words of weight 4; the number of such code words of the
same syndrome is the number of leaders.

• We found that 127 × 192 syndromes correspond to cosets of weight 6. By
adding the number of such cosets in B2, we obtain the total number of cosets of weight
6. There remain 127× 16128 cosets of weight 4 in B1. The number of leaders is even,
in accordance with Proposition 4.6. This number takes all even value in the range
[2, 10].

Table 5

The distance matrix of the 3-error-correcting extended BCH-code of length 128; Wmin is the
minimum weight of the coset.

Wmin Number of cosets Number of words
of weight:

0
1
2
3
4
4
4
4
4
4
5
6

1
128

127× 64 = 8128
127× 2688 = 341376
127× 1792 = 227584
127× 6272 = 796544
127× 5376 = 682752
127× 2240 = 284480
127× 448 = 56896
127× 21 = 2667

127× 13824 = 1755648
127× 300 = 38100

0 1 2 3 4 5 6
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 2667
0 0 0 1 0 127 0
0 0 0 0 2 0 2648
0 0 0 0 4 0 2608
0 0 0 0 6 0 2568
0 0 0 0 8 0 2528
0 0 0 0 10 0 2488
0 0 0 0 32 0 2048
0 0 0 0 0 126 0
0 0 0 0 0 0 2688

By using Tables 3 and 5, it is very easy to compute the distance matrix of the
code B (of length 127). We also easily obtain the number of cosets of B of weight i,
i ∈ [0, 5], by using Table 2. It is more complicated if we want to compute to number
of cosets of weight 3 or 4 for each weight distribution. We proceed as follows.

• Let x(i) be the number of cosets of B̂ of weight 4 such that µ̂4,4 = i, i < N/4.
• Then x(i) = 127×64×y(i), where y(i) is the number of nonequivalent cosets

in the sense of (16); we can suppose that the y(i) cosets have position zero in their
support.

• Let F be such a coset. The cardinality of its support is 4i. Consider the 64
cosets σ1,v(F ). Among these cosets 2i have position zero in their support and 64− 2i
have not.

• So we obtain from F , 127 × 2i cosets of weight 3 of B and 127 × (64 − 2i)
cosets of weight 4 of B. Multiplying these numbers by y(i), we obtain the number of
cosets of weight 3 and 4 whose weight distributions are defined by µ̂4,4 = i.
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• From the 127× 21 orphans of weight 4, we obtain the same number of cosets
of B of weight 3. They correspond to one and only one weight distribution.

Recall that, for length 32, all cosets of weight 4 have the same weight distribution
with µ̂4,4 = 2. It is because in this case the code B̂ is exactly the Reed–Muller code
of order 2. Any coset of weight 4 is a coset of the RM-code of minimum weight 8.
Since the supports of these code words of weight 8 are the affine subspaces of K5

of dimension 3, it is clear that such a coset cannot contain more than two words of
weight 4.

For length 128, we have found six different weight distributions for the cosets of
weight 4. For length 512, we made a random exploration of cosets of weight 4. Our
numerical results allow us to state the following conjecture.

Conjecture 1. Let B̂ be the extended 3-error-correcting BCH-code of length 512.
There are 12 different weight distributions for the cosets of B̂ of weight 4. These
distributions are determined by the number µ̂4,4 of code words of weight 4. This
number is

1. µ̂4,4 = 128 for the orphans contained in the RM-code of order 7. (We did
not find other cosets corresponding to this value.)

2. µ̂4,4 = i for all even integers i in the range [12, 32].
So we have shown that the situation here is completely different from those we had

for the 2-error-correcting BCH-codes. In both cases the external distance is a constant
not depending on the length. The number of weight distributions of cosets is constant
for any length for the 2-error-correcting BCH-codes. And that is true not only when
m is odd (and codes are completely regular) but also when m is even [10, 20]. For the
3-error-correcting BCH-codes, we strongly conjecture that this number increases with
the length. When m is odd these codes are uniformly packed, and we point out this
property for m = 5, 7, and 9. Moreover, we are able to propose general conjectures.

Conjecture 2. Let B̂ be the extended 3-error-correcting BCH-code of length N ,
m odd. Then any coset of B̂ of weight 4, which is an orphan, is contained in the
RM-code of order m− 2.

Conjecture 3. Denote by G the Galois field of order 2m, m odd. For any (A,B),
where A and B are any elements in G, let us denote by E(A,B) the following system
of three equations, with four variables, on G:

W +X + Y + Z = 1,

W 3 +X3 + Y 3 + Z3 = A,

W 5 +X5 + Y 5 + Z5 = B.

Let N (A,B) be the number of solutions of E(A,B) satisfying X 6= Y 6= Z 6= W .
Consider the (A,B) such that N (A,B) is not zero and recall that N (A,B) is always
even (see Proposition 4.6). Then there exist two even integers depending on m, say
`m and um, `m < um < 2m−2, such that

`m ≤ N(A,B) ≤ um.

Moreover, for any even value i in the range [`m, um], there is an (A,B) such that
N (A,B) = i.
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Abstract. For each pair of nonadjacent vertices in a graph, consider the greater of the degrees
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1. Introduction. Ever since its introduction, interest in the notion of treewidth
of a graph has been growing (see [8]). This is mainly because, for many problems that
are intractable on general graphs, polynomial-time and even linear-time algorithms
can be found for graphs of bounded treewidth (see [3, 5], for example).

Arnborg, Corneil, and Proskurowski [2] showed that it is NP-hard to determine
the treewidth of an arbitrary graph. Using dynamic programming, they also showed
that for every fixed constant w, there exists an O(nw+2)-time algorithm to decide
whether the treewidth is at most w [2]. Robertson and Seymour developed an O(n2)-
time algorithm [24] for this problem by showing (nonconstructively) that graphs of
treewidth at most w can be characterized by a finite number of minimal forbidden
minors (called obstructions) [23]. They started by computing an approximate tree
decomposition (of width bounded by a constant, say, c.w) and used it to check whether
the graph contains any of the obstructions for treewidth w.

Algorithms that do not rely on obstructions have also been designed for treewidth.
One approach has been the development of an explicit linear-time algorithm to de-
termine whether a graph has treewidth at most w when given an approximate tree
decomposition for it [9]. By combining this with a linear-time algorithm to compute
an approximate tree decomposition, Bodlaender [7] invented a linear-time algorithm
to decide whether the treewidth of a graph is at most a constant w. Unfortunately,
this algorithm is exponential in a polynomial in w and hence appears to be impractical
even for w = 4.

Another approach for designing algorithms without using obstructions is to iden-
tify a set of reductions such that a graph has treewidth at most a fixed constant w if
and only if it can be reduced to the null graph by a finite sequence of these reductions.
This method was used in [4] for w = 3 and later in [26] to develop a linear-time algo-
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rithm for w = 4. Although both these algorithms are practical, no general techniques
are known for finding a complete set of reductions for w > 4.

The pathwidth of a graph is a concept akin to treewidth (see [9, 17], for example).
There has been considerable interest in the obstructions for treewidth and for path-
width [6, 14, 17, 19, 27]. Obstruction-based algorithms have been used for integrated
circuit design and other applications [12, 15, 18]. The reasons for studying the ob-
structions are two-fold. First, a better comprehension of their structure and number
can help one design better algorithms for the fixed-parameter problem. Second, being
minimal graphs, analyzing their structure can give us insights into developing better
lower bounds for the treewidth of a graph.

Only the obstruction sets for treewidth 1, 2, and 3 have been found so far [6, 27],
and none of the methods used to find them seem to generalize to larger values of w.
Lagergren [19] found a weak upper bound on the number of edges in an obstruction
for treewidth w. This bound is triple exponential in w4 and is purely of theoretical
significance. The obstruction sets for pathwidth 1 and 2 have also been computed [17],
but the general constructions produce only relatively large and sparse obstructions
(i.e., of order at least 3w + 3 for pathwidth w).

Some general methods for computing the obstructions to a given family of graphs
have also been proposed [14, 20]. These methods are nontrivial since their use requires
a tree decomposition of bounded width and additional problem-specific information
[11]. Hence, their application has been limited [10, 11].

In this paper we define a new metric γ of a graph and show that it is a lower
bound for the treewidth of the graph. In practice, this bound can be computed in
time linear in the size of the graph. Besides being of independent interest, our bound
gives a new perspective on the obstructions for treewidth and for pathwidth. As a
result, we obtain the following three important consequences.

A. For every w ≥ 3,
1. every obstruction of order w+ 3 for treewidth w has a simple structural

characterization and
2. there exists at least one obstruction of order w + 3 for treewidth w.

B. The graphs in A are exactly the obstructions of order w+3 for pathwidth w.
C. For treewidth w, the number of obstructions of order w+3 is bounded below

by an exponential function of
√
w.

Consequences A and B are significant in their generality and simplicity. Our char-
acterization shows that these obstructions can be constructed and recognized easily.
This is the first direct and general method for constructing nontrivial obstructions for
treewidth and dense obstructions for pathwidth. In light of the fact that the complete
graph is the only obstruction of order w + 2 for treewidth w, consequence C is very
surprising. Ours is the first proof that there is an exponential number of obstructions
for treewidth.

The rest of this paper is organized as follows. Section 2 consists of preliminar-
ies. In section 3 we present a new lower bound for the treewidth of a graph and
sketch a linear-time algorithm to compute this bound. The proof of consequence A
is spread over sections 4 and 5. Consequences B and C are proven in sections 4 and
5, respectively. In section 6, we discuss the implications of our results and some open
problems.

2. Preliminaries. The graphs that we consider are finite, simple, and undi-
rected. The order of a graph is the number of vertices in the graph; the size of a
graph is the number of edges. If G is a graph of order n, we usually denote the set
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of vertices of G by V = {v1, v2, . . . , vn}; the set of edges of G is denoted by E. The
degree of vertex vi is δi = |{vj : (vi, vj) ∈ E}| and the minimum degree of G is
δ = mini{δi}. Kn denotes the complete graph of order n.

Definition (see [22]). Given a graph G, a pair (T, Y ) is a tree decomposition of
G if T is a tree and Y = {Xi} is a family of subsets of V (G) indexed by V (T ) such
that

(a) ∪Xi = V (G),
(b) for every edge (va, vb) ∈ E(G), ∃i ∈ V (T ) 3 {va, vb} ⊆ Xi, and
(c) for i, j, k ∈ V (T ), if j is on the path between i and k in T , then Xi∩Xk ⊆ Xj .

The width of a tree decomposition (T, Y ) is maxi∈V (T ){|Xi|−1}. The treewidth(G)
is the minimum width over all possible tree decompositions of G.

A path decomposition of G is just a tree decomposition (T, Y ), where T is a simple
path. Note that treewidth(Kn) = pathwidth(Kn) = n − 1. Therefore, in general,
0 ≤ treewidth(G) ≤ pathwidth(G) ≤ n− 1.

We use a special kind of tree decomposition called a smooth decomposition [7]. A
similar notion was independently developed by Yan [28] for path decompositions.

Definition (see [7]). A tree decomposition (T, Y ) of width w is smooth if

(a) for every i ∈ V (T ), |Xi| = w + 1 and
(b) if (i, j) is an edge in T then |Xi −Xj | = |Xj −Xi| = 1.

As shown in [7, 28], any tree decomposition can be easily transformed into a
smooth tree decomposition without changing the treewidth. The following lemma
gives a useful relation between the number of vertices in a graph and the number of
vertices in a smooth tree decomposition of the graph.

Lemma 2.1 (see [7, 28]). If (T, Y ) is a smooth tree decomposition of width w for
a graph G, then |V (T )| = |V (G)| − w.

If H and G are graphs, then H is a minor of G, denoted by H ≤m G, if and only if
a graph isomorphic to H can be obtained from a subgraph of G by contracting edges.
If H ≤m G and H is not isomorphic to G, we write H <m G. A family F of graphs
is closed in the minor order if ∀G ∈ F , H ≤m G ⇒ H ∈ F . The obstruction set for
a minor-closed family F , written obs(F), is the set of all graphs in the complement
of F that are minimal in the minor order. In other words, G ∈ obs(F) if and only if
G ∈ F and H <m G⇒ H ∈ F . Therefore, if F is a minor-closed family, then G ∈ F
if and only if H 6≤m G ∀H ∈ obs(F). If we know all the graphs in obs(F), then we
can decide whether G ∈ F in polynomial time using the fact that, for every fixed
graph H, there exists a polynomial-time algorithm that when given an input graph
G decides whether H ≤m G [24].

Let TW(k) denote the family of graphs with treewidth at most k. One can easily
verify that for any fixed k, TW(k) is minor-closed. It is known that obs(TW(k)) is a
finite set [23]. Unfortunately, the proof of this is nonconstructive [13]. Therefore, we
must invent other methods to learn about the structure of these obstructions as well
as their number.

3. A new lower bound for treewidth. Using smooth decompositions, Yan
[28] obtained the following lower bound for pathwidth. We observe that it holds for
treewidth as well.

Lemma 3.1 (see [28]). For any graph G of order n and size e, treewidth(G) ≥
2n−1−

√
(2n−1)2−8e

2 .

Proof. It is known [7] that if w = treewidth(G), then e ≤ nw − w(w+1)
2 . This

inequality can be rewritten as w2 − (2n − 1)w + 2e ≤ 0. The general solution of
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this quadratic inequality is
2n−1±

√
(2n−1)2−8e

2 . Since w ≤ n − 1 always, we get w ≥
2n−1−

√
(2n−1)2−8e

2 .
Next we introduce a new metric γ of a graph and show that it is a lower bound

for treewidth. We start with a structural result showing the existence of vertices of
bounded degree in graphs of bounded treewidth.

Lemma 3.2. If G is not a complete graph and treewidth(G) = w, then there
exists a pair of nonadjacent vertices, each of degree at most w in G.

Proof. G ⊂ Kn ⇒ w ≤ n−2. Let (T, Y ) be a smooth tree decomposition of width
w for G. In T , let 1 and n−w be two leaves, let 2 be the neighbor of 1, and let n−w−1
be the neighbor of n−w. Also, let {v1} = X1−X2 and {v2} = Xn−w−Xn−w−1. Since
2 is on every path from 1 to another vertex in T and v1 /∈ X2, ∀i, |Xi ∩ {v1, v2}| ≤ 1.
Hence, (v1, v2) /∈ E(G). Moreover, |Xi| = w + 1 ⇒ δ(v1) ≤ w and δ(v2) ≤ w.

This lemma immediately motivates the definition of a new metric γ of a graph.
Definition. For a graph G = (V,E) of order n,

γ(G) =

{
n− 1 if G is a complete graph,
min(vi,vj)/∈E{max{δi, δj}} otherwise.

Lemma 3.3. For every graph G, treewidth(G) ≥ γ(G).
Proof. If G is a complete graph, then γ(G) = n− 1 = treewidth(G). Otherwise,

let w = treewidth(G) and let v1, v2 be a pair of nonadjacent vertices of degree ≤ w
in G. Then w ≥ max{δ1, δ2} ≥ γ(G).

This shows that γ is a lower bound for treewidth. There are families of graphs
for which γ is greater than the lower bound given by Lemma 3.1. Complete bipartite
graphs of the form Km,m with m ≥ 3 are an example. Moreover, Lemma 3.1 is
based on the total number of edges in the graph. In contrast, our lower bound γ is
based on the neighborhood of individual vertices and hence reveals useful structural
information, as will be evident in what follows.

By checking each pair of vertices in a graph, it is easy to compute γ in O(n2)
time. Instead, if we first sort the vertices in nondecreasing order of their degree and
observe that γ equals the degree of some vertex within the first δ + 2 vertices in the
sorted list, then γ can be computed in O(n+ e) time.

In the next section we use the metric γ to examine the structure of obstructions
for treewidth and prove consequences A and B.

4. Obstructions of order w + 3 for treewidth w. The complete graph is
the smallest obstruction for treewidth (and pathwidth). It is also the only general
obstruction known for treewidth. For each w ≥ 0, Kw+2 ∈ obs(TW(w)). What is the
next smallest obstruction for treewidth? In this section, we explore obstructions of
order w + 3 for TW(w).

Let n = w + 3 be the order of an obstruction for TW(w). The treewidth of such
a graph would be n− 2. The following lemma shows that the γ of this graph equals
its treewidth.

Lemma 4.1. For a graph G of order n, treewidth(G) = n − 2 if and only if
γ(G) = n− 2.

Proof. (⇐): γ(G) = n− 2 ⇒ G ⊂ Kn. Therefore, n− 2 ≤ treewidth(G) < n− 1.
(⇒): treewidth(G) = n − 2 ⇒ γ(G) ≤ n − 2. Suppose γ(G) < n − 2. Then

there exist two vertices v1 and v2 in V (G) such that the edge (v1, v2) /∈ E(G), δ1 <
n − 2, and δ2 < n − 2. δ1 < n − 2 implies that there exists vx ∈ V (G) such that
(v1, vx) /∈ E(G). Similarly, there exists vy (x may be equal to y) such that (v2, vy) /∈
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E(G). Then the following is a smooth tree decomposition of width n − 3 for G:
X1 = V − {v2, vx}, X2 = V − {v1, v2}, and X3 = V − {v1, vy}. This contradicts the
fact that treewidth(G) = n− 2.

A similar result can be obtained for pathwidth.

Lemma 4.2. For a graph G of order n, pathwidth(G) = n − 2 if and only if
γ(G) = n− 2.

Proof. Notice that the tree decomposition of width n − 3 used in the previous
proof is also a path decomposition. The rest is trivial.

The next theorem gives the structural characterization promised by consequence
A.

Theorem 4.3. For every n ≥ 6, a graph G of order n is an obstruction for
TW(n− 3) if and only if G satisfies the following four conditions:

(i) γ(G) = n− 2,
(ii) the maximum degree of G is n− 2,
(iii) δ(G) ≥ max{4, 3q − 3}, where q ≤ bn3 c is the number of vertices of degree

< n− 2, and
(iv) G is missing at least three disjoint edges (i.e., G has a matching of size ≥ 3).

Proof. (⇒): First we show that if G ∈ obs(TW(n − 3)) then it satisfies (i)–(iv).
Since treewidth(G) = n − 2, (i) follows directly from the previous lemma. For (ii),
suppose there exists v1 with δ1 = n − 1. Let v2 be a vertex of minimum degree in
G. Then δ2 = δ(G) ≤ γ(G) = n − 2. Let H = (V (G), E(G) − {(v1, v2)}). γ(H) =
min{γ(G),max{δ1, δ2}} = min{γ(G), δ1} = n−2. This implies treewidth(H) = n−2,
contradicting the fact that G is minor-minimal. Therefore, the maximum degree of
G = n− 2.

The proof of (iii) is by contradiction. Suppose 1 ≤ δ1 = δ ≤ 3. Let v2, . . . , vδ+1

be the neighbors of v1. Each vertex in V2 = {vi : δ + 2 ≤ i ≤ n} is nonadjacent
to v1 and has degree n − 2. Therefore, each neighbor of v1 has degree ≥ n − δ. If
δ = 1 then δ2 = n − 1, which contradicts (ii). If δ = 2 then contracting the edge
(v1, v2) to v2 gives us Kn−1 <m G and treewidth(Kn−1) = n − 2 = treewidth(G),
contradicting the minor minimality of G. If δ = 3 then we claim that at least one
of the edges (v2, v3), (v2, v4), (v3, v4) is in G, because otherwise δ2 = δ3 = δ4 = n− 3
and γ(G) < n − 2. Assume that (v2, v3) ∈ E. Contract edge (v1, v4) to v4 to obtain
Kn−1 ≤m G. Therefore, δ ≥ 4.

Let V1 = {v1, . . . , vq} be the set of vertices of degree < n−2 in G. Each vertex in
V1 has at least two nonneighbors in G. γ = n − 2 ⇒ the vertices in V1 are mutually
adjacent and any vertex in G not adjacent to a vertex in V1 has degree = n − 2.
Clearly, there are at least 2q such vertices of degree n − 2. Therefore, q ≤ bn3 c and
δ ≥ q − 1 + 2q − 2 = 3q − 3. Hence, δ ≥ max{4, 3q − 3}.

It is clear from the proof of (iii) that each vertex of degree < n−2 in G contributes
an edge to a maximum matching in the complement of G. Thus, when q ≥ 3, (iv)
follows from (iii). Otherwise, we have three different cases.

When q = 0, δi = n− 2 ∀i and there is a matching of size bn2 c in the complement
of G. For n ≥ 6, bn2 c ≥ 3.

If q = 1, let δ1 < n − 2 and (v1, v2) /∈ E. Then δ ≥ 4 ⇒ ∃{v3, v4, v5, v6} 3
{(v1, vi), (v2, vi) : 3 ≤ i ≤ 6} ⊂ E and {(v3, v4), (v5, v6)} ∩ E = φ.

If q = 2, let δ1 ≤ δ2 < n − 2 and {(v1, v3), (v2, v4)} ∩ E = φ. Then δ ≥ 4 ⇒
∃{v5, v6} 3 {(v1, vi), (v2, vi) : 5 ≤ i ≤ 6} ⊂ E and (v5, v6) /∈ E. Thus, when q = 1
or 2, (v1, v2), (v3, v4), (v5, v6) is a set of three disjoint edges missing from G. This
concludes the proof of (iv).
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(⇐): SupposeG satisfies conditions (i)–(iv). We want to prove thatG ∈ obs(TW(n−
3)). It follows from condition (i) and Lemma 4.1 that treewidth(G) = n − 2. It re-
mains to show that H <m G ⇒ treewidth(H) < treewidth(G). Recall the definition
that H ≤m G if and only if a graph isomorphic to H can be obtained from a subgraph
of G by contracting edges. Condition (iii) implies that there are no isolated vertices
in G. Therefore, in order to obtain a graph H such that H <m G, at least one edge
of G must either be deleted or contracted.

Suppose we delete an edge (vx, vy) from G to obtain graph H. Since condition
(ii) stipulates that δx ≤ n− 2 and δy ≤ n− 2 in G, we know that in H, vx and vy are
a pair of nonadjacent vertices each of degree less than n−2. Therefore, γ(H) < n−2,
which implies that treewidth(H) < n− 2.

Suppose we obtain graph H by contracting an edge (vx, vy) in G. Since the order
of H is n− 1, we know that treewidth(H) ≤ n− 2. In order for treewidth(H) to be
n−2, H must be a complete graph. Condition (iv) implies that there exist six distinct
vertices, say, vi, 1 ≤ i ≤ 6 in G such that {(v1, v2), (v3, v4), (v5, v6)}∩E(G) = φ. Since
the vertices vx and vy can cover at most two of the matchings in G, we know that
at least one of the three edges (v1, v2), (v3, v4), and (v5, v6) does not exist in H.
Therefore, H is not a complete graph and treewidth(H) < n− 2.

Given a graph G, it is simple to verify in polynomial time whether G satisfies
conditions (i)–(iv) of Theorem 4.3. Hence, the obstructions of order w+3 for TW(w)
are easily recognizable.

In the following lemma we prove consequence B.
Lemma 4.4. A graph G of order n is an obstruction for PW(n − 3) if and only

if G is also an obstruction for TW(n− 3).
Proof. (⇐): Let G ∈ obs(TW(n − 3)). Then treewidth(G) = n − 2 and

γ(G) = n − 2, which implies that pathwidth(G) = n − 2. If H is a minor of
G, then treewidth(H) < treewidth(G) = n − 2 and γ(G) < n − 2. Therefore,
pathwidth(H) < n− 2 and G ∈ obs(PW(n− 3)).

(⇒): Let G ∈ obs(PW(n − 3)). Then pathwidth(G) = n − 2 and γ(G) = n − 2,
which implies that treewidth(G) = n− 2. Suppose H <m G. Then pathwidth(H) <
pathwidth(G). But treewidth(H) ≤ pathwidth(H). Therefore, for every H <m G,
treewidth(H) < treewidth(G) and G ∈ obs(TW(n− 3)).

The proof of consequence A is not complete because Theorem 4.3 does not tell us
whether there are any graphs that satisfy all four conditions. In the next section, we
show that such obstructions do exist for every n ≥ 6.

5. Enumerating the obstructions. Given w, we would like to find all the
obstructions of order w + 3 for TW(w). For this, we use the structural description
given by Theorem 4.3 and the theory of partitions of integers.

Definition (see [1]). A partition of a positive integer n is a finite nonincreasing
sequence of positive integers l1, l2, . . . , lr such that

∑r
i=1 li = n. The li are called

parts of the partition. pr(n) is the number of partitions of n into r parts. The total
number of partitions of n is p(n) =

∑n
r=1 pr(n).

We adopt the convention that p0(0) = 1, p0(n) = 0 if n > 0, and pr(n) = 0 if
r > n or if n < 0. Also, p(0) = 1 and p(n) = 0 for n < 0.

5.1. A canonical representation. Let S(n) be the set of obstructions of order
n for TW(n−3) and let S(n, q) be the set of graphs in S(n) with exactly q vertices of
degree less than n− 2. Recall from condition (iii) of Theorem 4.3 that 0 ≤ q ≤ bn3 c.
Hence, S(n) =

.∪b
n
3 c

q=0 S(n, q) and |S(n)| =
∑bn3 c

q=0 |S(n, q)|. We describe a canonical
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representation for each obstruction in S(n, q) for TW(n− 3).
Consider an obstruction G of order n for TW(n− 3) with q vertices of degree less

than n− 2. Let us label the q vertices of degree less than n− 2 as v1, . . . , vq, and let
V1 = {vi : 1 ≤ i ≤ q}. Let V2 = V −V1 = {vi : q+1 ≤ i ≤ n} be the set of all vertices
of degree n− 2 in G. Since each vertex in V1 has degree less than n− 2, ∀vi ∈ V1, let
{(vi, vq+i), (vi, v2q+i)}∩E = φ. Then vq+i and v2q+i are adjacent to all other vertices
in G. The canonical form is shown in Figure 1(a). For clarity, only the missing edges
are shown. All other edges are present.
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Fig. 1. (a) The canonical form; (b) obstruction for TW(3).

Let V3 = {vi : 3q + 1 ≤ i ≤ n} ⊆ V2. If m is the size of the maximum match-
ing in the complement of the subgraph induced by V3 then ∀i, 1 ≤ i ≤ m, let
(v3q+i, v3q+m+i) /∈ E. Therefore, v3q+i and v3q+m+i are adjacent to all other vertices
in G. Clearly, m ≤ bn−3q

2 c.
Let V4 = {vi : 3q + 2m + 1 ≤ i ≤ n} ⊆ V3 ⊆ V2. Since every vertex in V2 − V4

already has degree n−2, for each vertex in V4 there is exactly one nonneighbor in V1.
There exist pj(n − 3q − 2m) distinct mappings of V4 into j elements of V1. Suppose
l1, . . . , lj is a j-partition of n− 3q − 2m. Then, ∀i, 1 ≤ i ≤ j ≤ q and ∀k, 1 ≤ k ≤ li,
we let (vi, v3q+2m+l+k) /∈ E, where l = l1+ · · ·+li−1. Therefore, ∀vi ∈ V1, if 1 ≤ i ≤ j,
then δi = n− 3− li; otherwise δi = n− 3.

Observe that each graph that satisfies conditions (i)–(iv) of Theorem 4.3, and
hence each obstruction in S(n), has a unique representation in the form of a 5-tuple
(n, q,m, j, (l1, . . . , lj)). This is stated more formally in the following lemma.

Lemma 5.1. A graph G of order n is an obstruction for TW(n − 3) if and only
if G can be uniquely represented by a 5-tuple (n, q,m, j, (l1, . . . , lj)), where

(i) n ≥ 6 is the order of the G,
(ii) 0 ≤ q ≤ bn3 c is the number of vertices of degree < n− 2 (i.e., q = |V1|),
(iii) max{0, 3 − q} ≤ m ≤ bn−3q

2 c is the size of the maximum matching in the
complement of the subgraph induced by those vertices of degree exactly n− 2
(i.e., m = |E(G(V3))|),

(iv) min{1, n− 3q − 2m} ≤ j ≤ min{q, n− 3q − 2m} is the number of vertices of
degree less than n− 3 in G, and
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(v) l1 ≥ · · · ≥ lj is a j-partition of n−3q−2m such that n−3−l1 ≤ · · · ≤ n−3−lj
is the degree sequence of the set of vertices of degree less than n− 3 in G.

Proof. (⇒): The proof of this follows from the preceding description of the
canonical form. Given a graph G ∈ obs(TW(n− 3)), the unique 5-tuple representing
G is obtained as follows: n = |V (G)|; q = the number of vertices of degree < n − 2
(i.e., q = |V1|); m = the size of the maximum matching in the complement of the
subgraph induced by those vertices of degree exactly n−2; j = the number of vertices
of degree less than n− 3 in G; and n− 3− l1 ≤ · · · ≤ n− 3− lj is the degree sequence
of the set of vertices of degree less than n− 3 in G.

(⇐): Now we show that each 5-tuple that satisfies (i)–(v) yields a unique graph
G ∈ obs(TW(n− 3)). We start with a complete graph of order n and delete a set of
edges from it so that the resulting graph G satisfies conditions (i)–(iv) of Theorem
4.3. Let V1 = {v1, . . . , vq} and let V2 = V (G) − V1. For each vi ∈ V1, delete
edges (vi, vq+i) and (vi, v2q+i). Let V3 = V2 − {vi : q + 1 ≤ i ≤ 3q}. Delete the
m disjoint edges (v3q+i, v3q+m+i), 1 ≤ i ≤ m between vertices in V3. Let V4 =
V3 − {v3q+i : 1 ≤ i ≤ 2m}. For each vertex vi, 1 ≤ i ≤ j in V1, delete the set of edges
{(vi, v3q+2m+k) : l1 + · · ·+ li−1 + 1 ≤ k ≤ li}. Call the modified graph G.

We claim that G satisfies conditions (i)–(iv) of Theorem 4.3. Observe that only
the vertices in V1 have degree less than n − 2 and they are all mutually adjacent.
Therefore, γ(G) = n − 2. Since each vertex of G has at least one nonneighbor and
q ≤ bn3 c, we have maximum degree(G) = n − 2. Notice that each vertex in V1 is
adjacent to the other q− 1 vertices in V1, at least 2(q− 1) vertices in V2− V3 and 2m
vertices in V3. Therefore, δ(G) ≥ 3q − 3 + 2m. Since m ≥ 0, we have δ(G) ≥ 3q − 3.
We also need to show that δ(G) ≥ 4. When q = 0, every vertex in G has degree
n − 2 ≥ 4. Condition (iii) of this theorem implies that q + m ≥ 3. Therefore,
δ(G) ≥ 3q − 3 + 2m = 2(q + m)− 3 + q ≥ 3 + q. Consequently, if q ≥ 1, then δ ≥ 4.
Notice that the size of the maximum matching in G is q+m ≥ 3. This completes the
proof.

5.2. An exact formula and an exponential lower bound. Given w, we
would like to know the number of obstructions of order w + 3 for TW(w). Using
Lemma 5.1, we now derive an exact formula for this.

Theorem 5.2. |S(n)| =∑bn3 c
q=0 |S(n, q)|, where |S(n, q)| is as follows.

When q = 0,

|S(n, 0)| =
{

1 for even n ≥ 6,
0 otherwise.

When q = 1,

|S(n, 1)| =
{

0 for n ≤ 6,∑bn−3
2 c

m=2 1 otherwise.

When q = 2,

|S(n, 2)| =
{

0 for n ≤ 7,∑bn−6
2 c

m=1

∑2
j=0 pj(n− 6− 2m) otherwise.

When 3 ≤ q ≤ bn3 c,

|S(n, q)| =
{

0 for n ≤ 8,∑bn−3q
2 c

m=0

∑q
j=0 pj(n− 3q − 2m) otherwise.
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Table 1

The number of obstructions of order w + 3 for treewidth w.

Treewidth 1 2 3 4 5 6 7 8 9 10 15 20 25
No. of obstructions 0 0 1 1 3 4 7 9 15 18 79 242 694

Proof. Each 5-tuple that satisfies the conditions stated in Lemma 5.1 represents
a unique graph in S(n). Therefore, for every n, the number of distinct 5-tuples equals
the number of obstructions in S(n).

When q = 0, every vertex in G has degree n− 2, which implies that n should be
even, and G is a complete graph of order n with n

2 disjoint edges missing. For even
n ≥ 6, G satisfies all four conditions of Theorem 4.3 and is in S(n, 0).

We can see from our canonical representation and the proof of Theorem 4.3 that
G is in S(n) whenever q ≥ 1, q + m ≥ 3, and n ≥ 3q + 2m. Therefore, for q ≥ 1 we

have the general expression |S(n, q)| =∑bn−3q
2 c

m=max{0,3−q}
∑q

j=0 pj(n− 3q− 2m). Recall

that p0(n− 3q − 2m) 6= 0 ⇔ n− 3q − 2m = 0.

If q = 1 then m ≥ 2 and n ≥ 7. Therefore, |S(n, 1)| = 0 for n ≤ 6. For n ≥ 7,

|S(n, 1)| =∑bn−3
2 c

m=2

∑1
j=0 pj(n−3−2m) = p0(n−3−2bn−3

2 c)+ p1(n−3−2bn−3
2 c)+∑bn−3

2 c−1
m=2 p1(n− 3− 2m) =

∑bn−3
2 c

m=2 1.

If q = 2 then m ≥ 1 and n ≥ 8. Therefore, |S(n, 2)| = 0 for n ≤ 7. For n ≥ 8,

|S(n, 2)| =∑bn−6
2 c

m=1

∑2
j=0 pj(n− 6− 2m).

If q ≥ 3, then m ≥ 0 and n ≥ 9. Therefore, |S(n, q)| = 0 when q ≥ 3 and n ≤ 8.

For q ≥ 3 and n ≥ 9, |S(n, q)| =∑bn−3q
2 c

m=0

∑q
j=0 pj(n− 3q − 2m).

This completes the proof of consequence A.

We can compute the value of |S(n)| using Theorem 5.2 and the recurrence relation
pk(n) = pk(n− k) + pk−1(n− 1). Table 1 lists some representative values.

For treewidth 3, the graph shown in Figure 1(b) is the only obstruction of order
6. This graph was called M6 in [6] and K2,2,2 in [27]. Curiously, while the entire
obstruction set for TW(3) was previously known, the fact that S(w+3) ⊂ obs(TW(w))
was not suspected.

Similarly, even though the entire obstruction set for PW(2) was known (see [17]),
the existence of obstructions of order w+3 for PW(w) was previously unknown. This
is because |S(w+3)| = 0 for w = 2, and the general methods in [17] can only produce
obstructions of order at least 3w + 3.

It is evident from Table 1 that as the treewidth increases, the number of obstruc-
tions increases rapidly. In what follows, we show that |S(n)| grows exponentially in
b√nc.

Corollary 5.3. For n ≥ 12, |S(n)| ≥ p(bn4 c − 2).

Proof. For n ≥ 12, we know that |S(n)| ≥∑bn3 c
q=3 |S(n, q)|. Taking only the m = 0

terms of S(n, q) for each q ≥ 3 and using the fact that n ≥ 12 ⇒ dn4 e ≥ 3, we get

|S(n)| ≥
bn3 c∑
q=3

q∑
j=1

pj(n− 3q) ≥
bn3 c∑

q=dn4 e

q∑
j=1

pj(n− 3q).
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If q ≥ n
4 , then q ≥ n− 3q and we have

|S(n)| ≥
bn3 c∑

q=dn4 e

n−3q∑
j=1

pj(n− 3q) =

bn3 c∑
q=dn4 e

p(n− 3q)

≥ p(n− 3dn4 e)
≥ p(bn4 c − 2).

There is no closed-form expression known to compute either pk(n) or p(n). It is

known that as n → ∞, p(n) ∼ ec
√
n

4n
√

3
, where c = π

√
2
3 (see [1, page 70]). For our

purposes, it is sufficient to note that p(n) ≥ 2b
√
nc for n > 1 (see [25, page 222]).

Hence it follows that |S(n)| is bounded below by an exponential function of
√
n. This

completes the proof of consequence C.

6. Conclusions. The lower bound for treewidth γ that we presented is a tight
bound in the sense that for many families of graphs, γ equals the treewidth. This
metric γ enabled us to characterize some of the densest obstructions for treewidth.
None of the graphs in S(w+ 3) was previously known to be an obstruction for either
TW(w) or PW(w). We have proven that they are obstructions for both.

Because of Lemma 4.4, we naturally wonder about the extent of intersection be-
tween obs(TW(w)) and obs(PW(w)). It is known (see [16]) that there is a large
number of tree obstructions to PW(w) for each w > 0. However, since the treewidth
of a tree is 1, there cannot be any trees in obs(TW(w)) for any w > 0. Therefore,
obs(PW(w)) 6⊆ obs(TW(w)). We can also show that trees are not the only obstruc-
tions that distinguish obs(PW(w)) from obs(TW(w)).

n-5
*

K

n-4v n-1v

n-3v n-2v

nv

Fig. 2. An obstruction of order n for PW(n− 4).

Let K∗
n denote a complete graph of order n from which bn2 c disjoint edges have

been deleted. If n is odd then an edge incident on the odd vertex is also deleted. For
every n ≥ 6, the graph in Figure 2 is an obstruction of order n for PW(n− 4), but it
is not an obstruction for TW(n− 4). This shows that Lemma 4.4 cannot be extended
even to n − 4. Is it true then that obs(TW(w)) ⊂ obs(PW(w))? This is certainly
true when w = 1 or w = 2 because in these two cases obs(TW(w)) = {Kw+1}. But
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what about the general case? We conjecture that for every w ≥ 3, obs(TW(w)) 6⊆
obs(PW(w)).

8B10B

Fig. 3. A TW(3) obstruction containing a PW(3) obstruction.

Consider the prism graphs B10 and B8 in Figure 3. It is known that B10 ∈
obs(TW(3)) (see [6, 27]). We can easily verify that B8 ∈ obs(PW(3)). Since B8 ≤m

B10 andB8 ∈ obs(PW(3)), it is clear thatB10 6∈ obs(PW(3)). Therefore, obs(TW(3)) 6⊆
obs(PW(3)). We believe that such obstructions exist for every w ≥ 3, and conse-
quently obs(TW(w)) 6⊆ obs(PW(w)). However, B10 is the only such obstruction we
know and we have been unable to generalize B10 to values of w > 3. Extrapolat-
ing from the number of obstructions for PW(3), it seems likely that an obstruction
of maximum order for TW(w) would contain as a proper minor an obstruction for
PW(w). If this were true, then it would follow that for every w ≥ 3, obs(TW(w))
6⊆ obs(PW(w)). Unfortunately, we have been unable to verify this conjecture.

Although an explicit knowledge of the obstructions may be helpful in the design
of practical algorithms to decide membership in TW(w) or PW(w) (see [15, 21],
for instance), the rapid growth of the number of obstructions of order w + 3 with
increasing w poses a formidable new challenge. One way to surmount this potential
difficulty would be to develop general tests for entire families of structurally-related
obstructions rather than test for each obstruction individually.

Acknowledgments. We thank Rajeev Govindan, Nancy Kinnersley, and Mike
Langston for their helpful comments and encouragement during this research. Thanks
also to the anonymous referees for helping to improve the presentation of these results.
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Abstract. Generalizing the two-commodity flow theorem of Rothschild and Whinston [Oper.
Res., 14 (1966), pp. 377–387] and the multiflow theorem of Lovász [Acta Mat. Akad. Sci. Hungaricae,
28 (1976), pp. 129–138] and Cherkasky [Ekonom.-Mat. Metody, 13 (1977), pp. 143–151], Karzanov
and Lomonosov [Mathematical Programming, O. I. Larichev, ed., Institute for System Studies, 1978,
pp. 59–66] in 1978 proved a min-max theorem on maximum multiflows. Their original proof is quite
long and technical and relies on earlier investigations into metrics. The main purpose of the present
paper is to provide a relatively simple proof of this theorem. Our proof relies on the locking theorem,
which is another result of Karzanov and Lomonosov, and the polymatroid intersection theorem of
Edmonds [Combinatorial Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J.
Schönheim, eds., Gordon and Breach, 1970, pp. 69–87]. For completeness, we also provide a simplified
proof of the locking theorem. Finally, we introduce the notion of a node demand problem and, as
another application of the locking theorem, we derive a feasibility theorem concerning it.

The presented approach gives rise to (combinatorial) polynomial-time algorithms.

Key words. multiflow, polymatroid, network flows, locking, node demands

AMS subject classifications. 05C38, 90B10, 90C27, 05C85
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1. Introduction. Let G = (V,E) and H = (T, F ) be two undirected graphs so
that T ⊆ V . We call a path of G H-admissible if it connects two nodes x, y of T so
that xy ∈ F . G will be called a supply graph, H a demand graph, and the elements of
T terminals while the other elements of V are called inner nodes. The maximization
problem consists of finding a maximum number of edge-disjoint H-admissible paths.
If H consists of one edge, then Menger’s theorem gives an answer.

In general, the problem is NP-complete even in the special case when G is Eu-
lerian. (A graph is called Eulerian if the degree of every node is even.) There are,
however, important special cases when the problem is tractable. Rothschild and
Whinston [13] proved a max-flow-min-cut-type theorem when (G,T ) is inner Eule-
rian and H consists of two edges. (We say that the pair (G,T ) is inner Eulerian if
the degree d(v) is even for every inner node v.) Another result is due, independently,
to Lovász [12] and Cherkasky [1]. They solved the maximization problem when H is
a complete graph and G is inner Eulerian. In [8] Karzanov and Lomonosov found a
common generalization of these two theorems. Their original proof is rather lengthy
and technical and it is certainly much more difficult than those of the two special cases
mentioned above. Details of these proofs were described in [4] and [10, 11]. Later
Karzanov [6, 7] gave another proof which was based on the splitting-off technique and
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gave rise to a strongly polynomial solution algorithm. However, this latter proof was
also rather complicated.

The main contribution of this paper is a relatively simple proof of the theorem of
Karzanov and Lomonosov. The proof relies on two ingredients: the so-called locking
theorem, which is another result of Karzanov and Lomonosov [8], and the polyma-
troid intersection theorem of Edmonds [2]. For completeness, we will also provide a
simplified proof of the locking theorem. Since both of these ingredients can be solved
by a (combinatorial) polynomial-time algorithm, the approach gives rise to an alter-
nate strongly polynomial-time algorithm for the (capacitated) maximization problem
in question which is faster than that in [6].

In what follows we do not distinguish between a one-element set {x} and its only
element x. For a set X and an element t let X + t denote the union of X and t. For
a vector m : S → R we use the notation m(X) :=

∑
(m(s) : s ∈ X). A family of

pairwise disjoint nonempty subsets of a set S is called a subpartition of S. For two
elements s, t a set X is called a ts̄-set if t ∈ X, s 6∈ X. An integer-valued vector or
function is called even if each of its values is an even integer. For a polyhedron P we
use the notation P/2 := {x/2 : x ∈ P}.

For a graph G = (V,E) the cut [X,V −X] denotes the set of edges with precisely
one end node in X. Its cardinality is denoted by d(X)(= d(V −X)). d(X) is called
the degree function of G. Let d(X,Y ) denote the number of edges with one in X − Y
and the other in Y −X. Let d̄(X,Y ) := d(X ∩ Y, V − (X ∪ Y )). It is easy to prove
that d satisfies the following identities for every pair X,Y of subsets of V :

(1.1) d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ),

(1.2) d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d̄(X,Y ).

Let A and B be two disjoint subsets of V . A path connecting an element of A and
an element of B is called an (A,B)-path. A path connecting two distinct elements of
A is called an A-path. λ(A,B;G) or simply λ(A,B) stands for the maximum number
of edge-disjoint (A,B)-paths. By Menger’s theorem λ(A,B) = min(d(X) : A ⊆ X ⊆
V −B).

One may consider a fractional version of the edge-disjoint paths problem. Let
G and H be as before. By an H-multiflow or briefly multiflow x we mean a family
{P1, P2, . . . , Pk} of paths of G along with nonnegative coefficients α1, α2, . . . , αk so
that each Pi connects the end nodes of a demand edge. x is called integer-valued if
each αi is an integer.

If each Pi connects an element of A and an element of B (that is, when H is a
complete bipartite graph with bipartition (A,B)), we speak of an (A,B)-flow. For an
H-multiflow x let x(e) :=

∑
(αi : Pi uses e) (e ∈ E) and x(t) :=

∑
(αi : Pi ends at t)

(t ∈ T ). For a given capacity function c : E → R+, x is called c-admissible if
x(e) ≤ c(e) for every e ∈ E.

2. The locking problem. Let G = (V,E) be a graph and T ⊆ V a subset of
terminal nodes. For a subset A ⊆ T the notation λ(A, T − A;G) will be abbreviated
by λ(A;G) or by λ(A) when no confusion can arise. Throughout the paper we assume
that the current (G,T ) is inner Eulerian.

Lovász [12] and Cherkasky [1] proved the following theorem.
Theorem 2.1. For an inner Eulerian pair (G,T ) the maximum number of edge-

disjoint T -paths is equal to (
∑

λ(t) : t ∈ T )/2.
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Fig. 1.

An equivalent formulation now follows.
Theorem 2.1

′. Given an inner Eulerian pair (G,T ), there is a family F of
edge-disjoint T -paths in G so that F contains λ(t) paths ending at t for each t ∈ T .

In other words, there is a single family of edge-disjoint T -paths that includes
maximum families of edge-disjoint (t, T − t)-paths simultaneously for all t ∈ T .

Karzanov and Lomonosov [8] extended this theorem. To formulate their result
let us say that a family F of edge-disjoint T -paths locks a subset A ⊆ T if F contains
λ(A) (A, T − A)-paths. Furthermore, we say that F locks a family L of subsets of T
if F locks all members of L.

Theorem 2.1′ asserts that there is a family F of paths that locks all singletons of
T . Is it always possible to find a family of edge-disjoint T -paths that locks a specified
family L? The answer, in general, is no, as is shown by Figure 1. Here L consists
of three pairwise crossing sets. (Two subsets X,Y of T are called crossing if none of
X − Y, Y −X,X ∩ Y, T − (X ∪ Y ) is empty.)

Figure 1 indicates why it is natural to require L to be 3-cross-free. A family L of
subsets of T is called 3-cross-free if it has no three pairwise crossing members.

Locking Theorem 2.2 (see [8, 5, 10, 11]). Let (G,T ) be inner Eulerian and L
a 3-cross-free family of subsets of T . Then there is a family of edge-disjoint T -paths
that locks L.

A proof of a slightly weaker version was sketched in [8]. The present proof relies
on an idea of splitting used previously in [5], but is technically simpler. Splitting off a
pair of adjacent edges e = st, f = sx of a graph G refers to an operation that replaces
e and f by a new edge connecting x and t (this way we may introduce parallel edges
between x and t). The resulting graph is denoted by Gef .

Proof. We may assume that T −A ∈ L for each A ∈ L because for A ∈ L adding
T − A to L affects neither 3-cross-freeness nor lockability. Also assume that G is
connected.

We proceed by induction on the number of edges incident to the elements of V −T .
If this number is zero, then the statement is trivial. Therefore, there is an edge e = st
with t ∈ T, s 6∈ T . We are going to show that there is an edge f = sx for which

(2.1) λ(A;G) = λ(A;Gef ) for every A ∈ L.

From this the theorem follows since, by induction, there is a family F of T -paths
of Gef locking L. If a path P ∈ F uses the new edge h of Gef having arisen from the
splitting of e, f , then revise F by replacing h in P by e and f . By (2.1) the revised
F locks L in G.

Claim 1. Suppose for X,Y ⊆ V that X ∩ T ⊆ Y ∩ T and that d(X) = λ(X ∩
T ), d(Y ) = λ(Y ∩T ). Then d(X∩Y ) = λ(X∩T ), d(X∪Y ) = λ(Y ∩T ) and d(X,Y ) =
0.

Proof. Since X ∩T ⊆ Y ∩T we have (X ∩Y )∩T = X ∩T and hence d(X ∩Y ) ≥
λ(X ∩ T ). Analogously, (X ∪ Y ) ∩ T = Y ∩ T and d(X ∪ Y ) ≥ λ(Y ∩ T ). Therefore,
by (1.1), λ(X ∩ T ) + λ(Y ∩ T ) = d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ) ≥
λ(X ∩ T ) + λ(Y ∩ T ) + 2d(X,Y ), from which the claim follows.
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Call a set X ⊆ V tight if X∩T ∈ L and d(X) = λ(X∩T ). Since L is closed under
complementation, V − X is tight if X is tight. Because (G,T ) is inner Eulerian, a
pair of edges e = st, f = sx will satisfy (2.1) precisely if

(2.2) there is no tight set X with t, x ∈ X ⊆ V − s.

Claim 2. There are no three maximal tight ts̄-sets.
Proof. Let X,Y, Z be maximal tight ts̄-sets. Since L is 3-cross-free, two of the

three sets X ∩ T, Y ∩ T, Z ∩ T , say X ∩ T and Y ∩ T , are noncrossing.
Then either X ∩T ⊆ Y ∩T or Y ∩T ⊆ X ∩T or T ⊆ X ∪Y . In the first two cases

Claim 1 implies that X ∪Y is tight, contradicting the maximality of X and Y . In the
last case, by applying Claim 1 to X ′ = V −X and Y , we obtain that d(X ′, Y ) = 0,
contradicting the existence of edge st.

Let S denote the set of neighbors of s.
Claim 3. It is not possible to cover S by two tight ts̄-sets.
Proof. Suppose that S ⊆ X ∪ Y , where X and Y are tight ts̄-sets. Let α :=

d(s,X − Y ), β := d(s, Y −X), γ := d(s,X ∩ Y ). By symmetry we may assume that
α ≥ β. (X + s) ∩ T = X ∩ T implies that d(X + s) ≥ λ(X ∩ T ). On the other hand,
since γ is positive, we have d(X + s) = d(X)− α− γ + β < d(X) = λ(X ∩ T ), which
is a contradiction.

By Claims 2 and 3 there is an edge f = sx satisfying (2.2), and then (2.1) holds;
the proof of Locking Theorem 2.2 is complete.

Remark. One may be interested in other possible locking theorems when, rather
than 3-cross-freeness, some other property is assumed for the family L ⊆ 2T to be
locked. On the negative side, Karzanov and Pevzner [9] showed that for every L,
including three pairwise crossing sets, there is a graph G and a subset T of its nodes
so that (G,T ) is inner Eulerian and there is no family of T -paths locking all members
of L. On the other hand, there are other locking theorems in which some restrictions
are imposed on the relationship of G and the family L. For example, let G be a planar
Eulerian graph and let T := {t1, . . . , tk} denote the nodes of its outer face in the cyclic
order. If we define L to consist of all subsets of T of form {ti, . . . , tj} (1 ≤ i ≤ j ≤ k)
then, although L is not 3-cross-free when k ≥ 4, the locking theorem holds. (This
is a theorem equivalent, by planar dualization, to a result of Hurkens, Schrijver, and
Tardos [3].

We will need a slight extension of Theorem 2.2. Let m : T → Z be a nonnegative
integer-valued function on T . A family F of edge-disjoint T -paths is called m-inde-
pendent if every terminal t ∈ T is the end of at most m(t) members of F . Let λm(A)
denote the maximum number of edge-disjointm-independent (A, T−A)-paths. We say
that a family F of edge-disjoint T -paths m-locks a subset A ⊆ T if F is m-independent
and contains λm(A) (A, T − A)-paths. Furthermore, we say that F m-locks a family
L of subsets of T if F m-locks all members of L.

The following theorem is a straightforward consequence of Theorem 2.2 and will
be used in the proof of Theorem 4.3.

Theorem 2.3. Let G be inner Eulerian and L a 3-cross-free family of subsets of
T . Let m : T → Z+ be a vector so that m(t) + d(t) is even for t ∈ T . Then there is a
family F of edge-disjoint T -paths that m-locks L.

Proof. Let G′ be a graph arising from G by splitting every node t ∈ T in the
following way: add a new node t′ along with m(t) parallel edges between t and t′ and
replace each edge xt of G by xt′. The result immediately follows when Theorem 2.2
is applied to (G′, T ).
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3. Flows and polymatroids. A nonnegative set function b : 2T → R+ is called
a polymatroid function if

1. b(∅) = 0,
2. b is monotone increasing, i.e., b(X) ≥ b(Y ) when Y ⊆ X ⊆ T,
3. b is submodular, i.e., b(X) + b(Y ) ≥ b(X ∪ Y ) + b(X ∩ Y ) for X,Y ⊆ T.
The degree function d of a graph G satisfies properties 1 and 3 but typically not

2.
A polyhedron P (b) := {x ∈ RT , x ≥ 0, x(A) ≤ b(A) for every A ⊆ T} is called a

polymatroid. It is called integral if every vertex of P is integer-valued.
The concept of a polymatroid was introduced by Edmonds [2]. He proved that a

polymatroid uniquely determines its defining polymatroid function. Furthermore, a
polymatroid is integral if and only if b is integer-valued.

For a polymatroid P (b) the face B(b) := {x : x ∈ P, x(T ) = b(T )} of P (b) is
called the basis polyhedron and its elements are the bases. Edmonds also proved the
following result.

Theorem 3.1 (see [2]). For an (integral) polymatroid P (b) and an (integer-
valued) vector x ∈ P (b) there is an (integer-valued) basis y with y ≥ x.

The polymatroid intersection theorem of Edmonds states that the linear system
of two polymatroids is totally dual integral (TDI). Here we need only the following
consequence.

Theorem 3.2 (see [2]). For two polymatroid functions a and b defined on the
power set of T

max(x(T ) : x ∈ P (a) ∩ P (b)) = min(a(X) + b(T −X) : X ⊆ T ).

Furthermore, if a and b are integer-valued, the maximum is attained by an integer
vector.

It follows that there is a vector x in P (a)∩P (b) and a bipartition {A,B} of T so
that x(A) = a(A) and x(B) = b(B), and if a and b are integral-valued, then so is x.

Let G = (V,E) be a graph endowed with a capacity function c : E → R+. Let
T be a subset of nodes and A ⊂ T,B := T − A. Define PA := {m ∈ RA

+ : there is a
c-admissible (A,B)-flow x for which x(v) = m(v) for every v ∈ A}.

For X ⊆ A let fA(X) := min(δc(Y ) : Y ⊆ V,X ⊆ Y ∩ T ⊆ A). Here δc(Y ) :=∑
(c(e) : e ∈ [Y, V − Y ]). Clearly, fA is submodular and monotone increasing. By

a multiterminal version of the max-flow min-cut (MFMC) theorem a vector m ∈
RA

+ belongs to PA if and only if m(X) ≤ fA(X). Therefore, PA is a polymatroid.
Furthermore, if c and m are integer-valued, then there is a c-admissible integer-valued
(A,B)-flow x for which x(v) = m(v) for every v ∈ A.

Let G = (V,E) be an Eulerian graph and T a subset of nodes. Define c by c(e) = 1
for every e ∈ E. Let T := {T1, Tk, . . . , Tk} be a partition of T and λi := λ(Ti, T −Ti).
Let P denote the direct sum of polymatroids PT1

, PT2
, . . . , PTk .

Lemma 3.3. Let q be an integer basis of P . Then there is a family F of edge-
disjoint T -paths connecting distinct members of T so that each t ∈ T is the end point
of exactly q(t) paths of F .

Proof. For each Ti ∈ T let Xi be a minimal subset of V for which Xi ∩ T = Ti
and d(Xi) = λi. We claim that these sets are disjoint. If, indirectly, Xi ∩ Xj 6= ∅
for some 1 ≤ i < j ≤ k, then (1.2) implies λi + λj ≤ d(Xi − Xj) + d(Xj − Xi) ≤
d(Xi)+ d(Xj) = λi +λj . Hence λi = d(Xi−Xj), contradicting the minimality of Xi.

We claim that there is a family F0 of edge-disjoint paths in G connecting distinct
Xi’s and not using edges induced by any Xi so that F0 contains λi = d(Xi) paths
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ending in Xi for each i (1 ≤ i ≤ k). Indeed, apply Theorem 2.1′ to the pair (G′, T ′),
where the graph G′ arises from G by contracting each Xi into a node denoted by ti
and T ′ := {t1, . . . , tk}.

Since q is a basis of P , for each Ti there is a family F ′
i of q(Ti) (= λi = d(Xi))

edge-disjoint paths in G connecting Ti and T − Ti, so that each t ∈ Ti is the end
node of q(t) members of F ′

i . For each member of F ′
i erase the edges outside Xi and

denote by Fi the family of the resulting paths. By glueing together the paths in
F0 and the paths in Fi (i = 1, . . . , k) we obtain a family F of paths satisfying the
requirements.

Lemma 3.4. Let q be an integer basis of P and m an integer vector for which
m ≥ q. Then an m-independent family F of T -paths that m-locks T contains at least
q(T )/2 paths connecting distinct members of T .

Proof. By Lemma 3.3, λq(Ti) = q(Ti). The assumption m ≥ q implies that λm ≥
λq. Since F m-locks T , there are λm(Ti) ≥ λq(Ti) = q(Ti) paths in F connecting Ti
and T − Ti for each i = 1, . . . , k, from which the lemma follows.

Remark. Since q is a basis, F contains at most q(Ti) (Ti, T − Ti)-paths, and
therefore F contains at most q(T )/2 paths connecting distinct members of T . That
is, the number of such paths in F is precisely q(T )/2, but we will not need this fact.

Let A and B be two partitions of T and let L := A ∪ B. Let H be a demand
graph on T so that uv is an edge of H if and only if no X ∈ L includes both u and v.

For Ai ∈ A let ai(X) (X ⊆ Ai) be a set function defined by ai(X) := λ(X,T−Ai).
We saw above that ai is a polymatroid function. Define bj analogously for B. For
X ⊆ T let

(3.1) a(X) :=
∑

ai(X ∩Ai) and b(X) :=
∑

bj(X ∩Bj).

Then a and b are polymatroid functions. Let P (a) and P (b) be the polymatroids
defined by a and b, respectively.

Lemma 3.5. Let m′ be an arbitrary even vector in P (a)∩P (b) and h := m′(T )/2.
Then there are h edge-disjoint H-admissible paths.

Proof. Since G is Eulerian, P (a/2)(= P (a)/2) is an integral polymatroid. By
applying Theorem 3.1 to P (a/2) and to x := m′/2 we find that there is an even basis
ma of P (a) so that ma ≥ m′. Analogously, there is an even basis mb of P (b) so that
mb ≥ m′. Define a vector m by m(t) := max(ma(t),mb(t)) for t ∈ T. Clearly, m is
even and ma(t) +mb(t) ≥ m(t) +m′(t) for each t ∈ T . Hence

ma(T ) +mb(T )−m(T ) ≥ m′(T ).

Since L is 3-cross-free, we can apply Theorem 2.3. Let F denote the family of
m-independent T -paths provided by the theorem. Then |F| ≤ m(T )/2.

We are going to prove that the number h′ of H-admissible paths in F is at least
h. (Note that a path is not H-admissible precisely if it connects two nodes belonging
to the same member of L.)

By applying Lemma 3.4 with the choice T := A, P := P (a), q := ma, we find
that there are at most |F| −ma(T )/2 paths in F having both end nodes in the same
member of A. Analogously, there are at most |F| −mb(T )/2 paths in F having both
end nodes in the same member of B.

Hence h′ ≥ |F|− (|F|−ma(T )/2)− (|F|−mb(T )/2) = (ma(T )+mb(T ))/2−|F|≥
(ma(T ) +mb(T )−m(T ))/2 ≥ m′(T )/2 = h, as required.

(Note that an element t ∈ T need not be the end node of exactly m′(t) members
of the family assured by Lemma 3.5. For further comments, see the beginning of
section 6.)
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Fig. 2.

4. Maximization. Let G = (V,E) be a supply graph and H = (T, F ) a demand
graph so that T ⊆ V and E ∩ F = ∅. Throughout this section we assume that the
pair (G,T ) is inner Eulerian; that is, d(v) is even for every v ∈ V −T , where d stands
for the degree function of G.

The maximization form of the edge-disjoint paths problem consists of finding a
maximum number µ = µ(G,H) of edge-disjoint H-admissible paths. We can easily
get an upper bound on µ. Let us call a subpartition {X1, X2, . . . , Xk} of V admissible
if T ⊆ ∪Xi and each Xi ∩ T is stable in H(i = 1, . . . , k). Clearly,

(4.1) µ(G,H) ≤
∑

d(Xi)/2.

The value
∑

d(Xi)/2 will be called the value of the subpartition. Let τ = τ(G,H)
denote the minimum value of an admissible subpartition. We have µ ≤ τ .

Figure 2 shows that we do not have equality, in general.

There are two known special cases when equality holds. Theorem 2.1 shows that
this is the case if H is a complete graph on T . Reformulating Theorem 2.1, we have
the following theorem.

Theorem 4.1. Suppose that (G,T ) is inner Eulerian and the demand graph H
is complete. Then µ(G,H) = τ(G,H).

Another special case for which µ = τ is when H consists of two edges; that is,
H = 2K2.

Theorem 4.2. Suppose that (G,T ) is inner Eulerian and H consists of two edges
siti (i = 1, 2). Then µ(G,H) =τ(G,H).

This is a theorem of Rothschild and Whinston. Actually, they proved it in the
following simpler form.

Theorem 4.2
′ (see [13]). Suppose that (G,T ) is inner Eulerian and H consists

of two edges siti(i = 1, 2). Then µ(G,H) is the minimum cardinality τ ′ of a cut
[X,V −X] of G for which {si, ti} ∩X = 1 (i = 1, 2).

(The equivalence of the two forms, that is, τ = τ ′, may be proven as follows. Since
a cut [X,V −X] for which {si, ti} ∩X = 1 (i = 1, 2) provides an admissible partition
of special form, clearly τ ′ ≥ τ . To see the other direction let P:= {X1, . . . , Xk} be a
minimal admissible subpartition of G for which k is minimum. Then τ =

∑
d(Xi)/2,

and since |T | ≤ 4, we have 2 ≤ k ≤ 4.

If k = 2, then both X1 and X2 contain exactly two terminal nodes which are not
connected in H. Furthermore, if say d(X1) ≤ d(X2), then {X1, V −X1} would also be
an admissible partition whose value is not bigger than that of {X1, X2}. Therefore,
{X1, V −X1} is another optimal admissible partition and hence τ ′ = τ.

If k ≥ 3, then there are two members of P, say X1 and X2, such that each contains
one terminal node and these two terminal nodes, say s1 and s2, are not connected
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in H. But now by replacing X1 and X2 by X1 ∪ X2 we obtain another minimal
admissible subpartition, contradicting the minimum choice of k. )

Let us call a graph H = (T, F ) bistable if there are two partitions A and B of T
such that for x, y ∈ T xy is an edge of H precisely if x and y belong to different parts
of A and different parts of B. It is easily seen that a graph is bistable if and only if its
complement is the line graph of a bipartite graph. (It can also be shown that bistable
graphs are those for which the family of maximal stable sets of H can be partitioned
into two parts, each consisting of disjoint sets.)

Clearly, a clique or, more generally, a complete k-partite graph, is bistable and
2K2 is also bistable. Therefore, Theorems 2.1 and 2.2 are special cases of the following.

Theorem 4.3 (see [6, 10, 11]). Suppose that (G,T ) is inner Eulerian and H =
(T, F ) is bistable. Then µ(G,H) = τ(G,H).

A proof of a slightly weaker, half-integral version was previously sketched in [8].
The reader may feel that bistable demand graphs form a rather peculiar class of
graphs and there may be larger, more natural classes of graphs for which µ = τ holds.
Karzanov and Pevzner [9], however, showed that if H = (T, F ) is not bistable and
contains no isolated nodes, then there is a supply graph G = (V,E), with T ⊆ V and
(G,T ) inner Eulerian, so that µ(G,H) < τ(G,H).

In section 6 we will outline our original plan of proof, which was intended to use
only Theorem 3.2, and we will point out why that attempt failed. This perhaps will
help the reader understand how we were led to invoke the locking theorem in the
proof below.

Proof. By (4.1) we have µ(G,H) ≤ τ(G,H). To see the other direction, first we
prove that the theorem follows from its special case when the graph is completely
Eulerian. So suppose the theorem is true for (G′, H ′) whenever G′ is Eulerian and we
want to prove it for (G,H) when G is inner Eulerian. Let K denote the set of nodes of
G with odd degree. Since (G,T ) is inner Eulerian, K ⊆ T . If K is empty, we are done.
If not, for a new node t, let T ′ := T + t and V ′ := V + t. Let E′ := E ∪ {xt : x ∈ K}
and F ′ := F ∪ {xt : x ∈ T}. Then G′ := (V ′, E′) is Eulerian and H ′ := (T ′, F ′) is
bistable. Let µ′ and τ ′ denote, respectively, the maximum and minimum in question
concerning (G′, H ′). By the assumption µ′ = τ ′.

Obviously, there is an optimal solution to the maximization problem concerning
(G′, H ′) in which every edge xt, x ∈ K, is itself a path in the solution. Thus we have
µ′ = µ+ |K|. Furthermore, let M′ be an optimal admissible subpartition for (G′, H ′)
so that t ∈ X ∈M. Since every edge xt, x ∈ T , belongs to H ′, X ∩ T = {t}. Hence
M−{X} is an admissible subpartition for (G,H), and therefore τ ≤ τ ′−|K|. We can
conclude that µ = µ′ − |K| = τ ′ − |K| ≥ τ, as required.

Let A and B be the two partitions of T defining the bistable graph H. Note that
each stable set of H is a subset of some S ∈ A ∪ B. Let a and b be defined by (3.1).
Since P (a)/2 and P (b)/2 are integral polymatroids, by Theorem 3.2 there exist an
even vector m′ in P (a) ∩ P (b) and a bipartition {A,B} of T so that

(4.2) m′(A) = a(A) and m′(B) = b(B).

Hence we have m′(T ) = a(A) + b(B). By Lemma 3.5 there are m′(T )/2 edge-disjoint
H-admissible paths in G. Thus the proof will be complete if we find an admissible
subpartition of value (a(A) + b(B))/2. To this end let us assume that A is a maximal
subset of T for which A and B := T −A satisfy (4.2). We claim that

(4.3) a(A+ t) > a(A) for every element t ∈ B.
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Indeed, if we have a(A + t) = a(A) for some element t ∈ B, then a(A) = m′(A) ≤
m′(A + t) ≤ a(A + t) = a(A), from which m′(A + t) = a(A + t) and m′(t) = 0.
Furthermore, b(B) = m′(B) = m′(B − t) ≤ b(B − t) ≤ b(B), and hence m′(B − t) =
b(B−t); that is, the bipartition {A+t, B−t} of T would also satisfy (4.2), contradicting
the maximal choice of A. (Note that, because of this choice of A and B, the role of
A and B will not be fully symmetric.)

For each Ai ∈ A for which A ∩ Ai is nonempty there exists a set Xi ⊆ V for
which Ai ∩ A ⊆ Xi ∩ T ⊆ Ai and d(Xi) = a(Ai ∩ A) = m′(Ai ∩ A). Here the last
equality follows from (4.2) and the definition of a. Analogously, for each Bj ∈ B for
which B ∩Bj is nonempty there exists a set Yj for which Bj ∩B ⊆ Yj ∩ T ⊆ Bj and
d(Yj) = b(Bj ∩ B) = m′(Bj ∩ B). Assume that both Xi and Yj are chosen minimal
and let K := {Xi : Ai ∈ A, Ai ∩A nonempty} ∪ {Yj : Bj ∈ B, Bj ∩B nonempty}.

Lemma 4.4. K is an admissible subpartition of value (a(A) + b(B))/2.
Proof. Clearly, each element of T belongs to at least one member of K, and we

show that no more than one. That is, we claim that

(4.4a) Xi ∩ T ⊆ A

and

(4.4b) Yj ∩ T ⊆ B.

We have m′(Ai∩A) = a(Ai∩A) = d(Xi) ≥ a(Ai∩Xi) ≥ m′(Ai∩Xi) ≥ m′(Ai∩A),
and hence a(Ai ∩A) = a(Ai ∩Xi). Hence (4.4a) must hold, for otherwise there is an
element t ∈ (Xi ∩ T )−A and t would violate (4.3).

Also, m′(Bj ∩B) = b(Bj ∩B) = d(Yj) ≥ b(Bj ∩Yj) ≥ m′(Bj ∩Yj) ≥ m′(Bj ∩B),
and hence m′(t) = 0 for every t ∈ Yj ∩ A. We have m′(Xi ∩ A) + m′(Yj ∩ B) =
m′(Ai ∩A) +m′(Bj ∩B) = d(Xi) + d(Yj) ≥ d(Xi − Yj) + d(Yj −Xi) ≥ a((Xi − Yj)∩
A)+b((Yj−Xi)∩B) ≥ m′((Xi−Yj)∩A)+m′((Yj−Xi)∩B) = m′(Xi∩A)+m′(Yj∩B).
Hence d(Y ′

j ) = b(Y ′
j ∩ B) = m′(Y ′

j ∩ B) holds for Y ′
j := Yj −Xi. Therefore, if (4.4b)

is not true and there is an element t ∈ (Yj ∩ T ) − B which belongs to, say Xi, then
Y ′
j is a proper subset of Yj , contradicting the minimal choice of Yj . Hence the proof

of (4.4) is complete.
We claim that K is a subpartition. Assume to the contrary that L ∩ K 6= ∅

for some K,L ∈ K. By the definition of K and by (4.4) we have L ∩ K ∩ T = ∅.
The minimal choice of the members of K implies that d(K) < d(K − L). But then
d(K) + d(L) ≥ d(K − L) + d(L−K) > d(K) + d(L), which is a contradiction.

By its definition, K is admissible and its value is (
∑

i d(Xi) +
∑

j d(Yj))/2 =
(
∑

i a(A ∩Ai) +
∑

j b(B ∩Bj))/2 = m′(T )/2, as required.
By Lemmata 3.5 and 4.4 and by (4.2) we have µ ≥ m′(T )/2 = (a(A)+ b(B))/2 ≥

τ, and the proof of Theorem 4.3 is complete.

5. Algorithmic aspects. In this section we briefly outline how the proof above
gives rise to a strongly polynomial (combinatorial) algorithm in the capacitated case.
(Informally, a polynomial-time algorithm is strongly polynomial if the number of steps
does not depend on the magnitude of the occurring capacities and costs.)

The input of the algorithm consists of two graphs G = (V,E) and H = (T, F ),
where T ⊆ V . G is endowed with a nonnegative rational capacity function c : E ⇒
Q+. We assume that H = (T, F ) is given by two partitions A= {A1, A2, . . . , Ah} and
B= {B1, B2, . . . , Bk} of T so that xy ∈ F if and only if each Ai and each Bj contains
at most one of x and y. (Note that if a graph H is given by its incidence matrix,
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one can test H efficiently for bistability. Namely, decide first by enumeration whether
there are more than 2|T | maximal stable sets of H. If the answer is yes, then H is not
bistable. If the answer is no, then H is bistable if and only if the intersection graph
of the maximal stable sets is bipartite.)

The output of the algorithm consists of a c-admissible H-multiflow x, so
that
∑

(x(t) : t ∈ T ) =
∑

(δc(Z) : Z ∈ K), and an admissible subpartition K =
{Z1, Z2, . . . , Zt} of V . Moreover, if c is integer-valued and Eulerian in the sense that
δc(v) is even for every node v ∈ V , then the output x is integer-valued as well.

Actually, we will assume that c is integer-valued and Eulerian. If this is not
the case, one can multiply through the capacities by 2N , where N denotes the least
common denominator of the capacities. If c is inner Eulerian, we can apply the
reduction described in section 4 to obtain a completely Eulerian case.

First, we remark that the proof of Theorem 2.2 immediately provides a polynomial-
time algorithm for the set system L= A∪B when c is identically 1. It is not difficult
to show that, for general integer-valued Eulerian c, if in every step one splits off as
much capacity as possible, then the algorithm is strongly polynomial (cf. [5]). In what
follows we comment on the use of the polymatroid intersection algorithm to construct
an even vector m′ and an admissible subpartition occurring in the proof of Theorem
4.3.

For disjoint sets X,Y ⊆ V let λc(X,Y ) denote the value of a flow between X and
Y . With the help of a MFMC computation λc(X,Y ) can be computed in (strongly)
polynomial time.

For Ai ∈ A let ai(X) (X ⊆ Ai) be a set function defined by ai(X) := λc(X,T −
Ai). Define bj analogously. For X ⊆ T let a(X) :=

∑
ai(X ∩ Ai) and b(X) :=∑

bj(X ∩ Bj). Let P (a) and P (b) be the polymatroids defined by a and b. It is
known from polymatroid theory that P (a/2) = P (a)/2 (and P (b/2) = P (b)/2). Since
c is Eulerian, both a/2 and b/2 are integer-valued, and hence P (a)/2 and P (b)/2 are
integral polymatroids. Therefore, if z is an integer-valued vector in P (a/2) ∩ P (b/2)
for which z(V ) is maximum, then m′ := 2z is an even vector in P (a) ∩ P (b) for
which m′(V ) is maximum. By Theorem 3.2 there is a bipartition {A,B} of T so that
z(A) = a(A)/2 and z(B) = b(B)/2 holds. Hence m′(A) = a(A) and m′(B) = b(B).

There is a (combinatorial) strongly polynomial algorithm, due to Schönsleben
[14], for computing z (and hence m′) and {A,B}. This algorithm works if an oracle
is available to minimize a(A)− z(A) and b(A)− z(A) over A ⊆ T , where z : T → Q
is a vector. In our case this oracle can indeed be constructed by invoking the MFMC
algorithm, and this way one obtains a purely combinatorial strongly polynomial al-
gorithm for computing m′ and A,B satisfying (4.2). Using the proofs of Claims 1
and 2 in the proof of Theorem 4.3, one may compute in strongly polynomial time an
integer-valued maximum multiflow and an admissible subpartition of minimum value.

Karzanov [6] described a more direct way to computem′ and a minimal admissible
subpartition. His method consists of one MFMC computation on an appropriately
defined auxiliary digraph on |V ||T | nodes, and its complexity is O(ϕ(|T ||V |)), where
ϕ(n) denotes the complexity of an MFMC computation on a network with n nodes.

Next, the even basis ma of P (a) (respectively, mb ∈ P (b)) defined in the proof
of Theorem 4.3 can be constructed by |A| (respectively, |B|) MFMC computations.
Thus, vector m defined in (4.4) can be computed from m′ in O(|T |ϕ(|V |)) steps.

The m-locking problem can be solved by applying at most O(|V |) splitting-off
operations at every node v ∈ V − T ; each operation consists of finding |A| + |B|
maximum flows in G. This requires O(|V |2(|A| + |B|)ϕ(|V |)) or O(|V |2|T |ϕ(|V |))
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m′ = (2, 2, 2, 0) ∈ P (a) ∩ P (b)

A = {v1, v2, v3, v4}, B = ∅
m = (2, 2, 2, 2)

P1 = (v1, v5, v6, v2)

P2 = (v2, v6, v3)

P3 = (v4, v5, v6, v3)

P4 = (v1, v5, v4)

Fig. 3.

operations.

Thus, the overall complexity of the algorithm is O(|V |2|T |ϕ(|V |) + ϕ(|T ||V |)). If
one uses an MFMC algorithm of complexity ϕ(n) = O(n3), this gives an O(|V |5|T |)
upper bound for the running time of the algorithm (to be compared with the com-
plexity O(|V |6|T |3) of the algorithm in [6]).

6. Node demand problems. The reader might have a feeling that invoking
the locking theorem in the proof above contains a seemingly unnecessary twist. In
fact, we originally tried to prove Theorem 4.3 by using the following more natural
and direct approach, but Figure 3 will show why our attempt failed.

Recall that the polymatroid intersection theorem ensured the existence of a max-
imum even vector m′ in P (a)∩P (b) for which m′(T )/2 is precisely τ(G,H). Theorem
4.3 would follow if there existed a system of H-feasible paths so that each t ∈ T is the
end node of precisely m′(t) of them. Unfortunately, such a system need not always
exist, as is shown by the figure.

Demand graph H is defined by the partitions A := {{v1, v4}, {v2}, {v3}} and
B := {{v1, v3}, {v2, v4}}. Here {{v1, v4, v5}, {v2}, {v3}} is an admissible subpartition
of value 3; that is, the maximum µ(G,H) is at most 3. On the other hand, there
are three H-admissible edge-disjoint paths in G, namely, P1 := (v1, v5, v6, v2), P2 :=
(v2, v6, v3), P3 := (v3, v6, v5, v4). Hence the value of the primal and dual optima is 3.
It can easily be checked that this system of paths is the only optimal solution. The
bad thing is that two nodes (v1 and v4) are the end nodes of just one path (that is,
an odd number of them). Therefore, there is no hope to obtain these paths by first
determining an optimal even vector m′ in the intersection of the two polymatroids in
question and then finding H-admissible paths so that each node t ∈ T is the end node
of m′(t) of them. Furthermore, one must insist on the evenness of m′ since Theorem
2.2 is true only for such vectors.

(Incidentally, vector m′ := (2, 2, 2, 0) is an optimal element of the polymatroid
intersection and {A := T,B := ∅} is a bipartition of T satisfying (4.2). Vector m
arising in the proof is m := (2, 2, 2, 2). When Theorem 2.3 is applied to this m we
obtain a family F of four paths, namely, P1 := (v1, v5, v6, v2), P2 := (v2, v6, v3), P3 :=
(v3, v6, v5, v4), P4 := (v1, v5, v4). Among these paths P4 is the only non-H-admissible,
and we obtain P1, P2, P3 as an optimal solution to the maximization problem.)

Although this direct approach to the maximization problem did not prove suc-
cessful, it led us to the following problem to be considered for its own sake.

Let G = (V,E) be a graph H = (T, F ), a demand graph with T ⊆ V . Moreover,
let m : T → Z+ be a demand function. The node demand problem consists of finding
a system of H-admissible paths so that each terminal t is the end node of precisely
m(t) paths. We call the problem and also the vector m feasible when such a solution
exists.
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The node demand problem is called Eulerian if it is inner Eulerian and m(t)+d(t)
is even for each t ∈ T . We call a demand graph H two-covered (one-covered) if every
node t ∈ T belongs to at most two (exactly one) maximal stable sets of H. Note
that bistable graphs are always two-covered but a five-element circuit, for example, is
two-covered and not bistable. It can be shown that a graph H is two-covered if and
only if H is the complement of the line graph of a triangle-free graph.

Theorem 6.1. Suppose that the node demand problem defined by (G,H,m) is
Eulerian and H is two-covered. Then it is feasible if and only if the following condition
holds:

(6.1) m(S)−m(X ∩ T − S) ≤ d(X)

for every X ⊆ V and S ⊆ X ∩ T where S is stable in H.
Proof. Since S is stable in H, in a solution to the node demand problem each path

with an end node in S has the other end node in T − S. Among these m(S) paths
at most m(X ∩ T − S) may end in X − S, and hence at least m(S)−m(X ∩ T − S)
must end outside X, from which (6.1) follows.

To prove the sufficiency first observe that the family L of maximal stable sets of
H is 3-cross-free. Indeed, for a contradiction, let S1, S2, S3 be maximal stable sets of
H which are pairwise crossing. Since H is two-covered, S1∩S2∩S3 = ∅ and there are
distinct elements a ∈ S1 ∩ S2, b ∈ S2 ∩ S3, c ∈ S3 ∩ S1. Now {a, b, c} is stable and a
maximal stable set S containing a, b, c is distinct from each Si. But then the element
a (and b, c, as well) would belong to more than two maximal stable sets, contradicting
that H is two-covered.

Claim 4. λm(S) = m(S) for any stable set S of H.
Proof. Recall that λm(S) was defined to be the maximum number of edge-disjoint

paths connecting S and T − S so that each x ∈ T is the end node of at most m(x)
of them. By a version of the Menger theorem λm(S) = min(d(X) + m(S − X) +
m(T − S −X) : X ⊆ V ). (Indeed, apply the edge-disjoint undirected version of the
Menger theorem to the graph arising from G by adding two new nodes s, t so that
s (respectively, t) is connected to each node x in S (respectively, in T − S) by m(x)
new parallel edges.)

If X denotes the set where the minimum is attained, then, by (6.1), we have
λm(S) = d(X) +m(S −X) +m(X ∩ T − S) ≥ m(S ∩X)−m(X ∩ T − S) +m(S −
X) +m(X ∩ T − S) = m(S), and the claim follows.

Apply Theorem 2.3 to G,m,L and consider the path system F provided by the
theorem (where L is the collection of maximal stable sets of H).

Claim 5. F is a solution to the node demand problem.
Proof. Let S be an element of L, that is, a maximal stable set of H. Since F

locks S, F contains λm(S) = m(S) paths connecting S and T − S. This shows that
each node x in S is the end node of precisely m(x) members of F and that each path
in F having an end node in S must have the other end node in T − S.

Because every node x of H belongs to a maximal stable set of H, x is the end
node of precisely m(x) members of F . Moreover, since every pair of nonadjacent
nodes x, y of H belongs to a maximal stable set of H, no path in F may connect x
and y; that is, F consists of H-feasible paths.

Remark. The condition in Theorem 6.1 may be formulated in an equivalent form.
By taking S := X ∩ Z in (6.1), we see that (6.1) implies

(6.1′) m(X ∩ Z)−m(X ∩ T − Z) ≤ d(X)
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for every X ⊆ V and every maximal stable set Z of H. Conversely, we claim that
(6.1) follows from (6.1′). Indeed, let Z be a maximal stable set of H including S.
Then m(S) ≤ m(X ∩Z) ≤ d(X) +m(X ∩ T −Z) ≤ d(X) +m(X ∩ T − S), and (6.1)
follows.

Equation (6.1′) has the advantage that there are only a few maximal stable sets
in a two-covered graph (at most 2|T |). On the other hand, in the proof above it is
slightly easier to work with (6.1).
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Abstract. The worst case length of a tour for the Euclidean traveling salesman problem pro-
duced by the nearest neighbor (NN) heuristic is studied in this paper. Nearest neighbor tours for a
set of arbitrarily located points in the d-dimensional unit cube are considered. A technique is devel-
oped for bounding the worst case length of a tour. It is based on identifying sequences of coverings
of [0, 1]d. Each covering Pk consists of sets Ci, with diameter bounded by the diameter D(Pk) of
the covering. For every sequence of coverings a bound is obtained that depends on the cardinality
of the coverings and their diameters. The task of bounding the worst case length of an NN tour is
reduced to finding appropriate sequences of coverings. Using coverings produced by the rectangular
lattice with appropriately shrinking diameter, it is shown that the worst case length of an NN tour
through N points in [0, 1]d is bounded by [d

√
d/(d−1)]N(d−1)/d+ o(N(d−1)/d). For the unit square

the tighter bound 2.482
√
N + o(

√
N) is obtained using regular hexagonal lattice coverings.

Key words. Euclidean traveling salesman problem, nearest neighbor tours, worst case analysis
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PII. S0895480194278246

1. Introduction. Consider a set V = {x1, . . . , xN} of points in [0, 1]d. Let
G = (V,E) be the complete graph with vertex set V . The length of edge (xk, xl) is
the Euclidean distance |xk − xl| between xk and xl. Let T (V ) be the set of the tours
for graph G. The tours of G are in one-to-one correspondence with the permutations
of the vertices. A tour xi1 , xi2 , . . . , xiN with starting point xi1 will be denoted by
(i1, i2, . . . , iN ). The length of tour t = (i1, i2, . . . , iN ) is equal to the sum of the
lengths of the edges of the tour; that is,

L(t) =

N∑
k=1

|xik − xik+1
|,

where by convention xiN+1
= xi1 . The Euclidean traveling salesman problem (TSP)

is to find the minimum length tour through the set of points V .
The TSP is one of the most heavily studied problems of combinatorial optimiza-

tion [4, 8]. In general graphs where the length of the edges may be arbitrary the TSP
was among the first problems shown to be NP-complete (see Karp [7]). The Euclidean
TSP also has been shown to be NP-complete (see Papadimitriou [10]). There has been
a lot of work on heuristics and approximate algorithms with guaranteed performance
[5].

A popular heuristic for the Euclidean TSP is the nearest neighbor (NN) algorithm.
According to this the tour is derived by selecting an arbitrary initial point xi1 and
visiting successively from point xik the point xik+1

, which is the closest to xik , among
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those that have not been visited yet. Hence any tour t = (i1, i2, . . . , iN ) produced by
the NN heuristic satisfies the property

|xik+1
− xik | = min

j=k+1,...,N
|xik − xij |, k = 1, . . . , N − 1.(1)

Also, any tour satisfying (1) can be produced by the NN heuristic if the starting point
is selected accordingly. Any tour that satisfies property (1) will be called an NN tour
throughout the rest of the paper. Denote by NN(V ) the set of all NN tours that
correspond to the set of points V . The objective of this paper is to study the worst
case length of an NN tour over all configurations V = {x1, . . . , xN} of N points in
the d-dimensional unit cube [0, 1]d. This is defined as

LN = sup
V⊂[0,1]d,|V |=N

max
t∈NN(V )

L(t).

One way to assess the performance of the NN heuristic is to compare LN with
the length of the worst case minimum length tour

PN = sup
V⊂[0,1]d,|V |=N

min
t∈T (V )

L(t).

There are several studies on obtaining bounds for PN . Steele [11] contains a detailed
account of related results. Few [3] obtained an upper bound on PN for the general
d-dimensional case; that is,

PN ≤ d{2(d− 1)}(1−d)/2dN (d−1)/d + o(N1−2/d).

This was further improved for large d by Moran [9], while Karloff [6] improved the up-
per bound for d = 2 by showing that PN ≤ 0.984

√
2
√
N + c. For the two-dimensional

case, Supowit, Reingold, and Plaisted [12] proved that

(
4

3

)1/4√
N − o(

√
N) ≤ PN .

The performance of the NN heuristic has been previously studied for the TSP
in general graphs as well as in more special cases of graphs that satisfy certain con-
straints. Johnson and Papadimitriou [5] review related work.

Upper bounds on LN are obtained in this paper for the Euclidean TSP. From
these bounds and well-known lower bounds on PN it follows that for the Euclidean
TSP in the unit square, the ratio LN/PN is bounded asymptotically by 2.3095 or,
more precisely, that for every ε > 0, there exists N(ε) such that LN/PN ≤ 2.3095 + ε
for N > N(ε). Similar results follow for NN tours in higher dimensions from the
corresponding bounds on LN in higher dimensions.

The rest of the paper is organized as follows. In section 2 the technique for
bounding LN using coverings of [0, 1]d is presented and the main bounding theorem
is obtained. In section 3 this technique is applied with coverings derived from the
regular rectangular lattice and a bound for NN tours in d dimensions is obtained. In
section 4 the bound is tightened for the unit square using regular hexagonal coverings.
Some further points are discussed in section 5.
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2. The general bound. The diameter D(C) of a subset C of Rd is defined as

D(C) = sup
x,y∈C

|x− y|.

The essential property of an NN tour used in the derivation of the bounds in this
paper is captured in the following lemma.

Lemma 2.1. For any subset C of Rd and tour t = (i1, i2, . . . , iN ) produced by the
NN heuristic, there is at most one vertex xik ∈ C such that

|xik − xik+1
| > D(C).

Proof. By contradiction, assume there are two vertices xil , xim in C such that
|xil − xil+1

| > D(C) and |xim − xim+1
| > D(C). Without loss of generality assume

that l < m. Then

|xim − xil | ≥ min
j=l+1,...,n

|xij − xil | = |xil+1
− xil | = |xil − xil+1

| > D(C) ≥ |xim − xil |,

which contradicts from (1) the assumption that t is an NN tour.
Lemma 2.1 will be used to derive the main bounding theorem in the following,

after some preliminary definitions.
A covering P of a set A ⊂ Rd is defined to be any collection of subsets of Rd,

P = {Cl : l = 1, . . . , P}, Cl ⊂ Rd, l = 1, . . . , P , with the property ∪Pl=1Cl ⊇ A. The
sets that constitute the covering will be called cells of the covering in the following.
The diameter D(P) of the covering P is defined as

D(P) = max
l=1,...,P

D(Cl).

The cardinality P of covering P will be denoted as |P|.
Note that for every covering, a bound on an NN tour can be obtained easily using

Lemma 2.1. In any cell there can be at most one point with an adjacent edge of the
tour that has length greater than the cell diameter. Hence, at most |P| edges of an
NN tour will have length larger than the diameter of the covering, while the length
of all the other edges will be smaller than D(P). Therefore,

LN ≤ (N − |P|)D(P) + |P|D(A),(2)

where the fact that the length of any edge of an NN tour will be less than D(A) has
been used. By considering sequences of coverings instead of a single covering, bounds
tighter than (2) can be obtained. In the rest of the paper by “covering” we will mean
the covering of [0, 1]d.

Consider sequences of coverings Pm, m = 1, . . . ,M with decreasing diameter,
where

D(Pm) ≥ D(Pm+1), m = 1, . . . ,M − 1.

The following theorem holds.
Theorem 2.2. The worst case length of an NN tour is bounded as follows:

LN ≤ ND(PM ) +
M∑
m=2

|Pm|(D(Pm−1)−D(Pm)) + |P1|(D(A)−D(P1)).(3)
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Proof. It is shown that for an arbitrary tour t = (i1, . . . , iN ),

L(t) ≤ ND(PM ) +
M∑
m=2

|Pm|(D(Pm−1)−D(Pm)) + |P1|(D(A)−D(P1)).(4)

Consider the increasing sequence of subsets of vertices Vm, m = 1, . . . ,M defined as
follows:

Vm = {xik : xik ∈ V, |xik − xik+1
| > D(Pm)}.

Note that the sets V − VM , VM − VM−1, VM−1 − VM−2, . . . , V2 − V1, V1 constitute a
partition of V . Therefore, the length of tour t can be written as follows:

(5)

L(t) =
∑

xik∈(V−VM )

|xik −xik+1
|+

M∑
m=2

∑
xik∈(Vm−Vm−1)

|xik −xik+1
|+

∑
xik∈V1

|xik −xik+1
|.

By the definition of the sets Vi,

|xik − xik+1
| ≤ D(PM ), xik ∈ (V − VM ),(6)

|xik − xik+1
| ≤ D(Pm−1), xik ∈ (Vm − Vm−1), m = 2, 3, . . . ,M,(7)

|xik − xik+1
| ≤ D(A), xik ∈ V1.(8)

By substituting from equations (6), (7), and (8) to equation (5), we get

L(t) ≤ |V − VM |D(PM ) +
M∑
m=2

|Vm − Vm−1|D(Pm−1) + |V1|D(A).(9)

Since V1, V2, . . . , VM , V is an increasing sequence of sets (Vm ⊆ Vm+1), we have |Vm−
Vm−1| = |Vm| − |Vm−1|, m = 2, . . . ,M , and substituting in (9) we get

L(t) ≤ (|V | − |VM |)D(PM ) +
M∑
m=2

(|Vm| − |Vm−1|)D(Pm−1) + |V1|D(A).(10)

By rearranging the sum in the right-hand side of (10), we get

L(t) ≤ |V |D(PM ) +

M∑
m=2

|Vm|(D(Pm−1)−D(Pm)) + |V1|(D(A)−D(P1)).(11)

Note that relationship (11) holds for any TSP tour. The fact that t is an NN tour is
now used to bound |Vm|. From Lemma 2.1 we have that any cell C of covering Pm
can contain at most one point xik , such that |xik − xik+1

| > D(C). Therefore, each
cell of Pm can contribute at most one point to the set Vm; hence

|Vm| ≤ |Pm|, m = 1, . . . ,M.(12)

Substituting in inequality (11) from (12) we get (4).
In the next two sections it is shown how Theorem 2.2 can be applied to specific

coverings to get bounds on LN .
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3. Bounds from rectangular lattice coverings. In this section a bound on
LN is obtained using the coverings implied by the rectangular lattice. Consider the
sequence of coverings Pk, k = 1, . . . ,M, where

Pk = {Cl1l2...ld : li = 0, 1, . . . , k − 1, i = 1, . . . , d}

and

Cl1l2...ld =

{(
l1
k

+ x1,
l2
k

+ x2, . . . ,
ld
k

+ xd

)
: 0 ≤ xi <

1

k
, i = 1, . . . , d

}
.

That is, the cells of the covering are d-dimensional cubes with edge length 1/k. By
applying Theorem 2.2 with the sequence of coverings above, we have the following.

Theorem 3.1. The worst case length of a tour through N points in [0, 1]d pro-
duced by the NN heuristic is bounded as follows:

(13)

LN ≤
d−1∑
m=1

(d−m+ 1)
√
d

d−m N (d−m)/d + ln(N1/d − 1) + 1 +
1

N1/d − 1
−
√
d

d−1∑
m=1

1

d−m.

Proof. Note that the diameter of all cells in covering Pk is equal to
√
d/k; there-

fore,

D(Pk) =

√
d

k

and also

|Pk| = Pk = kd.

By applying Theorem 2.2 to this covering, we get

LN ≤ N
√
d

1

M
+

M∑
k=2

kd

( √
d

k − 1
−
√
d

k

)

= N
√
d

1

M
+
√
d
M∑
k=2

(
kd−2

k − 1
+ kd−2

)
.

Using the formula for the sum of a geometric series, we get

LN ≤ N
√
d

1

M
+
√
d
M∑
k=2

(
kd−2 + kd−3 + · · ·+ 1 +

1

k − 1

)
.(14)

Substituting in (14) using the well-known bounds (see [2]),

n∑
k=m

f(k) ≤
∫ n

m−1

f(x)dx

for the sums in the parentheses in (14), and after some calculations we get

LN ≤
N
√
d

M
+

d−1∑
m=1

√
d

d−mMd−m + ln(M − 1)−
√
d
d−1∑
m=1

1

d−m + 1.(15)



176 L. TASSIULAS

Inequality (15) holds for all values of M . For M = bN1/dc, inequality (15) becomes

LN ≤
N
√
d

bN1/dc +
d−1∑
m=1

√
d

d−mbN
1/dcd−m + ln(bN1/dc − 1)−

√
d
d−1∑
m=1

1

d−m + 1.(16)

By replacing the floors in (16) such that the inequality remains true, we get

LN ≤
N
√
d

N1/d − 1
+

d−1∑
m=1

√
d

d−mN (d−m)/d + ln(N1/d − 1)−
√
d
d−1∑
m=1

1

d−m + 1.(17)

By using the formula for the sum of a geometric series in the term N
√
d/(N1/d − 1),

we finally get

LN ≤
d−1∑
m=1

(d−m+ 1)
√
d

d−m N (d−m)/d

+
1

N1/d − 1
+ ln(N1/d − 1)−

√
d

d−1∑
m=1

1

d−m + 1,

and the proof is complete.
Note that the higher-order term of the bound in Theorem 3.1 is [d

√
d/

(d−1)]N (d−1)/d. The bound in Theorem 2.2 depends on the type of coverings used in
the derivation. By selecting the appropriate type of cells in the coverings, the derived
bound can be tightened, as is shown in the following for the unit square.

4. Tighter bounds for the unit square using the regular hexagonal lat-
tice. Consider coverings of the unit square using the hexagonal lattice. The covering
Pk consists of hexagons with diameter 2/

√
3k, arranged as depicted in Figure 1. Hence

the diameter of the covering is

D(Pk) = 2/(
√

3k).(18)

By counting the cells in the covering carefully we can verify that

|Pk| ≤ (2k + 1)
k√
3

+ 3k + 1.(19)

Considering the sequence Pk, k = 1, . . . ,M of coverings Pk as above and using The-
orem 2.2, we can obtain the following.

Theorem 4.1. The worst case length of a tour through N points in [0, 1]2 pro-
duced by the NN heuristic is bounded as follows:

LN ≤ 25/23−3/4
√
N +

10
√

3 + 2

3
√

3
ln

((
3

4

)1/4√
N

)
+

4
√

3 + 5

3
.(20)

Proof. Applying Theorem 2.2 with the hexagonal coverings Pk, k = 1, . . . ,M and
using (18) and (19), we obtain

LN ≤
2N√
3M

+

M∑
m=2

(
2√
3
m2 +

1 + 3
√

3

3
m+ 1

)(
2√

3(m− 1)
− 2√

3m

)
+ 3.(21)
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Fig. 1. The unit square covered by a regular hexagonal covering and the cell of the covering
are depicted.

By doing some calculations in (21), we get

LN ≤
2N√
3M

+

M∑
m=2

2√
3
m2 2√

3m(m− 1)

+

M∑
m=2

1 + 3
√

3

3
· 2m√

3m(m− 1)
+

M∑
m=2

2√
3m(m− 1)

+ 3,

from which we finally get

LN ≤
2N√
3M

+
4

3
(M − 2) +

M∑
m=2

10
√

3 + 2

3
√

3(m− 1)
+

M∑
m=2

2√
3m(m− 1)

+ 3.(22)
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Substituting in (22) using the bounds

n∑
k=m

f(k) ≤
∫ n

m−1

f(x)dx

for the summations, we get

LN ≤
2N√
3M

+
4

3
(M − 2) +

10
√

3 + 2

3
√

3
ln(M − 1) +

4√
3

+ 3.(23)

By selecting M = d(3/4)1/4
√
Ne, equation (23) becomes

LN ≤
2N√

3d(3/4)1/4
√
Ne

+
4

3
(d(3/4)1/4

√
Ne−2)+

10
√

3 + 2

3
√

3
ln(d(3/4)1/4

√
Ne−1)+

4√
3

+3.

(24)
Replacing the ceilings in equation (24) such that the inequality remains true and after
some calculations, we get

LN ≤ 23/23−3/4
√
N+

4

3

((
3

4

)1/4√
N − 1

)
+

10
√

3 + 2

3
√

3
ln

((
3

4

)1/4√
N

)
+

4√
3

+3,

(25)
from which the theorem follows after simple calculations.

Note that the highest-order term of the bound of Theorem 3.1 for the two-
dimensional case is 2.84

√
N , while the highest-order term of the bound of Theorem

4.1 is equal to 2.482
√
N .

5. Discussion. A methodology for bounding the length of NN tours in Euclidean
TSPs using coverings of [0, 1]d was presented in this paper. The general bound in sec-
tion 2 is proportional to both the diameter of the covering and its cardinality. Hence,
in order to obtain good bounds, it is important to find coverings with small diameter
and as small cardinalities as possible. In two dimensions, hexagonal coverings achieve
a better trade-off between cardinality and diameter than rectangular coverings, and
consequently the bound that was obtained using these coverings in section 4 is better
than the one obtained by using rectangular coverings. In fact, the hexagonal covering
is the one that achieves the optimal trade-off between diameter and cardinality in two
dimensions, as is mentioned in the book of Conway and Sloane [1], where coverings
and their properties are studied extensively.
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Abstract. The following constrained matching problem arises in the area of manpower schedul-
ing. Consider an undirected graph G = (V,E) and a digraph D = (V,A). A master/slave-matching
(MS-matching) in G with respect to D is a matching in G such that for each arc (u, v) ∈ A for
which the node u is matched, the node v is matched too. The problem is to find an MS-matching
of maximum cardinality. This paper addresses the special case where G is bipartite with bipartition
V = W ∪ U and every (weakly) connected component of D is either an isolated node or two nodes
in U which are joined by a single arc. The polyhedral structure of this special case is investigated
and a min-max theorem which characterizes the cardinality of a maximum MS-matching in terms of
the weight of a special node cover is derived. This min-max theorem includes as a special case the
theorem of König.

Key words. constrained matching problem, polyhedral combinatorics, min-max relations

AMS subject classifications. 05C70, 90C10

PII. S0895480195280538

1. Introduction. Let G = (V,E) be an undirected graph. A matching in G is
a subset of the edges such that no two edges share the same node. The matching
problem is to find a matching of maximum cardinality. A node cover in G is a subset
C of the nodes such that each edge is incident with at least one node in C. The node
cover problem is to find a node cover of minimum cardinality.

Let D = (V,A) be a digraph with the same node set as G. If (u, v) is an arc in
A, we say that v is a master of u and u is a slave of v. A master/slave-matching
(MS-matching for short) in G with respect to D is a matching in G with the property
that if (u, v) ∈ A and u is matched, then so is v (see Figure 1 for an example of an
MS-matching). The (unweighted) MS-matching problem is the problem of finding an
MS-matching of maximum cardinality.

Hefner and Kleinschmidt [5] encountered this problem in practice when they de-
signed a manpower scheduling system for some printing works. They showed that the
MS-matching problem isNP-hard but is solvable in polynomial time if every (weakly)
connected component of D has size at most two, even if edge weights are present and
the problem is to find an MS-matching of maximum weight.

In this paper we study the MS-matching problem for instances whereG is bipartite
with bipartition V = W ∪U and each connected component of D is either an isolated
node or two nodes in U which are joined by a single arc. This special case was of
particular interest in the application mentioned by Hefner and Kleinschmidt [5]. In
this case D induces a partial function f : U → U with f(u) = v if and only if
(u, v) ∈ A. The domain of f , denoted by dom(f), is the set of slaves and the range
of f , denoted by ran(f), is the set of masters. Note that f is injective, f(u) 6= u for
each u ∈ dom(f) and dom(f) ∩ ran(f) = ∅. We call a partial function with these
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1, 1996. This research was supported by grant 03-KL7PAS-6 of the German Federal Ministry of
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Fig. 1. An MS-matching.

properties a dependence function on U . Conversely, a bipartite graph together with a
dependence function f defines an instance of the MS-matching problem which satisfies
the above restrictions. Thus an MS-matching in G with respect to f is a matching M
in G such that for each matched node u ∈ dom(f) the node f(u) is matched, too. If
the dependence function f is clear from the context, then we will sometimes say that
M is an MS-matching in G instead of saying that M is an MS-matching in G with
respect to f .

Let G be a bipartite graph and f be a dependence function. The main result
of this paper will be a min-max theorem which characterizes the cardinality of a
maximum MS-matching in G with respect to f . In combinatorial optimization a lot
of min-max relations are known. One of the most well known such relations is the
following theorem of König [7].

Theorem 1.1. In a bipartite graph a maximum matching and a minimum node
cover have the same cardinality.

There are at least two reasons why such min-max theorems are useful. The first
is that they often establish that an optimization problem is in NP ∩ co-NP (see
[1] for a general reference to the theory of NP-completeness). Consider the following
decision version of the matching problem: given a graph and a positive integer k, does
there exist a matching of cardinality at least k? It is easy to see that the problem is
in NP since we need only guess k edges and check in polynomial time that no two
of them share a common node. On the other side the theorem of König enables us
to show that the problem is also in co-NP if the graph is bipartite. A node cover
of cardinality k − 1 is a proof of polynomial length that a graph has no matching
of cardinality k. Since for virtually all problems in NP ∩ co-NP polynomial time
algorithms are known, many people believe that P = NP ∩ co-NP. Thus showing
that a problem is in NP ∩ co-NP provides a strong indication that the problem is
solvable in polynomial time.

A second reason why min-max theorems are useful is that they provide stopping
criteria for optimization algorithms. If M is a matching in a bipartite graph G and
C is a node cover in G with |C| = |M |, then both M and C are optimal.

A general approach for obtaining min-max relations is offered by polyhedral com-
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binatorics (see [9] for an excellent survey on polyhedral combinatorics).
To obtain a min-max theorem for MS-matchings we define objects which are dual

to MS-matchings. For a vector y ∈ Z
|V |
+ and an edge e = [w, u] ∈ E we say that y

covers e exactly yw+yu times (the symbol Z+ denotes the set of nonnegative integers).

An MS-node cover in G with respect to f is a vector y ∈ Z
|V |
+ with the following two

properties:
1. Every edge [w, u] ∈ E with u ∈ U \ ran(f) is covered by y at least once.
2. Every edge [w, u] ∈ E with u ∈ ran(f) is covered by y at least 1 + yf−1(u)

times.
The weight w of an MS-node cover y is the sum over all components which do not

correspond to slaves; i.e., w = y(V \ dom(f)) :=
∑

v∈V \dom(f) yv.

In the next section we introduce two polyhedra FMSM(G, f) and MSC(G, f)
which are dual to each other. The integral points of FMSM(G, f) are the incidence
vectors of MS-matchings in G while the integral points of MSC(G, f) are MS-node
covers in G. The subject of section 3 is the polytope FMSM(G, f). We character-
ize the vertices of FMSM(G, f) and show that the linear program max

∑
e∈E xe,

x ∈ FMSM(G, f) always has an integral optimal solution. The proof of the latter
statement will provide a polynomial time algorithm for solving the (unweighted) MS-
matching problem which is based on linear programming. In section 4 we study the
polyhedron MSC(G, f) and prove that all its vertices are integral. Based on the re-
sults in sections 3 and 4 we will show in section 5 that in a bipartite graph with a
dependence function the cardinality of a maximum MS-matching and the weight of a
minimum MS-node cover are the same.

We conclude this section by introducing some notation which will be used in the
subsequent sections. By R (R+, R−) we denote the set of real (nonnegative real,
nonpositive real) numbers. Let G be an undirected graph. For a node v we denote
the set of edges incident with v by δ(v). The incidence vector of a subset F ⊆ E is
the vector χF ∈ {0, 1}|E| defined by

χFe :=

{
1, e ∈ F,
0, e /∈ F.

The vector which has all components equal to zero is denoted by 0. Analogously, we
define the vector 1. For the ith unit vector we write ei. Let M and N be a set of row
and column indices, respectively. For a vector x = (xi)i∈M and a subset I ⊆ M we
define x(I) :=

∑
i∈I xi. Let C = (Cij) i∈M

j∈N
be an |M | × |N |-matrix. For any I ⊆ M

and J ⊆ N we will write CIJ for the submatrix of C whose rows and columns are
indexed by I and J , respectively. We write CI· instead of CIN and C·J instead of
CMJ . If I or J is a singleton, we omit the braces (for example, for the ith row of
C we write Ci· instead of C{i}·). We adopt the same notation for subvectors. For
example, if x = (xi)i∈M is a vector and I ⊆ M , we write xI for the subvector whose
components are indexed by I.

2. Polyhedra associated with the MS-matching problem. Let G = (W ,
U,E) be a bipartite graph and f be a dependence function on U . The MS-matching
polytope MSM(G, f) is the convex hull of incidence vectors of MS-matchings

MSM(G, f) = conv{χM |M is an MS-matching in G with respect to f}.

The MS-matching problem can be written as an integer (binary) linear program:

max 1Tx,
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Fig. 2. A graph G and a dependence function f for which FMSM(G, f) has fractional vertices.

x(δ(v)) ≤ 1 for all v ∈ V \ dom(f),(1)

x(δ(v))− x(δ(f(v))) ≤ 0 for all v ∈ dom(f),(2)

x ∈ {0, 1}|E|.(3)

Inequality (1) says that each node other than a slave is incident with at most one
matched edge. Inequality (2) says that the number of matched edges incident with a
slave v is not greater than the number of matched edges incident with its master f(v).
Note that the inequalities x(δ(v)) ≤ 1 for all v ∈ dom(f) follow from the inequalities
(1) and (2). Hence the MS-matching polytope can be written as

MSM(G, f) = conv{x ∈ {0, 1}|E| | x satisfies (1), (2)}.

If we replace the integrality condition (3) by the weaker condition

xe ≥ 0 for all e ∈ E,(4)

then we obtain the fractional MS-matching polytope

FMSM(G, f) = {x ∈ R|E| | x satisfies (1), (2), (4)}.

As demonstrated by the following example this polytope may have nonintegral
vertices.

Example 2.1. Consider the graph G and the dependence function f of Figure 2.
The vector x ∈ R2, xwu1

= xwu2
= 1

2 , is a nonintegral vertex of FMSM(G, f), since
it is the unique optimal solution to max ywu2

, y ∈ FMSM(G, f).

The dual of the linear program max 1Tx, x ∈ FMSM(G, f), is

min y(V \ dom(f)) =
∑

v∈V \dom(f)

yv,

yw + yu ≥ 1 for all [w, u] ∈ E, u ∈ U \ ran(f),(5)

yw + yu − yf−1(u) ≥ 1 for all [w, u] ∈ E, u ∈ ran(f),(6)

yv ≥ 0 for all v ∈ V .(7)

It is easy to see that the integral solutions to this linear program are MS-node
covers in G with respect to f . Therefore we call the polyhedron

MSC(G, f) = {y ∈ R|V | | y satisfies (5), (6), (7)}

the MS-node cover polyhedron. We will see in section 4 that all the vertices of
MSC(G, f) are integral.
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Fig. 3. The auxiliary graph corresponding to the graph and dependence function of Figure 1.

3. Odd path cycles and the polytope FMSM(G, f). Now we consider the
polytope FMSM(G, f). To study its vertices we introduce an auxiliary graph.

The auxiliary graph corresponding to G = (V,E) and f is the graph H = (V, F )
where F = E ∪ { [v, f(v)] | v ∈ dom(f)}. The edges in F \ E will be called artificial
edges.

An odd path cycle of G is a subset C ⊆ E which can be extended to an odd cycle
in H by adding only artificial edges.

Hence an odd path cycle of G consists of an odd number of node disjoint paths
which have even length. The endnodes of these paths are nodes in U .

Example 3.1. Consider the graph G and the dependence function f of Figure 1.
The auxiliary graph H corresponding to G and f is shown in Figure 3. The edge set
C = {[w1, u1], [w1, u6], [w2, u2], [w2, u3], [w3, u4], [w3, u5]} is an odd path cycle of G
since C ∪ {[u1, u2], [u3, u4], [u5, u6]} is an odd cycle in H.

The following theorem characterizes the vertices of FMSM(G, f).
Theorem 3.2. Let x ∈ FMSM(G, f). If x is a vertex of FMSM(G, f) then

xe ∈ {0, 1
2 ,1} for all e ∈ E and the edges e for which xe = 1

2 form node disjoint odd
path cycles in G.

Proof. The proof of this theorem is a slight modification of an argument of
Grötschel [2, p. 52] given for the 2-matching polytope. Let x̄ be an arbitrary vertex
of FMSM(G, f). We introduce slack variables ȳv for each v ∈ V defined by

ȳv =

{
1− x̄(δ(v)), v ∈ V \ dom(f),
x̄(δ(f(v)))− x̄(δ(v)), v ∈ dom(f).

By definition the vector ( x̄ȳ ) satisfies the following equations:

x(δ(v)) + yv = 1 for all v ∈ V \ dom(f),(8)

x(δ(v))− x(δ(f(v))) + yv = 0 for all v ∈ dom(f),(9)

x, y ≥ 0.(10)

If we add for a node v ∈ dom(f) equation (8) for f(v) to equation (9) for v, then
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equations (9) become

x(δ(v)) + yf(v) + yv = 1 for all v ∈ dom(f).(11)

Then ( x̄ȳ ) is a vertex of the polytope

{(xy ) ∈ R|E|+|V | | x satisfies (8), (11), (10)}

= {(xy ) ∈ R|E|+|V | | C(xy ) = 1, x ≥ 0, y ≥ 0},

where C is the |V | × (|E| + |V |) coefficient matrix given by equations (8) and (11).
The submatrix C·E of C is the node-edge incidence matrix of G. If v /∈ ran(f) then
the column vector C·v is the vth unit vector ev. For v ∈ ran(f) the vector C·v is the
vector ev + ef−1(v); i.e., C·v is the incidence vector of the artificial edge [v, f−1(v)].
Hence, the submatrix C·E∪ran(f) is the node-edge incidence matrix of the auxiliary
graph H corresponding to G and f . Let E′ be the set of edges e for which x̄e is
nonintegral and V ′ be the set of nodes v for which ȳv is nonintegral. We have to show
that x̄e = 1

2 for all e ∈ E′ and that E′ is the union of node disjoint odd path cycles.
Let C ′ be the matrix which we obtain if we delete all zero rows in the matrix C·E′∪V ′
and let p and q be the number of rows and columns of C ′, respectively. Now we have

C ′·E′ x̄E′ + C ′·V ′ ȳV ′ = 1.(12)

Since the columns of C ′ are linearly independent, we have p ≥ q. Let r be the number
of entries 1 in C ′. Each column of C ′ has at most two 1’s; i.e., r ≤ 2q. On the
other hand, each row of C ′ has at least two 1’s, since each component of xE′ and yV ′

is nonintegral but the right-hand side of equation (12) is integral. This means that
r ≥ 2p and p ≤ q, and, consequently, p = q. Therefore, C ′ is a quadratic nonsingular
0–1-matrix with exactly two nonzeros in each row and each column; i.e., V ′ ⊆ ran(f).
It is well known in combinatorial optimization [8] that such a matrix is the node-edge
incidence matrix of odd cycles in H. The unique solution to system (12) is x̄e = 1

2 for
all e ∈ E′ and ȳv = 1

2 for all v ∈ V ′. Since the column vectors of the submatrix C ′·V ′
are the incidence vectors of artificial edges in H, the submatrix C ′·E′ is the node-edge
incidence matrix of node disjoint odd path cycles in G.

This characterization of the vertices of FMSM(G, f) is very useful for the opti-
mization. Assume that H is bipartite. In this case a polynomial method for solving
the MS-matching problem is straightforward. Since H has no cycle of odd length,
G cannot have an odd path cycle. From Theorem 3.2 it follows that FMSM(G, f)
has no fractional vertices and hence FMSM(G, f) = MSM(G, f). Thus the prob-
lem can be reduced to finding an optimal vertex solution to the linear program 1T y,
y ∈ FMSM(G, f). It is well known that Khachians ellipsoid method [6] can be used
to solve this problem in polynomial time (see [3], [4]).

On the other hand, if H is not bipartite, then FMSM(G, f) may have fractional
vertices as demonstrated in Example 2.1. Although fractional vertices of FMSM(G, f)
cannot be interpreted as MS-matchings we can still optimize over FMSM(G, f) to
obtain an optimal solution. This is shown by the following theorem.

Theorem 3.3. The linear program max 1T y, y ∈ FMSM(G, f), always has an
integral optimal solution. Such an integral optimal solution can be constructed from
any fractional optimal vertex solution.

Proof. Let x be a fractional optimal vertex solution to max 1T y, y ∈ FMSM(G,
f), and E′ = {e ∈ E | xe /∈ Z}. From Theorem 3.2 we know that the edges in E′
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Fig. 4. (a) A fractional optimal vertex solution. Solid thick edges correspond to variables with
value 1, dashed thick edges to variables with value 1

2
, and thin edges to zero-valued variables. (b)

The path P . (c) The integral optimal solution obtained from rounding.

form node disjoint odd path cycles. Let us choose one odd path cycle C from E′ and
a master u which is the endnode of one of the paths in C. Now we can extend C to
an odd cycle in the auxiliary graph H and drop the artificial edge which is incident
to u. This yields a path P in H which has even length and the node u as one of its
endnodes. Now we traverse the path P starting from node u. If a nonartificial edge e
of P has odd rank, we round up xe to 1; if e has even rank, we round down xe to 0.
The new solution x′ resulting from this rounding procedure is again valid. Note that
if we decrease the value x(δ(v)) for a master v, we decrease the value x(δ(f−1(v)))
for its slave f−1(v), too; conversely, if we increase the value x(δ(v)) for a slave v, we
also increase the value x(δ(f(v))) for its master f(v). Moreover since all the paths
in the odd path cycle have even length we have rounded up as many variables as we
have rounded down. Thus x′ is in FMSM(G, f) and has the same objective value as
x but strictly fewer fractional components. If we repeat this procedure for each odd
path cycle, we obtain an integral optimal solution.

As mentioned above, an optimal vertex solution to max 1T y, y ∈ FMSF(G, f) can
be found in polynomial time. Since the rounding procedure described in the proof of
Theorem 3.3 can obviously be done in O(|E|) time, we have a polynomial algorithm
for finding an MS-matching of maximum cardinality. (Alternatively, an optimal MS-
matching can be found by reducing the problem to a nonbipartite matching problem;
see [5].)

Corollary 3.4. The MS-matching problem for a bipartite graph and a depen-
dence function can be solved in polynomial time.

Example 3.5. Consider again the MS-matching instance of Figure 1. A fractional
optimal vertex solution is shown in Figure 4(a). The dashed thick edges correspond
to fractional variables and form a single odd path cycle. Following the construction
in the proof of Theorem 3.3 we choose u = u1 and obtain the path P which is shown
in Figure 4(b). By rounding up the variables corresponding to odd ranked edges of P
and rounding down the variables corresponding to even ranked edges of P we obtain
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the integral optimal solution of Figure 4(c).

4. The polyhedron MSC(G, f). Next we turn to the polyhedron MSC(G, f).
Theorem 4.1. All vertices of the MS-node cover polyhedron MSC(G, f) are

integral.
Proof. Assume we had a nonintegral vertex y of MSC(G, f). We will show that y

can be represented by a proper convex combination of two points y1, y2 ∈ MSC(G, f).
This will be a contradiction to the assumption that y is a vertex of MSC(G, f). For
the definition of y1 and y2 we need four vectors z, d1, d2, d ∈ R|V | defined by

zv =

 1− yv, v ∈W,
yv, v ∈ U \ ran(f),
yv − yf−1(v), v ∈ ran(f);

d1
v =

 −1, (v ∈W and zv ∈ R+\ Z) or (v ∈ U and zv ∈ R−\ Z),
1, (v ∈W and zv ∈ R−\ Z) or (v ∈ U and zv ∈ R+\ Z),
0 otherwise;

d2
v =

{
1, v ∈ ran(f) and zf−1(v) /∈ Z,
0 otherwise;

d = d1 + d2.

We define y1 = y+ εd and y2 = y− εd where ε > 0 is a sufficiently small real number.
Then y = 1

2y
1 + 1

2y
2 is a convex combination of y1 and y2. To complete the proof

we have to show that d is not the zero vector (i.e., the convex combination is proper)
and y1 and y2 are valid points of MSC(G, f).

Let yv be some nonintegral component of y. We distinguish three cases in order
to show that d is not the zero vector:

Case 1. v ∈W . Then dv = d1
v ∈ {−1, 1}.

Case 2. v ∈ U \ ran(f). Then zv = yv ∈ R+\ Z; hence dv = d1
v = 1.

Case 3. v ∈ ran(f). If zv = yv−yf−1(v) ∈ Z, then yf−1(v) /∈ Z since yv /∈ Z. Thus
dv = d2

v = 1. If zv ∈ R+\ Z then dv = 1 + d2
v ≥ 1. Finally, if zv ∈ R−\ Z then either

yf−1(v) ∈ Z and dv = d1
v = −1 or yf−1(v) /∈ Z and df−1(v) = 1 from Case 2.

In order to show that y1 and y2 are valid points of MSC(G, f) we have to check
the inequalities (5), (6), and (7). If one of these inequalities is strict for y then it
must be valid for both y1 and y2 since we have chosen ε sufficiently small. Therefore
it is sufficient to check those inequalities which are satisfied by y with equality. In the
following we only show that y1 ∈ MSC(G, f). The validity of y2 is shown analogously.

Let [w, u] ∈ E, u ∈ U \ ran(f) and yw + yu = 1. Then zw = 1 − yw = yu = zu.
We distinguish two cases:

Case 1. zw ∈ Z. Then dw = 0 and du = 0; hence y1
w = yw and y1

u = yu.
Case 2. zw /∈ Z. Then zw ∈ R+ \ Z since zw = yu ≥ 0. Hence dw = −1 and

du = 1 and thus y1
w + y1

u = yw + εdw + yu + εdu = 1.
Let [w, u] ∈ E, u ∈ ran(f) and yw + yu − yf−1(u) = 1. Then zw = 1 − yw =

yu − yf−1(u) = zu. We distinguish three cases:
Case 1. zw ∈ Z. Then dw = 0; i.e., y1

w = yw. Now if zf−1(u) ∈ Z then du = 0
and df−1(u) = 0; hence y1

u = yu and y1
f−1(u) = yf−1(u). Otherwise zf−1(u) = yf−1(u) ∈

R+ \ Z; i.e., du = d2
u = 1 and df−1(u) = d1

f−1(u) = 1. Hence y1
w + y1

u − y1
f−1(u) =

yw + (yu + ε)− (yf−1(u) + ε) = 1.
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Fig. 5. A maximum MS-matching and a minimum MS-node cover.

Case 2. zw ∈ R+ \ Z. Then dw = −1. Now if zf−1(u) ∈ Z then du = 1 and
df−1(u) = 0; hence y1

w + y1
u − y1

f−1(u) = (yw − ε) + (yu + ε) − yf−1(u) = 1. Otherwise

zf−1(u) = yf−1(u) ∈ R+\ Z; i.e., du = 2 and df−1(u) = 1. Hence y1
w + y1

u − y1
f−1(u) =

(yw − ε) + (yu + 2ε)− (yf−1(u) + ε) = 1.
Case 3. zw ∈ R− \ Z. Then dw = 1. Now if zf−1(u) ∈ Z then du = −1

and df−1(u) = 0; hence y1
w + y1

u − y1
f−1(u) = (yw + ε) + (yu − ε) − yf(−1)(u) = 1.

Otherwise zf−1(u) = yf−1(u) ∈ R+\ Z; i.e., du = −1 + 1 = 0 and df−1(u) = 1. Thus
y1
w + y1

u − y1
f−1(u) = (yw + ε) + yu − (yf−1(u) + ε) = 1.

Let v ∈ V and yv = 0. In order to show that y1
v = 0 we show dv = 0. Again we

distinguish three cases.
Case 1. v ∈W . Then dv = 0 follows immediately from the definition of d.
Case 2. v ∈ U \ ran(f). Then zv = yv = 0 and hence dv = 0.
Case 3. v ∈ ran(f). Then zv = −yf−1(v) ≤ 0. Now either zv ∈ Z and yf−1(v) ∈ Z

or zv ∈ R−\ Z and yf−1(v) /∈ Z. In both cases we have dv = 0.

5. A min-max theorem. Our main result is based on the theorems of sections
3 and 4.

Theorem 5.1. Let G = (W,U,E) be a bipartite graph and f be a dependence
function on U . The cardinality k of any MS-matching in G is no greater than the
weight w of any MS-node cover in G. Furthermore the cardinality of a maximum
MS-matching and the weight of a minimum MS-node cover are the same.

Proof. Let k be the cardinality of an arbitrary MS-matching and w be the weight
of an arbitrary MS-node cover. Then we have

k ≤ max {1Tx | x ∈ MSM(G, f)}
= max {1Tx | x ∈ FMSM(G, f)}
= min {y(V \ dom(f)) | y ∈ MSC(G, f)}
= min {y(V \ dom(f)) | y ∈ MSC(G, f), y ∈ Z|V |}
≤ w.

The first and third equalities are proved in Theorems 3.3 and 4.1, respectively. The
second equality follows from the duality theorem of linear programming. If k is the
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cardinality of a maximum MS-matching and w is the weight of a minimum MS-node
cover, then the two inequalities are tight. This proves the theorem.

Example 5.2. In Figure 5 we see an MS-matching problem with an MS-matching
of cardinality 4 and an MS-node cover of weight 4 showing that both are optimal.

Remark. Note that if the dependence function f is the partial function which
is nowhere defined, then every MS-matching in a graph is an ordinary matching and
every minimum MS-node cover is the incidence vector of a node cover. Thus the above
min-max theorem can be considered as a generalization of the theorem of König.
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Abstract. The average degree of a subgraph H of the r-dimensional hypercube Qr equals at
most the maximum Hamming distance of any two nodes in H. A corollary is that the minimum
number of edges to delete from Qr such that any two nodes at Hamming distance ` are separated is
(r + 1− `)2r−1. This corollary has applications to multicommodity flows.
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1. Introduction. Let r be a positive integer. The r-dimensional hypercube Qr
is defined recursively in terms of the cartesian product of Qr−1 and the complete
graph on two nodes K2 as follows:

Q1 = K2,

Qr = K2 ×Qr−1.

Alternatively, Qr may be defined as a graph whose node set consists of 2r r-dimensional
boolean vectors (i.e., vectors with zero–one coordinates), where two nodes are adjacent
whenever they differ in exactly one coordinate. Throughout the paper, a node of Qr
is identified with its boolean vector. We denote the coordinates of an r-dimensional
boolean vector v by v1, v2, . . . , vr. For two boolean vectors v and w having the same
dimension, their Hamming distance, denoted by d(v, w), is defined to be the number
of coordinates where they differ,

∑
i |vi −wi|. For a subgraph H of Qr the Hamming

diameter, denoted by d(H), is defined to be the maximum over all pairs of nodes
v, w ∈ H of d(v, w). The average degree of H equals twice the ratio of the number of
edges of H to the number of nodes, 2|E(H)|/|V (H)|.

Our main result follows in Theorem 1.1.
Theorem 1.1. Let H be a subgraph of a hypercube. Then the average degree of

H is at most d(H), with equality holding if and only if H is a hypercube.
This theorem has several interesting corollaries.
Corollary 1.2. The minimum number of edges to delete from the hypercube Qr

such that any two nodes at Hamming distance ` (` = 1, . . . , r) are separated is exactly
(r + 1− `)2r−1.

Corollary 1.3. Let F be a monotone decreasing family of sets (i.e., if S ∈ F ,
then every subset of S is also in F) such that the union of any two sets in the family
has cardinality at most `. Then the average cardinality of a set in F is at most `/2,
with equality holding if and only if F is the family of all subsets of a set of cardinality
`.

Another consequence of Theorem 1.1 is a result for the existence of a monochro-
matic connected subgraph of Hamming diameter ` in a 2-edge coloring of the hyper-
cube.
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Corollary 1.4. The smallest hypercube such that for any 2-coloring of its edges
there exists a monochromatic connected component of Hamming diameter at least ` is
Q2`−1.

Note that our main theorem and its corollaries give tight bounds. For each of the
above results, weaker bounds are easy to obtain. We illustrate with weaker versions
of Theorem 1.1 and Corollary 1.2.

Let the number of “ones” in an r-dimensional boolean vector v be denoted by
#v, i.e., #v =

∑r
i=1 vi. For a set of boolean vectors S, #S denotes

∑
v∈S #v, i.e.,

the number of “ones” summed over all elements of S.
Lemma 1.5. Let H be a subgraph of a hypercube. Then the average degree of H

is at most 2d(H).
Proof. Let the hypercube be r-dimensional. Consider the set of r-dimensional

boolean vectors representing the nodes of Qr, and assume that the zero vector is in
H. Then for each vector v ∈ H, #v is at most d(H), and so

∑
v∈H #v is at most

d(H)|V (H)|.
The number of edges in H is at most

∑
v∈H #v, since each edge can be associated

with a “one” in a coordinate of one of its end nodes such that the other end node has
a zero in that coordinate. Hence, the average degree, which equals 2|E(H)|/|V (H)|,
is at most 2

∑
v∈H #v/|V (H)| ≤ 2d(H).

Corollary 1.6. The minimum number of edges to delete from the hypercube
Qr such that any two nodes at Hamming distance ` (` = 1, . . . , r) are separated is at
least (r + 2− 2`)2r−1.

Proof. Let C ⊆ E be an edge set of minimum cardinality such that each connected
component of Qr\C has Hamming diameter ≤ `− 1. By Lemma 1.5, each connected
component D has average degree ≤ 2(` − 1); hence, the number of edges |E(D)| is
≤ (` − 1)|V (D)|. Summing over all connected components, the number of edges in
Qr\C is ≤ (`−1)2r. Hence, the number of edges in C is at least |E(Qr)|− (`−1)2r =
(r + 2− 2`)2r−1.

Corollaries 1.6 and 1.2 have applications to multicommodity flows.
The next section contains notation and definitions. Section 3 has the proof of the

main theorem. Section 4 contains the proofs of the remaining corollaries as well as
some basic results on hypercubes. The last section discusses multicommodity flows.

2. Preliminaries on hypercubes. LetB be the set of all r-dimensional boolean
vectors, and let H be a fixed subset of B. Regarding the elements of B as the nodes
of the r-dimensional hypercube Qr, it is natural to associate with H the subgraph of
Qr induced by the nodes corresponding to H. We use H and its associated subgraph
interchangeably. A neighbor of an element v ∈ H is an element w ∈ Qr such that
d(v, w) = 1. An H-neighbor of an element v ∈ H is a neighbor of v that is in H.
A neighbor w of v is called an up neighbor of v (respectively, a down neighbor of v)
if #w > #v (#w < #v). The edge set of H,E(H) consists of all unordered pairs
{u, v}, u ∈ H, v ∈ H such that d(u, v) = 1. The degree of an element v ∈ H, degH(v)
is the number of edges containing v, i.e., degH(v) = |{w : {v, w} ∈ E(H)}|. The
average degree of H is obviously

∑
v∈H degH(v)/|H|.

For a subset S of H, let E′(S) denote E(H)\E(H\S); i.e., E′(S) is the subset of
E(H) containing all pairs such that at least one element of the pair is in S.

An edge {v, w} of Qr whose adjacent nodes v and w differ in the ith coordinate
(i = 1, . . . , r) is called an i-dimensional edge; {v, w} is said to have dimension i. An
aligned matching of Qr is a perfect matching whose edges all have the same dimension.
The edges of Qr can be partitioned into r aligned matchings, one per dimension, and
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Qr+1 can be obtained by adding an aligned matching between two identical copies of
Qr.

A path P of Qr, with end nodes, say u and v, is called a shortest path if it has
the minimum number of edges among all paths of Qr between u and v.

3. The proof of the main theorem. The compression of a set of boolean
vectors is a well-known operation; our description follows [Bo 86]. For a set of boolean
vectors H and its compressed set H ′, the diameter of H ′ is at most the diameter of
H, while the average degree of H ′ is at least the average degree of H (the proof is
given below). Therefore, it suffices to prove the main theorem for H ′. Our proof uses
induction on the number of nodes in H ′. The induction step deletes a special subset
S of nodes such that the ratio of the difference between the sum of the node degrees
in H ′ and in H ′\S to |S| equals the Hamming diameter of H ′, i.e.,∑

v∈H′
degH′(v)−

∑
v∈H′\S

degH′\S(v) = d(H ′)|S|.

3.1. Compression. For a mapping f : B → B and v ∈ B, fj(v) denotes the
jth coordinate of v’s image; i.e., if f(v) = w, then fj(v) = wj , j = 1, 2, . . . , r.

A compression on the ith coordinate P i is a mapping B → B such that

P ij (v) =

{
vj if j 6= i,
0 if j = i.

P i is called an i-compression. Intuitively, an i-compression “pushes” a boolean
vector along an i-dimensional edge of Qr. If vi = 0, then note that P i(v) = v.

Let H be a set of boolean vectors. The i-compression of H, P i(H) is defined to
be {P i(v)|v ∈ H}

⋃
{v ∈ H|P i(v) ∈ H}. Intuitively, an i-compression of H pushes

all of H along i-dimensional edges of Qr such that no element of H is pushed into
another. If H = P i(H), then H is called an i-compressed set. If H is an i-compressed
set, then for any element v ∈ H with vi = 1, the down neighbor w of v with wi = 0
is also in H.

Example. Let H = {001, 011, 100}. Then d(H) = 3 and |E(H)| = 1. We have
P 3(H) = {000, 010, 100}, with d(P 3(H)) = 2 and |E(P 3(H))| = 2.

An i-compression of H obviously preserves the number of elements in H. The
next lemma shows that it does not increase the diameter and does not decrease the
number of edges.

Lemma 3.1. Let H be a set of boolean vectors, and let P i(H) be the i-compression
of H. Then

(i) |H| = |P i(H)|,
(ii) |E(H)| ≤ |E(P i(H))|, and

(iii) d(H) ≥ d(P i(H)).
Proof. (i) The proof is obvious. (ii) We construct an injection from E(H) to

E(P i(H)) as follows: an edge {x, y} ∈ E(H) is mapped to{
{P i(x), P i(y)} if either P i(x) 6∈ H or P i(y) 6∈ H,
{x, y} otherwise.

It is easy to check that this mapping is an injection. Then the conclusion follows. (iii)
Let x, y be a pair of vectors in P i(H) with d(x, y) = d(P i(H)). Let x′ = x if x ∈ H,
otherwise let x′ be the vector in H with P i(x′) = x; similarly, let y′ = y if y ∈ H,
otherwise let y′ be the vector in H with P i(y′) = y.
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If xi = yi, then it is easily seen that d(x, y) in P i(H) equals d(x′, y′) or d(x′, y′)−1
in H and hence d(x, y) ≤ d(H). Otherwise, suppose that xi = 0 and yi = 1. Then
observe that y′ = y. Now, if x ∈ H, then d(x, y) in P i(H) equals d(x′, y′) in H,
and hence d(x, y) ≤ d(H). Otherwise, if x 6∈ H, then observe that P i(y) ∈ H
because y ∈ P i(H) and yi = 1; hence, d(x, y) in P i(H) equals d(x′, P i(y)) in H, so
d(x, y) ≤ d(H).

Observe that compressions on two different coordinates i and j commute, i.e.,
P i(P j(H)) = P j(P i(H)). Therefore, to compress a set on all coordinates, we may
fix any ordering on the coordinates and apply i-compressions in the order. A set H
is called a compressed set if it is compressed on all coordinates, namely, all down-
neighbors of an element in H are also in H. The previous lemma obviously applies
to the compressed set H ′ obtained from a set H.

3.2. The proof. Call a pair of elements u, v ∈ H antipodal if d(u, v) = d(H);
i.e., the number of coordinates where u and v differ equals the Hamming diameter of
H. For an antipodal pair u, v in H, define Quv to be the subgraph of Qr induced
by nodes w such that for every coordinate i (1 ≤ i ≤ r), where u and v agree, w
also agrees with them. Note that Quv contains u and v and is a d(H)-dimensional
hypercube. A coordinate i (1 ≤ i ≤ r) is said to be in Quv if u and v differ in that
coordinate. For an element x ∈ H∩Quv, the antipodal element is the element y ∈ Quv
such that d(x, y) = d(H).

Lemma 3.2. Let u, v be an antipodal pair in H, and let Quv be the d(H)-
dimensional hypercube induced by u and v.

(i) For every antipodal pair x, y ∈ H
⋂
Quv, every H-neighbor of x (or y) is

contained in Quv.
(ii) Suppose that H is a compressed set of boolean vectors. Then for every co-

ordinate i (1 ≤ i ≤ r) that is not in Quv and for every antipodal pair
x, y ∈ H ∩Quv, xi = yi = 0.

Proof. (i) First, suppose that x = u and y = v. Consider a neighbor w of v that
is not in Quv; i.e., v and w agree on all coordinates except on one coordinate i, and
i is not in Quv. Then u and w also differ in coordinate i, and, further, uj 6= wj for
each of the coordinates j in Quv. Hence, d(u,w) = d(H) + 1, and so w is not in H.

The proof for other antipodal pairs x, y follows from the fact that Qxy = Quv.
(ii) Since H is compressed, for every x ∈ H all the down neighbors of x are in H.

If x, y ∈ H ∩Quv, coordinate i is not in Quv and xi = 1; then the down neighbor w of
x that has wi = 0 must be in H (by i-compression), and this is not possible since the
antipodal element y of x would be at distance d(x, y) + 1 = d(H) + 1 from w.

Denote by S the set of all elements x in H
⋂
Quv such that there exists a y

in H
⋂
Quv with d(x, y) = d(H); i.e., for every antipodal pair of elements x, y in

H
⋂
Quv, both x and y are in S.
Lemma 3.3. Let H be a compressed set of boolean vectors, and let u, v be an

antipodal pair in H. Let Quv and S be as above. Then |E′(S)| = #S.
Proof. For each edge {x, y} ∈ E(H), if #x > #y then orient it as x → y,

otherwise orient it as y → x, i.e., orient each edge from its up end to its down end.
Now note that for each x ∈ S, the number of edges oriented away from x exactly
equals #x, because for every coordinate j with xj = 1 there exists an H-neighbor y
that has yj = 0, since H is compressed.

The proof is completed using the following claim.
Claim. For every edge w → x oriented into x (x ∈ S), the up neighbor w of x is

in S.
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x

w y

z

Fig. 1. A key property of S: for every node x ∈ S and every edge w → x, w must be in S.
Dashed lines indicate antipodal node pairs, i.e., d(x, y) = d(w, z) = d(H).

Suppose that w and x differ in the ith coordinate; so, xi = 0 and wi = 1 (see
Figure 1). Since w is in Quv (by Lemma 3.2), the ith coordinate must be in Quv.
Consider the antipodal element y of x. This element must be in S, and since yi 6= xi,
yi = wi = 1. Let z be the down neighbor of y that differs only in the ith coordinate.
Since H is compressed, z is in H, and by Lemma 3.2, z is in Quv. Now observe
that d(w, z) = d(H), because w and z differ in all coordinates of Quv. Hence, by the
definition of S, both w and z are in S. This proves the claim and concludes the proof
of the lemma.

The proof of the main theorem follows. The subgraph H in our main theorem
need not be connected; also, H need not be an induced subgraph.

Proof of Theorem 1.1. Both parts are proved together by induction on the number
of nodes of H. Clearly, the theorem holds for a subgraph with one node.

Let H also denote the set of boolean vectors representing the nodes of the sub-
graph. Assume that H is a compressed set. This is without loss of generality since
Lemma 3.1 shows that compression does not increase the diameter and does not de-
crease the average degree. In particular, if H has its average degree equal to its
Hamming diameter before compression, then after compression either the equality
holds or the first part of the theorem is violated.

Let u, v be an antipodal pair of vectors in H, and let Quv and S be as defined
above.

Suppose that H\S 6= ∅. For every x ∈ S and every coordinate i not in Quv,
xi is zero, by Lemma 3.2. It follows that for every antipodal pair x, y in S, #x +
#y = d(H). Therefore #S = d(H)|S|/2. Since |E′(S)| = #S (by Lemma 3.3),
|E′(S)| = d(H)|S|/2. Now, consider H\S and apply the induction hypothesis to the
induced subgraph to obtain

2|E(H\S)|
|V (H\S)| ≤ d(H\S) ≤ d(H).

Since E(H) is the disjoint union of E′(S) and E(H\S),

(∗) 2|E(H)| = 2|E(H\S)|+ 2|E′(S)| ≤ d(H)|V (H\S)|+ d(H)|S| = d(H)|V (H)|.

That is, the average degree of H is at most d(H). This proves the first part of the the-
orem. If H has its average degree equal to its Hamming diameter, then inequality (∗)
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holds with equality throughout. Consequently, the average degree of H\S equals
d(H), which is at least d(H\S). By the induction hypothesis, H\S is a hypercube
whose Hamming diameter equals d(H). This is a contradiction since any hypercube
that is strictly contained in H has Hamming diameter less than d(H). Hence, in this
case, the average degree of H is less than d(H).

The other case is that H\S = ∅. Then H = S is a subgraph of Quv, and the
average degree of H is at most the average degree of Quv, which equals d(H). If
H has its average degree equal to its Hamming diameter, then it is easily seen that
H = Quv; i.e., H is a hypercube. This completes the proof.

4. More results on hypercubes. This section contains the proofs of Corollar-
ies 1.2–1.4 and has two more results. Lemma 4.1 is needed to give the lower bound
in Corollary 1.4. Lemma 4.3 below is needed to construct maximum multicommodity
flows on hypercubes; see Lemma 5.4.

Proof of Corollary 1.2. The number of edges to delete from Qr to separate any two
nodes at Hamming distance ` is at least (r+ 1− `)2r−1. The proof uses Theorem 1.1
and is similar to the proof of Corollary 1.6.

The bound on |C| is tight: consider the case when each connected component of
Qr\C is a hypercube Q`−1.

Remark. Consider the minimum number of edges to delete from Qr such that any
two nodes at Hamming distance ` or more are separated. The following observation
shows that the bound of Corollary 1.2 applies here too.

If a connected subgraph of Qr contains two nodes v and z with d(v, z) = j, then,
for each i = 1, 2, . . . , j, the subgraph has a pair of nodes x and y with d(x, y) = i.

Proof of Corollary 1.3. Represent each set S in F by its 0-1 incidence vector v(S)
and let H be the set of incidence vectors corresponding to F . Observe that H is a
compressed set since for every v(S) in H, any set S′ whose incidence vector is a down
neighbor of v(S) is in F (since S′ ⊆ S and F is monotone decreasing).

Clearly, the cardinality of a set S ∈ F equals #v(S). Further, H has Hamming
diameter at most ` since the Hamming distance of any two vectors v(S1) and v(S2)
equals the cardinality of the symmetric difference of S1 and S2, which is at most the
cardinality of S1

⋃
S2. Hence, the average cardinality of a set in F equals

(
∑
v∈H #v)

|V (H)| =
|E(H)|
|V (H)| ≤

`

2
,

where the last inequality follows from Theorem 1.1. If the average cardinality of a set
in F equals `/2, then the average degree of H equals the Hamming diameter of H, so
by Theorem 1.1 H is a hypercube. Then F is the family of all subsets of an `-set.

Lemma 4.1. The edges of the 2r-dimensional hypercube Q2r can be colored with
two colors such that every maximal monochromatic connected component is a hyper-
cube Qr.

Proof. For 1 ≤ i ≤ r, color the i-dimensional edges red, and color the remaining
edges (of dimension j, r < j ≤ 2r) blue.

Take any maximal monochromatic connected component G, say, colored red. Let
u be any node in G. Node u and all nodes of Q2r whose coordinates differ from u
only within the first r coordinates form a red Qr, denoted by G′. Clearly, G′ ⊆ G by
the maximality of G.

Moreover, for any edge incident with any node of G′, if the edge is not in G′, then
it must have dimension greater than r, so the edge is colored blue. Hence, G ⊆ G′.
Since G = G′, it follows that G is a Qr.
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Proof of Corollary 1.4. Let r be the smallest dimension such that for any 2-edge
coloring of Qr there exists a monochromatic connected component with Hamming
diameter ≥ `. Theorem 1.1 implies that r = 2` − 1. When r = 2` − 2, note that
there exists a 2-coloring of Qr such that each monochromatic connected component
is a Q`−1 by Lemma 4.1; therefore, no such component has Hamming diameter ≥ `.

Now, consider Qr = Q2`−1. If a connected component formed by the edges
colored red contains a pair of nodes whose Hamming distance is ≥ `, then we are done.
Otherwise, the edges colored blue form a multicut that separates all nodes at Hamming
distance `, so by Corollary 1.2 this multicut has cardinality ≥ (r+ 1− `)|V (Qr)|/2 =
(`)|V (Qr)|/2. Then the blue subgraph has a connected component whose average
degree is ≥ `, therefore Theorem 1.1 implies that this blue connected component has
Hamming diameter ≥ `.

The proof of Lemma 4.3 uses the following observation.
Lemma 4.2. A shortest path in Qr between two nodes v and w has d(v, w) edges.

Moreover, a path in Qr is a shortest path if and only if each edge in the path has a
distinct dimension.

Lemma 4.3. The edges of Qr can be partitioned among 2r/2 shortest paths of
length r.

Proof. The proof uses induction on odd r (r = 1, 3, 5, . . .). Define a shortest
r-path partition of Qr, denoted Sr, to be a set of 2r/2 edge-disjoint shortest paths in
Qr of length r.

Induction hypothesis. If r is an odd positive integer, then Qr has a shortest
r-path partition Sr such that each node in Qr is an end node of exactly one path in
Sr.

Clearly, the induction basis holds with r = 1.
Suppose that r is odd and satisfies the induction hypothesis. The induction

proof is completed by constructing shortest path partitions for Qr+1 and Qr+2. The
construction for Qr+1 is given below; the construction for Qr+2 is similar and is
illustrated in Figure 2.

Take two identical copies of Qr, say Qr and Q̄r, and form Qr+1 by adding an
aligned matching between these two copies. Denote the corresponding node in Q̄r of
a node v ∈ Qr by v̄ and the corresponding path in Q̄r of a path P ∈ Sr by P̄ . Let
S̄r = {P̄ |P ∈ Sr}. For each path P ∈ Sr, let tP and hP denote the end nodes.

Extend each path P ∈ Sr at node tP by adding the edge {tP , t̄P }, extend each
path P̄ ∈ S̄r at node h̄P by adding the edge {h̄P , hP }, and let Sr+1 be the set of
extended paths, i.e.,

Sr+1 = {P ∪ {tP , t̄P } | P ∈ Sr}
⋃

{P̄ ∪ {h̄P , hP } | P̄ ∈ S̄r}.

Then each path in Sr+1 is a shortest path of length r+ 1, since each of its edges is in
a different dimension, and any two paths in Sr+1 are edge disjoint by construction.

5. Multicommodity flows and the ratio of the minimum multicut to the
maximum multiflow. The multicommodity flow problem consists of maximizing the
sum of the flows of several commodities, each having its own source and sink, subject
to flow conservation and capacity constraints. A multicut is defined to be an edge set
whose removal from the network separates the source and sink of every commodity,
and the multicut’s capacity is defined to be the sum of the capacities of the edges
in the set. The minimum capacity of a multicut provides an upper bound on the
maximum value of a multicommodity flow. (Precise definitions are given below.)
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Fig. 2. Partitioning the edges of Qr+2 into shortest paths of length r + 2, using a partition of
the edges of Qr into shortest paths of length r.

In the cases of 1-commodity and 2-commodity flows, the max-flow min-cut the-
orems of Ford and Fulkerson and Hu, respectively, show that the maximum value of
the flow equals the minimum capacity of a (multi)cut. However, this equality does
not hold for more than two commodities, and it is easy to construct examples show-
ing that the ratio of the minimum capacity of a multicut to the maximum value of
a multicommodity flow can be greater than one. (Throughout this section, we use
the term ratio to mean the ratio just defined.) Building on recent pioneering work
by Leighton and Rao [LR 88] and Klein et al. [KRAR 95], Garg, Vazirani, and Yan-
nakakis [GVY 96] showed that the ratio is always O(log k), where k is the number of
commodities. Garg, Vazirani, and Yannakakis considered whether the bound on the
ratio is tight, i.e., whether there exist networks and source-sink pairs such that the
ratio is Ω(log k), and they succeeded in constructing such instances. Their construc-
tion is based on expander graphs. In fact, to the best of our knowledge, all known
instances for showing an Ω(log k) bound on the ratio are based on expanders.

We give a simple and explicit construction for a family of instances where an
Ω(log k) ratio is achieved. Here is the construction: for an even number r, take an
r-dimensional hypercube Qr and for every pair of nodes at distance r/2, specify a
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commodity with its source at one node of the pair and its sink at the other. Proposi-
tion 5.5 below shows that the ratio for the above instance is exactly r/4 + 1/2. Since

the number of commodities k is at most
(

2r

2

)
≤ 22r, the ratio is greater than log2 k/8.

Several recent papers prove approximate max-flow min-cut theorems for problems
related to the multicut problem. The Garg–Vazirani–Yannakakis bound of O(log k)
on the ratio of the minimum capacity of a multicut to the maximum value of a multi-
commodity flow is one such theorem. From the perspective of integer programming,
such a theorem focuses on a standard integer programming formulation (IP) of the
problem of interest (e.g., the multicut problem) and proves a bound on the integrality
gap. By the integrality gap we mean the ratio of the optimal value of (IP) to the op-
timal value of the linear programming relaxation of (IP). Leighton and Rao [LR 88],
based on earlier work by Shahrokhi and Matula [SM 90], study the sparsest cut prob-
lem and prove that the integrality gap is O(log k) (here, the number of commodities
k is Ω(|V |2)). Also, [LR 88] gives instances of the sparsest cut problem on expander
graphs where the integrality gap is Ω(log k). Linial, London, and Rabinovich [LLR 95]
show that the integrality gap for a natural generalization of the sparsest cut problem
is at most the minimum distortion of an L1-embedding of the metric d(G, `), where
G is the associated graph, ` : E(G) → R+ is a specific length function, and d(G, `)
is the metric of shortest paths distances w.r.t. ` on G. The minimum distortion is
O(log |V |); see [LLR 95, Theorem 3.2]. (One consequence is that for instances of
the sparsest cut problem on hypercubes, the integrality gap is O(1).) Klein et al.
[KPRT 94] and Even et al. [ENSS 95] give approximate max-flow min-cut theorems
for a version of the multicut problem on directed graphs and for a Steiner version of
the multicut problem. For more information, see the survey papers by Avis and Deza
[AD 91], Shmoys [S 96], and Tardos [T 93].

Our results are stated for unit-capacity networks, i.e., networks such that every
edge has capacity one. The results carry over to networks such that the capacity of
every edge is at most a constant, i.e., O(1).

5.1. Definitions and preliminary results. Let G = (V,E) be an undirected
graph, and let u : E → R+ be a nonnegative real-valued capacity function on the
edges. Let there be k node pairs si, ti, i = 1, . . . , k, where si specifies the source of
the ith commodity and ti specifies the sink. Let ~G = (V, ~E) be the digraph obtained
from G by replacing each edge {v, w} by oppositely oriented edges (v, w) and (w, v).

Given a pair of distinguished nodes s and t in ~G, an s-t flow f is a real-valued
function on the edges of ~G that satisfies the flow conservation condition at every node
v ∈ V − {s, t}, namely,∑

(u,v)∈Γin(v)

f(u, v) −
∑

(v,w)∈Γout(v)

f(v, w) = 0,

where Γin(v) is the set of edges going into v and Γout(v) is the set of edges coming out
of v. Note that f may be subject to additional constraints. The value of f , denoted
|f |, is the net flow into t. A multicommodity flow consists of k si-ti flows f1, . . . , fk
on ~G such that for every undirected edge, the sum of the flows on it is at most its
capacity, i.e.,

k∑
i=1

fi(v, w) +
k∑
i=1

fi(w, v) ≤ u({v, w}) ∀{v, w} ∈ E.
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The value of the multicommodity flow is defined to be the sum of the values of the
flows f1, . . . , fk,

∑k
i=1 |fi|.

The following result is well known; the proof is included for completeness.
Lemma 5.1. Let G = (V,E), and si, ti (i = 1, . . . , k) be an instance of the unit-

capacity multicommodity flow problem such that for i = 1, . . . , k, the distance in G
between si and ti is at least `. Then the maximum value of a multicommodity flow is
at most |E|/`.

Proof. Let f1, . . . , fk be a maximum multicommodity flow. Each fi (i = 1, . . . , k)

can be decomposed into at most | ~E| path flows pij (j = 1, . . . , | ~E|) such that pij
assigns a constant value |pij | to each edge of some path from si to ti in ~G and zero
values to the other edges. Since every path between si and ti (i = 1, . . . , k) has at
least ` edges,

∑
(v,w)∈~E pij(v, w) ≥ `|pij |. Now, we have

|E| =
∑

{v,w}∈E
u({v, w}) ≥

∑
{v,w}∈E

(
k∑
i=1

fi(v, w) + fi(w, v)

)

=
∑

(v,w)∈ ~E

∑
i,j

pij(v, w) ≥
∑
i,j

|pij | · `;

therefore, the maximum value
∑
i |fi| =

∑
i,j |pij | is at most |E|/`.

Recall the definition of a multicut: given G, u, and si, ti (i = 1, . . . , k) as above,
it is an edge set C ⊆ E such that in G\C, for each i = 1, . . . , k, si and ti are
in different connected components; the capacity of the multicut, denoted u(C), is∑
{v,w}∈C u({v, w}).

The following theorem is due to Garg, Vazirani, and Yannakakis.
Theorem 5.2 (see [GVY 96]). Let G, u : E → R, and si, ti (i = 1, . . . , k) be an

instance of the multicommodity flow problem. Then the ratio of the minimum capacity
of a multicut to the maximum value of a multicommodity flow is O(log k).

5.2. Multicommodity flows on hypercubes. We first use a simple argument
to construct a multicommodity flow instance on the hypercube Qr such that the
ratio is Ω(log k), where k denotes the number of commodities. Then, we study a
modified instance where the ratio can be determined exactly using Corollary 1.2 of
our main theorem. Though the latter proof is not simple (since it uses Theorem 1.1
and Lemma 4.3), it does yield a higher ratio.

The proof of the next proposition follows easily from Corollary 1.6 and Lemma 5.1.
Proposition 5.3. For a number r that is a multiple of 4, take an r-dimensional

hypercube Qr and specify a commodity for every pair of nodes at distance r/4. For
this instance, the ratio of the minimum capacity of a multicut to the maximum value
of a multicommodity flow is at least r/8 + 1/2.

The next result constructs a zero-one maximum multicommodity flow on a special
but useful instance.

Lemma 5.4. Consider a unit-capacity multicommodity flow problem on Qr, where
a commodity is specified for every pair of nodes at distance `. If r is an integer
multiple of `, then there exists a maximum multicommodity flow of value |E(Qr)|/`
that is integral.

Proof. The maximum value of the multicommodity flow is at most |E(Qr)|/`, by
Lemma 5.1. Now, Lemma 4.3 shows that E(Qr) can be partitioned into 2r−1 edge-
disjoint shortest paths of length r. Since r/` is an integer, each path in the partition
can be split into r/` shortest paths of length `, giving a total of E(Qr)/` edge-disjoint
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shortest paths of length `. These paths constitute an integral multicommodity flow
of maximum value.

The next proposition follows from Corollary 1.2 and Lemma 5.4.
Proposition 5.5. For an even number r, take an r-dimensional hypercube Qr,

and specify a commodity for every pair of nodes at distance r/2. For this instance,
the ratio of the minimum capacity of a multicut to the maximum value of a multicom-
modity flow is exactly r/4 + 1/2.
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Abstract. We present an off-line method for routing a hypercube automorphism π in the
minimum number of steps. The routing has the added virtue of being congestion-free. Our method
is purely algebraic, and the routing is obtained easily from the standard representation of π as the
product of a complementation and a bit permutation.
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Introduction. Among the permutations frequently routed on a hypercube net-
work are bit permutations. For example, the bit-reversal permutation x1x2 · · ·xn 7→
xnxn−1 · · ·x1 and the transpose permutation

x1x2 · · ·xn 7→ xbn2 c+1 · · ·xnx1 · · ·xbn2 c

often arise in practice. Since these two exhibit worst-case performance for the greedy
routing algorithm [Le, section 3.4.2], their routings are generally precomputed off-line.
In this paper we present an off-line method for routing any hypercube automorphism
π in the minimum possible number of steps. (By a hypercube automorphism, we
mean a permutation of the nodes of the hypercube which preserves adjacency.) Hy-
percube automorphisms are precisely those permutations known in the literature as
bit permute complement (BPC) permutations. Nassimi and Sahni [NS1] give an on-
line algorithm for routing BPC permutations by means of a Beneš network. Thus
their method takes 2n − 1 steps. Their algorithm is normal, which means that (a)
in any given step only edges of one particular dimension are used (i.e., the algorithm
is uniaxial) and (b) consecutive dimensions of edges are used in consecutive steps.
Normal algorithms can be simulated efficiently on bounded-degree variations of the
hypercube, such as the butterfly, shuffle-exchange graph and cube-connected cycles.
In another paper [NS2], Nassimi and Sahni give an algorithm that routes any BPC
permutation in the minimum possible number of steps. Latifi [La] adopts a differ-
ent approach, allowing communication across a given edge in only one direction at
a time (half-duplex communication). His method also routes in the minimum num-
ber of steps. However, with both methods, nodes generally store two messages at
a time. With our method, the routing is not uniaxial, but it is congestion-free (at
each step, each node contains exactly one message). Moreover, at each step at most
two dimensions of edges are used. Liu and You [LY] give an algorithm for routing
BPC permutations in 2n − 1 steps. Their routing is also congestion-free or, in their
terminology, “conflict-free.” In fact, with their method, any n BPC permutations can
be simultaneously routed in 2n − 1 steps, and for each permutation the routing is
conflict-free. Furthermore, at each step, each edge of the hypercube transmits two
messages, one in each direction. Our method, also congestion-free, routes each BPC
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permutation π in the minimum possible number of steps, namely the maximum, over
all nodes x of the distance between x and π(x).

1. Preliminaries. By Qn we mean the n-dimensional hypercube. Γ will denote
an arbitrary connected graph, and π will denote a permutation of V (Γ), the nodes of
Γ. By d(x, y) we mean the distance in Γ between nodes x and y. We now recall some
definitions from [R]:

[R, Definition 1.4] k(π) =max {d(x, π(x)) | x ∈ V (Γ)},
∆ = {π ∈ Perm(Γ) | k(π) = 1},

[R, Definition 1.1] t∆(π) =min {t | π ∈ ∆t},
where ∆t is the set of all t-fold products of elements of ∆.

As explained in the introduction of [R], a representation of π as an element
of ∆t can be naturally identified with a t-step congestion-free routing of π, where
by congestion-free we mean that at no time does any node contain more than one
message. Thus t∆(π) is the minimum number of steps in a congestion-free routing of
π. Clearly, any routing of π requires at least k(π) steps (in a single step a message
can stay put or else travel a distance of 1), and so t∆(π) ≥ k(π). The purpose of this
paper is to show that for π any automorphism of Qn, the lower bound k(π) is always
achieved, and that minimum routings are easy to construct.

A few words about notation are necessary. We shall express permutations as
products of cycles and denote by (1, 2, . . . ,m) the cycle that maps i to i + 1 for
1 ≤ i ≤ m − 1 and m to 1. We multiply cycles from right to left, so that cycle
multiplication behaves exactly like composition of functions.

2. The main result.
Proposition 2.1. If π is any automorphism of Qn then t∆(π) = k(π). In fact,

let ∆′ = ∆∩Aut (Qn). Then there is a factorization of π of length k(π) in which
each factor α ∈ ∆′.

We will prove this via a sequence of lemmas. First we recall some facts about
the group Aut(Qn). For a subset A of {1, 2, . . .,n}, the complementation σA is the
automorphism of Qn defined by σA(x1, x2, . . . , xn) = (y1, y2, . . . , yn) where

yi =

{
xi if i /∈ A,
xi = 1 + xi (mod 2) if i ∈ A.

For a permutation θ of {1, 2, . . .,n}, the automorphism ρθ of Qn is defined by

ρθ(x1, x2, . . . , xn) = xθ(1), xθ(2), . . . , xθ(n).

The mapping θ 7→ ρθ is an isomorphism between the symmetric group Sn and a
subgroup of Aut(Qn). Every automorphism of Qn has a unique representation in the
form σA ρθ. (This is, essentially, the content of Exercises 3.11 and 3.12, pp. 743–744
of [Le].)

Remark. The group Aut(Qn), known as the hyperoctahedral group, has been
studied for other purposes: for example, Chen and Stanley [CS] answer the question of
when a symmetry of Qn has a fixed k-dimensional subcube, while Chen [C] computes
the cycle index polynomial of this group.

Lemma 2.2. For 2 ≤ q ≤ n, and θ = (1, 2, . . . , q),

k(ρθ) = t∆(ρθ) =

{
q if q ≡ 0 (mod 2),
q − 1 if q ≡ 1 (mod 2).
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Proof. Let π = ρθ. First suppose q is even, say, q = 2m. Let x = ((10)m0n−q).
Then π(x) = (01)m0n−q, and so d(x, π(x)) = 2m = q, where d denotes Hamming
distance. Thus k(ρθ) ≥ q. Now since t∆(π) ≥ k(π), it suffices to show that t∆(π) ≤ q,
i.e., that π ∈ ∆q. We do this by induction on m. For m = 1, we have

ρ(12) = (σ{1}) · (σ{1}ρ(12)) ∈ ∆2.

For m ≥ 2 we have

ρ(1,2,...,2m) = (σ{2m}ρ(1,2m)) · (σ{1}ρ(1,2m−1)) · ρ(1,2,...,2(m−1)),

and since the first two factors each belong to ∆, the induction hypothesis for m − 1
guarantees that the right side of the equation belongs to ∆q.

Now suppose q is odd, say, q = 2m + 1. With x as above we have d(x, π(x)) =
2m = q − 1, so k(π) ≥ q − 1. As above, it suffices now to show that t∆(π) ≤ q − 1.
For m = 1, q = 3 and

ρ(1,2,3) = ρ(13) · ρ(12) = (σ{3}ρ(13)) · (σ{1}ρ(12)) ∈ ∆2.

For m ≥ 2,

ρ(1,2,...,2m+1) = ρ(1,2m,2m+1) · ρ(1,2,...,2m−1).

The first factor on the right side belongs to ∆2 by the case m = 1 and, by our induction
hypothesis, the second factor belongs to ∆2(m−1). Thus t∆(π) ≤ 2m = q − 1.

Lemma 2.3. If A ⊆ {1, 2, . . . ,m} and θ = (1, 2, . . . ,m) then

k(σA ρθ) =

{
m if | A |≡ m (mod 2),
m− 1 otherwise.

Proof. Let π = σA ρθ. Clearly, k(π) ≤ m. Let z = z1z2 · · · zm0 · · · 0 be defined by
z1 = 0 and, for 1 ≤ i ≤ m− 1,

zi+1 =

{
zi if i ∈ A,
zi if i /∈ A.

Let π(z) = y = y1y2 · · · ym00 · · · 0. Then for 1 ≤ i ≤ m− 1,

yi =

{
zi+1 if i ∈ A,
zi+1 if i /∈ A,

and ym =

{
z1 if m ∈ A,
z1 = 0 if m /∈ A.

We claim that for 1 ≤ i ≤ m − 1, yi = zi. For if i ∈ A, then yi = zi, while
if i /∈ A then yi = zi+1 = zi. Thus in either case we have yi = zi. Hence
d(z, π(z)) = d(z, y) ≥ m − 1, and so k(π) ≥ m − 1. Now ym = 1 if m ∈ A and 0 if
m /∈ A, while zm ≡| {j ≤ m− 1 | j /∈ A} | (mod 2). But

| {j ≤ m− 1 | j /∈ A} |=
{
m− | A | if m ∈ A,
m− | A | −1 if m /∈ A.

Suppose now that m− | A |≡ 0(mod 2). Then if m ∈ A, zm = 0, while if
m /∈ A, zm = 1. So in either case, ym = zm. Thus d(z, y) = m. So if m− | A |≡ 0
(mod 2), k(π) = m.
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Now assume that m− | A |≡ 1 (mod 2). We know that m − 1 ≤ k(π) ≤ m.
Suppose that k(π) = m. Then for some x = x1 · · ·xn, d(x, π(x)) = m. Let π(x) =
w = w1 · · ·wn. As before, for 1 ≤ i ≤ m− 1,

(∗) wi =

{
xi+1 if i ∈ A,
xi+1 if i /∈ A,

and wm =

{
x1 if m ∈ A,
x1 if m /∈ A.

Since d(x,w) = m,wi = xi for 1 ≤ i ≤ m, so wi + xi = 1. Hence,

m∑
i=1

wi +
m∑
i=1

xi = m.

So,

wm + x1 +
m−1∑
i=1

(wi + xi+1) =
m∑
i=1

wi + xi = m.

But by (∗),

wi + xi+1 =

{
1 if i ∈ A,
0 or 2 if i /∈ A, and wm + x1 =

{
1 if m ∈ A,
0 or 2 if m /∈ A.

Hence, m ≡| A | (mod 2), contradicting the assumption that m− | A |≡ 1 (mod 2).
So for all x, d(x, π(x)) ≤ m− 1. Hence, k(π) = m− 1.

Lemma 2.4. Let θ and A be as in Lemma 2.3, and let π = σAρθ. Then t∆(π) =
k(π).

Proof. Suppose A = ∅. Then π = ρ(1,2,...,m), and the result follows from Lemma
2.2. So assume that A 6= ∅. We argue by induction on m. If m = 1 then θ =identity,
A = {1}, and σAρθ = σ{1} ∈ ∆. Now let m ≥ 2 and assume the result holds for m−1.
Let i1 be the least element of A. Since (i1, i1+1, . . . ,m, 1, 2, . . . , i1−1) = (1, 2, . . . ,m),
we may assume, with no loss of generality, that i1 = 1. Now σB ρφ = ρφ σφ−1(B) and

(1, 2, . . . ,m) = (1,m) (1, 2, . . . ,m− 1).

Let B = A− {1}, φ = (1,m) = φ−1, and A′ = φ(B). Then we have

π = σAρθ =
(
σ{1} σB

)(
ρ(1,m) ρ(1,2,...,m−1)

)
=
(
σ{1} ρ(1,m)

)(
σA′ ρ(1,2,...,m−1)

)
.

Since 1 /∈ B, m /∈ A′. ThusA′ ⊆ {1, 2, . . . ,m−1}. So, by induction, k(σA′ ρ(1,2,...,m−1))
= t∆(σA′ ρ(1,2,...,m−1)). By Lemma 2.3, this common value

=

{
m− 1 if | A′ |≡ m− 1 (mod 2),
m− 2 otherwise.

Now |A′| = |A| − 1. So | A′ |≡ m− 1 (mod 2) ⇔ | A |≡ m (mod 2). Thus,

k(σA′ ρ(1,2,...,m−1)) = t∆(σA′ ρ(1,2,...,m−1)) =

{
m− 1 if | A |≡ m (mod 2),
m− 2 otherwise.

By Lemma 2.3,

k(π) =

{
m if | A |≡ m (mod 2),
m− 1 otherwise.
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So t∆(π) ≤ k(π), and thus we have equality.
Remark. Lemmas 2.3 and 2.4 hold for any m-cycle. Recall that elements a and b

of a group G are called conjugate if b = gag−1 for some g ∈ G. Now any two m-cycles
are conjugate in the symmetric group Sn. Since θ 7→ ρθ is an isomorphism of Sn into
Aut(Qn), conjugate permutations are mapped to conjugate automorphisms. But if
π′ is conjugate to π, then k(π′) = k(π). For let π′ = απα−1. Then for any x ∈ Qn,

d(x, π(x)) = d(α(x), α(π(x))) = d(α(x), απα−1(α(x))) = d(α(x), π′(α(x))),

where the first equality follows from the fact that α is an automorphism. Since α
is onto, it follows that k(π′) = k(π). Hence, π′ ∈ ∆ ⇔ π ∈ ∆. Thus, if π =
φt · · ·φ2φ1 is a representation of π as an element of ∆t, and we let φ′i = αφiα

−1, then
π′ = φ′t · · ·φ′2φ′1 is a representation of π′ as an element of ∆t. So t∆ takes the same
value on conjugate automorphisms, and conjugate automorphisms have “conjugate”
routings.

Definition 2.5. For a permutation θ, support (θ) = {i | θ (i) 6= i}.
Lemma 2.6. Let θ ∈ Sn = Perm{1, 2, . . . , n} and suppose A ⊆ support (θ). Let

π = σA ρθ. Write θ as a product of disjoint cycles, θ = θp ◦ θp−1 ◦ · · · ◦ θ1. Let
Ai = A ∩ support (θi) for 1 ≤ i ≤ p. Then π = (σApρθp) · · · (σA1

ρθ1) and

t∆(π) = k(π) =

p∑
i=1

k(σAiρθi) .

Proof. Since Ai ⊆ support(θi) and for i 6= j, support (θi) ∩ support (θj) = ∅, we
have Ai ∩ support (θj) = ∅. Hence, σAi and ρθj commute. Thus π = (σAp ρθp) · · ·
(σA1 ρθ1). By Lemma 2.4 and the preceding Remark, for 1 ≤ i ≤ p, t∆(σAiρθi) =
k(σAiρθi). Now

t∆(π) ≤
p∑
i=1

t∆(σAi ρθi).

On the other hand, since support (θi) ∩ support (θj) = ∅ for i 6= j, it follows that

k(π) =

p∑
i=1

k(σAi ρθi).

Hence, t∆(π) ≤ k(π). Since the reverse inequality holds for all permutations, we have
the desired equality.

Corollary 2.7. If θ 6=identity then σA ρθ ∈ ∆ ⇔ A = {i} and θ = (i, j) for
some i 6= j.

Proof. σA ρθ ∈ ∆ ⇔ k(σA ρθ) = 1. If A = {i} and θ = (i, j) for some i 6= j,
then by Lemma 2.3, k(σA ρθ) = 1. For the reverse implication, let A = A′ ∪B, where
A′ ⊆ support (θ) and B = A \A′. Then σA ρθ = (σB) (σA′ρθ) and so by Lemma 2.6

k(σA ρθ) = k(σB) + k(σA′ ρθ) =| B | +k(σA′ ρθ).

Hence, k(σA ρθ) = 1 ⇒ | B |= 0 and k(σA′ ρθ) = 1. By Lemma 2.3,

k(σA′ ρθ) =

{
m if | A′ |≡ m (mod 2),
m− 1 otherwise,
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where m =| support (θ) |. Since θ 6= identity, m ≥ 2. Therefore, since k(σA′ ρθ) = 1,
m ≤ 2, and so m = 2. Furthermore, | A′ |6= (mod 2), so | A′ |= 1. Since B = ∅,
A = A′ and so A and θ have the desired form.

We can now complete the proof of Proposition 2.1.
Proof of Proposition 2.1. Let π = σC ρθ. Let A = C ∩ support (θ) and B =

C \ A. Then π = σB(σA ρθ). Since B ∩ support (θ) = ∅, it follows that k(π) =
k(σB) + k(σA ρθ). On the other hand, t∆(π) ≤ t∆(σB) + t∆(σA ρθ). But t∆(σB) =
| B |= k(σB) and, by Lemma 2.6, t∆(σA ρθ) = k(σA ρθ). So t∆(π) ≤ k(π) and thus
t∆(π) = k(π).

Corollary 2.8. Let π and θ be as in Lemma 2.6. Then an optimal routing of
π can be achieved by routing the factors σAiρθi sequentially.

Corollary 2.9. For any π ∈ Aut(Qn), there is a minimum routing of π such
that at each step the number of dimensions of edges used is at most 2.

Proof. By Proposition 2.1, π has a factorization in which each factor is either a
σ{i} or a σ{i}ρ{i,j}. In the first case only edges of dimension i are used, while in the
second, by Corollary 2.7, only edges of dimensions i and j are used.

Examples. First we shall route the bit-reversal permutation on Q6. This πR is
defined by πR(x1x2 · · ·x6) = x6x5 · · ·x1. So π = ρ(16)ρ(25)ρ(34). Hence, the factoriza-
tion

πR =

((
σ{1}

)(
σ{1}ρ(16)

))((
σ{2}

)(
σ{2}ρ(25)

))((
σ{3}

)(
σ{3}ρ(34)

))
is a six-step routing for πR. Geometrically, the steps alternate between 90◦ rotations
and reflections through five-dimensional hyperplanes.

As a second example, we give a routing for the transpose permutation on Q6 given
by πT (x1x2 · · ·x6) = x4x5x6x1x2x3. Thus πT = ρ(14)ρ(25)ρ(36) = ρ(46) πR ρ

−1
(46).

Therefore, conjugating the factorization given above for πR by ρ(46) we obtain a
six-step routing for πT :

πT =

((
σ{1}

)(
σ{1}ρ(14)

))((
σ{2}

)(
σ{2}ρ(25)

))((
σ{3}

)(
σ{3}ρ(36)

))
.

Next, we give a recursive algorithm for routing any hypercube automorphism π.
It is based on an alternate factorization of an m-cycle:

(1, 2, . . . ,m) = (1, 2, 3, . . .m− 1)(m− 1,m).

First note that if π = σCρθ then π = σB (σA ρθ), where A = C ∩ support (θ) and
B = C \ A. Write θ as a product of disjoint cycles θ = θp θp−1 · · · θ1. For 1 ≤ i ≤ p,
let Ai = A ∩ support (θi). Finally, let B = {b1, b2, . . . , b|B|}. Then

π =
(
σb|B| · · ·σb1

)(
σApρθp

)
· · ·
(
σA1

ρθ1

)
.

Now a minimum-step routing for π is obtained by sequentially routing the factors
σAiρθi and then the factors σbj . Since the latter belong to ∆, it suffices to give an
algorithm for routing σAρθ, where θ is an m-cycle and A ⊆ support (θ). For simplicity
of notation, we assume that θ = (1, 2, . . . ,m).

Algorithm A(A, θ,m).
Input: m =an integer ≥ 2, θ =the m-cycle (1, 2, . . . ,m), A ⊆ {1, 2, . . . ,m}.
Output: A factorization of π = σAρθ into elements of ∆.



OPTIMAL ROUTINGS OF HYPERCUBE AUTOMORPHISMS 207

1. Case m = 2. If A = ∅, π = (σ1)(σ1ρ(1,2)). If A = {i}, where i ∈ {1, 2}, then
π = σiρ(1,2), which is in ∆. If A = {1, 2}, then π = (σ1)(σ2ρ(1,2)) ∈ ∆2.

2. Case m ≥ 3.

α1 =

{
m if m ∈ A,
m− 1 if m /∈ A,

and

A′ =

{
A \ {m} if m ∈ A,
A⊕ {1} if m /∈ A,

where ⊕ denotes the symmetric difference operator, i.e., A⊕B = (A \B) ∪ (B \ A).
Then the first factor of π is σ{α1}ρ(m−1,m), an element of ∆. For the remaining
factors, call A(A′, θ′,m− 1), where θ′ = (1, 2, . . . ,m− 1).

Proposition 2.10. The output of Algorithm A(A, θ,m) is a minimum-length
factorization of π via elements of ∆, i.e., a minimum-step routing of π.

Proof. The proof is by induction on m. The case m = 2 is clear. Now let m ≥ 3
and assume the truth of the proposition for m− 1. First suppose that m ∈ A. Then
α1 = m and A′ = A \ {m}. Now

π = σA′σ{m}ρ(1,2,...,m−1)ρ(m−1,m) =
(
σA′ρ(1,2,...,m−1)

)(
σ{m}ρ(m−1,m)

)
and σ{m}ρ(m−1,m) ∈ ∆. A′ ⊆ {1, 2, . . .m − 1}, so by our induction hypothesis,
Algorithm A(A′, θ′,m− 1) returns a minimum-length factorization of σA′ρ(1,2,...,m−1)

via elements of ∆.
It follows from Lemma 2.3 that k(π) = 1+k(σA′ρ(1,2,...,m−1)). Hence, the resulting

factorization of π via elements of ∆ has minimum length.
Now suppose that m /∈ A. Then α1 = m− 1 and A′ = A⊕ {1}. We have

π = σA′σ{1}ρ(1,2,...,m−1)ρ(m−1,m) =
(
σA′ρ(1,2,...,m−1)

)(
σ{m−1}ρ(m−1,m)

)
and σ{m−1}ρ(m−1,m) ∈ ∆. Again, A′ ⊆ {1, 2, . . .m−1}, so by our induction hypothe-
sis, AlgorithmA(A′, θ′,m−1) returns a minimum-length factorization of σA′ρ(1,2,...,m−1)

via elements of ∆, and, as before, the resulting factorization of π via elements of ∆
has minimum length.

We conclude with an analysis of the time complexity of our routing method. Let
c denote the time it takes to compare two integers. Then the time it takes to decide
whether an integer in [m] = {1, 2, . . . ,m} belongs to a given subset A of [m] is at
most c ·m, and the time it takes to compute A∆{i}, where i ∈ [m], is also at most
c ·m. Then the total time needed to route π = σAρθ ∈ Aut(Qn) is at most 2cn2, so
it is quadratic in n. To see this, note that Algorithm A(A, θ,m) calls itself m − 2
times. Each time, it computes α1 and A′. Each requires at most cm time units.
Thus the total time required for A(A, θ,m) is at most 2cm2. Now the factorization
of θ into disjoint cycles yields factors πi = σAi ρθi , which are routed sequentially by
A(Ai, θi,mi), where

∑
mi =| support (θ) |≤ n. Hence, the total time needed to route

π is at most 2c
∑
m2
i ≤ 2cn2.
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Abstract. We describe efficient algorithms for finding even cycles in undirected graphs. Our
main results are the following: (i) For every k ≥ 2, there is an O(V 2) time algorithm that decides
whether an undirected graph G = (V,E) contains a simple cycle of length 2k, and finds one if
it does. (ii) There is an O(V 2) time algorithm that finds a shortest even cycle in an undirected
graph G = (V,E).
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1. Introduction. Throughout this work, the term cycle refers to a simple closed
walk and the term path refers to a simple nonclosed walk. An even (odd) cycle is a
cycle whose length is even (odd). An even (odd) path is a path whose length is even
(odd).

The problems of finding cycles of a given length and of finding a shortest even
and a shortest odd cycle in undirected and directed graphs are among the most basic
and natural algorithmic graph problems. These problems have been considered by
many researchers; see [10] for a survey.

In this work we consider (almost exclusively) the undirected versions of these
problems. The directed versions of some of them are believed to be much harder.
The problem “does a given directed graph G = (V,E) contain a directed cycle of
an even length?”, for example, is not known to be in P, nor is it known to be NP-
complete (see [9]). Though we do not shed any new light on the directed versions
of the problems, we obtain surprisingly fast algorithms for some of the undirected
versions.

Monien [7] presented an O(VE) algorithm for finding all pairs of vertices that are
connected by paths of length k−1, where k ≥ 2 is a fixed integer. (Note that if k is part
of the input, the problem is NP-hard.) A simple consequence of his algorithm is an
O(VE) algorithm for finding a cycle of length k, if one exists. In [1], an O(M(V ) log V )
algorithm is obtained for the same problem, whereM(n) = O(n2.376) is the complexity
of Boolean matrix multiplication. This algorithm is more efficient when G is dense.
Both algorithms work on directed as well as undirected graphs. In this work we
show that if k is even and if the graph is undirected, then both these bounds can be
improved. We obtain an O(V 2) algorithm for finding cycles of a given even length in
undirected graphs. An O(V 2) algorithm for finding quadrilaterals (cycles of length
four) is part of the folklore (cf. [8]) but all other cases are new. To obtain this O(V 2)
algorithm we utilize a combinatorial theorem of Bondy and Simonovits [4] that states,
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roughly, that dense enough undirected graphs contain many even cycles. We also prove
a constructive version of their theorem.

The O(V 2) algorithm for finding cycles with a given even length leads to the
following strange state of affairs: deciding whether a given undirected graph contains
a cycle of length, say, 100, is asymptotically faster than deciding, using any known
algorithm, whether this graph contains a triangle (a cycle of length 3)! The term
“asymptotically” above should be stressed, because our O(V 2) bound, as well as
Monien’s O(VE) bound, hides huge multiplicative factors that depend exponentially
on k. This exponential dependence on k is probably unavoidable since the problem is
NP-hard if k is part of the input.

A shortest cycle in a directed or undirected graph G = (V,E) can be easily found
in O(VE) time by conducting a BFS (breadth first search) from each vertex. Itai
and Rodeh [5] show that a shortest cycle can also be found in O(M(V )) time in the
undirected case, and in O(M(V ) log V ) time in the directed case. They also notice
that by halting the BFS conducted from each vertex in the O(VE) algorithm when
the first nontree edge is found (this implies an O(V ) running time for each BFS), an
almost shortest cycle (a cycle whose length exceeds the length of a shortest cycle by
at most 1) in an undirected graph can be found in O(V 2) time.

Monien [6] described a sophisticated O(V 2α(V )) algorithm for finding shortest
even length cycles (SELCs) in undirected graphs, where α(n) = α(n, n) is the func-
tional inverse of Ackermann’s function. His algorithm uses the fast union-find data
structure. We describe an O(V 2) algorithm for finding SELCs. Our algorithm is
somewhat simpler, and it does not use any sophisticated data structure. At the heart
of our algorithm lies a combinatorial lemma which is of interest in its own right. The
lemma states that if C is a shortest even cycle in a graph, then there exists a vertex
v on C from which the paths, on the cycle, to all the other vertices on the cycle are
almost the shortest possible. In fact, each of these paths is of length at most 1 greater
than the distance between the endpoints of the path.

We also describe a simple O(M(V ) log V ) algorithm for finding a shortest odd
length cycle (SOLC) in an undirected graphG = (V,E) and a simple O(VE) algorithm
for finding a SOLC in a directed or undirected graphG = (V,E). Monien [7] described
an O(VE) algorithm for the undirected case.

This paper is organized as follows. In section 2 we present the algorithm for
finding fixed-length even cycles in undirected graphs. In section 3 we investigate the
combinatorial structure of SELCs. In section 4 we describe the algorithm for finding
a SELC and prove its correctness. In section 5 we describe the simple algorithms for
finding SOLCs in directed and undirected graphs. We end, in section 6, with some
concluding remarks.

2. Finding even cycles of a given length. Throughout this section we use Cl
to denote a cycle of length l. The main result of this section is the following theorem.

Theorem 2.1. For every k ≥ 2, there is an O((2k)! ·V 2) time algorithm that
decides whether an undirected graph G = (V,E) contains a C2k and finds one if it
does.

We also obtain the following result, which is an algorithmic version of a result by
Bondy and Simonovits [4].

Theorem 2.2. Let l ≥ 2 be an integer and let G = (V,E) be an undirected
graph with |E| ≥ 100l · |V |1+1/l. Then G contains a C2k for every k ∈ [l, l · |V |1/l].
Furthermore, such a C2k can be found in O(k ·V 2) time. In particular, a cycle of
length exactly bl·|V |1/lc can be found in O(V 2+1/l) time.



FINDING EVEN CYCLES EVEN FASTER 211

It is interesting to comment on the relationship between these two theorems. In
any undirected graph G = (V,E) and any k ≥ 2, we can find a C2k, if one exists, in
O((2k)! ·V 2) time. This running time is O(V 2) for every fixed k ≥ 2. The running
time is exponential, however, if k is part of the input. If the graph G = (V,E) is dense
enough, i.e., if it contains Ω(V 1+1/k) edges, then it does contain a C2k, and such a
C2k can be found in O(k ·V 2). Note that this is now polynomial in both V and k.
In dense enough graphs, we can therefore find extremely long cycles efficiently. In a
graph containing Ω(V 3/2) edges, for example, we can find, in O(V 2.5) time, a cycle of
length Θ(V 1/2). This should be compared with the fact that the problem of deciding
whether an undirected graph G = (V,E) contains a cycle (or an even cycle) of length
Ω(V 1/2) is NP-hard.

The first ingredient used in the proofs of Theorems 2.1 and 2.2 is a combinatorial
lemma of Bondy and Simonovits [4] (see also [3]). Their proof of the lemma is non-
constructive. By slightly altering their arguments we obtain a constructive version of
their lemma which is required in the proof of Theorem 2.2. Before stating the lemma
we need the following definition.

Definition 2.3. A coloring of the vertices of an undirected graph G = (V,E) is
said to be t-periodic if the endpoints of every path of length t are colored by the same
color.

Note that the coloring in the definition above is not required to be proper; i.e.,
adjacent vertices may be colored by the same color. We can now state the lemma of
Bondy and Simonovits [4] and present an algorithmic proof of it.

Lemma 2.4. Let t be a positive integer, and let G = (V,E) be a connected
undirected graph with |E| ≥ 2t·|V |. Then any coloring of the vertices of G that uses
at least three distinct colors is not t-periodic. Furthermore, if G is nonbipartite, then
any coloring of the vertices of G that uses at least two distinct colors is not t-periodic.
In both the bipartite and nonbipartite cases, two vertices of distinct colors and a path
of length t connecting them can be found in O(E) time.

Proof. We begin by showing that G contains two adjacent vertices joined by two
vertex-disjoint paths, each of length at least t, and that such a subgraph, called a
Θ-graph, can be found in O(E) time. It is easy to see that G contains a subgraph G′

whose minimal degree is at least 2t. Such a subgraph can be easily found in O(E)
time by sequentially removing from G vertices whose degrees are less than 2t. Let
v1, v2, . . . , vm be a maximal path in G′, i.e., a path that cannot be further extended.
Such a path can be greedily constructed in O(E) time. The vertex v1 is then adjacent
to at least 2t vertices vi1 , vi2 , . . . , vi2t on this path, where 2 = i1 < i2 < · · · < i2t.
The path v1, v2, . . . , vi2t , along with the edges (v1, vit) and (v1, vi2t), forms the desired
Θ-graph.

The Θ-graph found contains three distinct cycles L1, L2, L3 of lengths l1, l2, l3,
respectively, such that l1, l2, l3 > t and l1 + l2− l3 = 2. Every vertex v of the Θ-graph
has at most four distinct paths of length t in the Θ-graph that start at v. We can
easily check in O(V ) time whether, for each v, the endpoints of these paths are colored
by the same color of v. If this is not the case, then we are done, since we have found
two vertices colored by distinct colors and a path of length t connecting them.

Assume therefore that the Θ-graph is t-periodic. It is easy to see that if one of the
cycles L1, L2, or L3 is t∗-periodic, then the other cycles, and therefore the Θ-graph,
must also be t∗-periodic. Let t∗ be the smallest integer for which the Θ-graph is
t∗-periodic. It follows that t∗ is also the smallest period of the cycles L1, L2, or L3,
and as a consequence t∗|l1, l2, l3. As l1 + l2 − l3 = 2, we get that t∗|2. Thus t∗ = 1 or
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t∗ = 2, and the number of colors used to color the Θ-graph is at most 2.

Every vertex of G is connected by a simple path whose length is a multiple of t to
a vertex of, say, L1. If a vertex v ∈ V is colored by color not appearing on L1, then
a simple path t whose endpoints are colored by distinct colors can be easily found in
O(V ) time.

Finally, note that a 2-periodic coloring of a graph G = (V,E) that uses two colors
is necessarily a proper coloring. Any graph G = (V,E) that has a 2-periodic coloring
that uses only two colors must therefore be bipartite.

The second ingredient used in the proof of Theorem 2.1 is the following result of
Monien [7].

Lemma 2.5. There is an O(k! ·E) time algorithm that, given a (directed or
undirected) graph G = (V,E), an integer k ≥ 2, and a vertex s ∈ V , finds all vertices
v ∈ V connected to s by paths of length k, and exhibits one such path for each such v.

The following are immediate consequences of Lemma 2.5.

Corollary 2.6. Let G = (V,E) be a (directed or undirected) graph and let k ≥ 3
be an integer. There is an O((k − 1)!·E) time algorithm that, given a vertex s ∈ V ,
decides whether there is a Ck that passes through s, and finds such a Ck if one exists.

Proof. Find all the vertices connected to s by paths of length k − 1 and check
whether one of them is also connected to s by an edge.

Corollary 2.7. Let G = (V,E) be a (directed or undirected) graph and let
k ≥ 1 be an integer. There is an O((k+ 1)!·E) time algorithm that, given two disjoint
subsets A and B of vertices, determines whether there is a path of length k connecting
a vertex from A and a vertex from B, and finds such a path if one exists.

Proof. Assume that the graph is directed. (If not, replace each undirected edge
by two anti-parallel directed edges.) Add a new vertex s and connect it to all the
vertices of A. Now find all the vertices to which there are directed paths of length k+1
from s.

Alon, Yuster, and Zwick [1] have recently described a 2O(k)·E log V time algorithm
for performing the task of Lemma 2.5 and 2O(k) ·E expected time algorithms for the
tasks of Corollaries 2.6 and 2.7. The dependency on k in the above complexity bounds
can be improved, therefore, from k! to 2O(k) if randomization or an extra logV factor
is allowed.

We are now ready to prove Theorem 2.1. We prove, in fact, the following slightly
stronger result.

Theorem 2.8. Let k > 1 be a fixed integer. There is an O((2k)!·V ) time algorithm
that, given an undirected graph G = (V,E) and a vertex s ∈ V , either verifies that s
is not contained in any C2k or finds a C2k in G (not necessarily passing through s).

Proof. The algorithm starts a BFS from the vertex s. For v ∈ V , let d(v) be
the distance between s and v in G. Let Li = {v | d(v) = i} be the set of vertices
at level i of the BFS tree. At stage i the algorithm scans the adjacency lists of the
vertices of Li. During this scan, the algorithm keeps a count of the number of edges
found so far inside Li (an edge is inside Li if both its endpoints are in Li). Similarly,
it keeps a count of the number of edges found so far between Li and Li+1. We use
L′i+1 to denote the set of vertices of Li+1 that were already discovered by the search.
The search is halted when one of the following conditions holds:

1. Stage k − 1 has completed or the BFS has ended.
2. At least 4k ·|Li| edges were found inside Li.
3. At least 4k ·(|Li|+ |L′i+1|) edges were found between Li and L′i+1.

Since the Li’s are disjoint, the total number of edges scanned before the search is
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halted is at most 12k ·|V |. Hence, the search takes only O(k ·V ) time.

As in any BFS, when a vertex v ∈ Li is discovered, we let π(v) be the vertex in
Li−1 that discovered it. In such a way a shortest path tree rooted at s and consisting
of all discovered vertices is maintained.

The algorithm continues in one of three possible ways, according to the condition
that caused the BFS to halt.

Case 1. The BFS is halted because stage k − 1 has completed.

In this case, the first k+ 1 levels L0, L1, . . . , Lk have all been discovered, and the
subgraph G′ induced by them (but not containing the edges inside Lk) contains at
most 12k ·|V | edges. If s is on a C2k then this C2k is completely contained in G′. By
Corollary 2.6, we can check whether such a cycle exists in O((2k)!·V ) time.

Case 2. The BFS is halted because 4k ·|Li| edges were found inside Li for some
i < k.

Stage i of the search is then left incomplete, but all the first i+1 levels L0, Li, . . . , Li
are already completely discovered. Consider the subgraph of G induced by Li. This
subgraph contains at least one connected component whose vertex set is U ⊆ Li and
whose number of edges is at least 4k · |U |. Denote the subgraph composed of this
connected component by H. Such a subgraph is easily found in O(k ·Li) = O(k ·V )
time. Note that |U | > 1.

Assume at first that H is nonbipartite. (This is easily verified in O(k ·V ) time,
since H contains O(k ·V ) edges.) Let c be the lowest common ancestor in the BFS
tree of all the vertices in U . The vertex c is easily found in O(k·U) = O(k·V ) time in
the following way: let Ui = U and let Uj = {π(v) | v ∈ Uj+1} for j = i− 1, i− 2, . . . ,
until a Uh with |Uh| = 1 is reached. Then Uh = {c}. As |U | > 1, c must have at least
two children in Uh+1. Let d be one of them. Let X1 ⊂ U be the descendents of d in
U , and let X2 = U −X1. Color the vertices of X1 red and the vertices of X2 blue. By
Lemma 2.4, the subgraph H cannot be 2(k− i+ h)-periodic (since it is nonbipartite,
connected and colored by two distinct colors). There must therefore be a path of
length 2(k− i+ h) in H between a red vertex and a blue vertex. As explained in the
proof of Lemma 2.4, we can find such a path p in O(k·U) ≤ O(k·V ) time. (Such a path
can also be found using Corollary 2.7, but the running time would be O((2k)! ·V ).)
The path p can now be extended to a cycle of length 2k by adding the disjoint paths
of the BFS tree from c to the two endpoints of p, each having length i− h. Note that
this cycle contains s only if c = s.

Very similar actions are taken if H is bipartite. Let A and B be the vertex classes
of H (i.e., A and B are disjoint, A ∪ B = U , and all the edges in H are between
A and B). Assume, without loss of generality, that |A| > 1. Let c be the lowest
common ancestor in the BFS tree of all the vertices of A. The vertex c is found using
the method described above. Assume again that c is in level h. As |A| > 1, c must
have at least two children in level h + 1. Let d be one of them. Let X1 ⊂ A be the
descendents of d in A and let X2 = A−X1. Color the vertices of X1 red, the vertices
of X2 blue, and the vertices of B green. By Lemma 2.4, the subgraph H cannot be
2(k− i+h)-periodic, since it is connected and colored by three distinct colors. There
must therefore be a path p of length 2(k− i+h) in H between two differently colored
vertices. This path must be between a red vertex and a blue vertex, because any
path of an even length that starts at a green vertex also ends at a green vertex. This
path can again be found in O(k ·V ) time, and it can again be extended to a cycle of
length 2k.

Case 3. The BFS was halted because 4k · (|Li| + |L′i+1|) edges were found be-
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tween Li and L′i+1.
Find a connected subgraph H of the subgraph of G induced by Li and L′i+1 with a

vertex set U and with at least 4k·|U | edges. Such a subgraph is easily found in O(k·V )
time. Note that H is bipartite with vertex classes A = U ∩ Li and B = U ∩ L′i+1.
The algorithm can now proceed as in the previous case.

In any one of these three cases, the running time is O((2k)! ·V ). In fact, the
running time of the algorithm in the second and third cases is only O(k·V ). The only
case in which a C2k is not found by the algorithm is when no C2k passes through s.
This completes the proof of the theorem.

Theorem 2.1 follows immediately from the above theorem. All we have to do is
apply the algorithm described above from each vertex. We now turn to the proof
of Theorem 2.2. The proof of Bondy and Simonovits actually shows that if |E| ≥
100l · |V |1+1/l and k ∈ [l, l · |V |1/l] then there exists a vertex s ∈ V for which the
algorithm of Theorem 2.8 stops before completing stage k − 1. This immediately
leads to the desired O(k ·V 2) time algorithm. Theorem 2.8 has another interesting
consequence.

Theorem 2.9. A C2k in an undirected graph G = (V,E) with |E| ≥ 101k ·
|V |1+1/k can be found in O((2k)!·V ) expected time.

Proof. Any graph on |V | vertices and at least 100k·|V |1+1/k edges contains a C2k.
It follows immediately that the number of edges in a graph G = (V,E) which are
not contained in any C2k is at most 100k · |V |1+1/k. If G = (V,E) contains at least
101k·|V |1+1/k edges, then a randomly chosen edge has a probability of at least 1/101
of belonging to a C2k. The randomized algorithm simply chooses a random edge and
applies the algorithm of Theorem 2.8 to one of its endpoints. The expected number
of applications before a desired C2k is found is O(1) and the expected running time
is O((2k)!·V ).

3. The structure of shortest even length cycles. Let G be an undirected
graph and let C be a SELC (shortest even length cycle) of it. Suppose the vertices
on the cycle are consecutively labeled v0, v1, . . . , v2k−1. We denote by d(x, y) the
distance between two vertices x and y in G. Clearly, d(v0, vi), d(v0, v2k−i) ≤ i for
every 1 ≤ i ≤ k. If d(v0, vi) = i and d(v0, v2k−i) = i, for every 1 ≤ i ≤ k, then C,
or some other SELC, can be easily found using a BFS from v0. However, the paths
on C between v0 and vi and between v0 and v2k−i are not necessarily shortest paths
in G. As an example, consider K4, the complete graph on four vertices. All the even
cycles in K4 are of length 4, but the distance between any two vertices is 1. It may
be, therefore, that d(v0, vi) < i or d(v0, d2k−i) < i for some 1 ≤ i ≤ k. It is not
immediately clear how to find C, or any other SELC, in such a case.

The main result of this section is the following lemma that states that on every
SELC C there is a vertex v0 from which the paths, on C, to all the other vertices on C
are almost shortest paths. An almost shortest path is a path whose length exceeds
the length of a corresponding shortest path by at most one. Specifically, we have the
following lemma.

Lemma 3.1. Let C be a SELC of G. Then the vertices on C can be consecutively
labeled v0, v1, . . . , v2k−1, so that i − 1 ≤ d(v0, vi) ≤ i and i − 1 ≤ d(v0, v2k−i) ≤ i for
every 1 ≤ i ≤ k.

This lemma is the cornerstone of theO(V 2) algorithm for finding SELCs presented
in the next section. We think, also, that this lemma is of interest in its own right.
Before presenting a proof of Lemma 3.1, we present the following simple but useful
lemma.
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Fig. 3.1. One of the cycles C1, C2, and C3 is even.

Lemma 3.2. If p1 and p2 are two distinct (but not necessarily disjoint) shortest
paths in G between x and y, then C contains an even cycle whose length is at most
2d(x, y).

Proof. Let p1 = (a0, a1, . . . , ak−1, ak) and p2 = (b0, b1, . . . , bk−1, bk) be two dis-
tinct shortest paths between x = a0 = b0 and y = ak = bk. Let i ≥ 0 be the minimal
index such that ai = bi but ai+1 6= bi+1. Let j be the minimal index j > i such that
aj = bj . Then (ai, . . . , aj) and (bi, . . . , bj) are two shortest paths connecting ai and
aj whose inner vertices are disjoint. We thus obtain a cycle of length 2(j− i) ≤ 2k.

Proof of Lemma 3.1. Let H be a minimal subgraph of G (with respect to contain-
ment) containing C such that dH(x, y) = d(x, y) for every x, y ∈ C (dH(x, y) denotes
the distance between x and y in H). Let e(H) be the edge set of H. If H = C, we
are done. Otherwise, let P = H \ e(C).

A path p whose two endpoints a and b are on C, but none of whose inner vertices
are on C, that satisfies |p| = d(a, b) < dC(a, b), where |p| is the length of p, is called
an a ∼ b shortcut . Our first claim is that P is a collection of vertex disjoint shortcuts.

To see this, let P ′ be a connected component of P . The minimality of H implies
that any edge of P ′ is contained in some shortcut. The component P ′ must therefore
contain an a ∼ b shortcut p1 for some a, b ∈ C. If P ′ is composed solely of this
shortcut, we are done. Otherwise, let x be a vertex on p1 incident to an edge e of P ′

which is not on p1 (x may be a or b). The edge e is contained in some shortcut p2. The
shortcuts p1 and p2 meet only at x. If they had met in some other vertex y, a shorter
even cycle would have existed, by Lemma 3.2, in the graph. Let p3 be a portion of
p2 that connects x with some vertex c on C. Consider now the cycles C1, C2, and C3

shown on the left of Fig. 3.1. Each of these cycles is of size less than 2k. For C1, this
follows from the fact that |p1| < dC(a, b). We show that |C2| < 2k as follows: let C4

be the cycle comprised of p1 with the part of C between a and b containing c. Since
|p1| < dC(a, b) we have that |C4| < 2k. As p3 is a shortest path between c and x, we
get that |C2| ≤ |C4| < 2k. The fact that |C3| < 2k follows from similar arguments.
The sum of the lengths of these cycles is 2k+2|p1|+2|p3|, which is even, and thus one
of them must be even, contradicting the minimality of C. This contradiction shows
that P ′ must simply be a shortcut.

We have shown that P = {p1, . . . , ps} is a set of disjoint shortcuts where s ≤ k
(as each shortcut contains two vertices of C). We now claim that every two distinct
shortcuts pi and pj must cross one another; i.e., each of the two paths on C between
the endpoints of pi contains an endpoint of pj . See the left side of Fig. 3.2.

Assume, for contradiction, that the shortcuts pi and pj do not cross one another,
as shown on the right side of Fig. 3.1. The length of each of the cycles C1, C2, and



216 RAPHAEL YUSTER AND URI ZWICK

p2

a

b

c

d

pi

pj

0

ai v

bi
ps

p1

pi

e

f

ai

biaj

bj

Fig. 3.2. The shortcuts of P .

C3 there is less than 2k. The sum of their lengths is 2k+ 2|pi|+ 2|pj |, so one of them
must be even, contradicting the minimality of C.

We have shown that the mutual position of pi and pj must be as shown in the
middle of Fig. 3.2. Let a, b, c, d denote the four segments of C determined by the
endpoints of these shortcuts. The minimality of C implies that |pi|+ |a|+ |b|, |pi|+
|c|+ |d|, |pj |+ |b|+ |c|, and |pj |+ |a|+ |d| are all odd, since these are lengths of cycles
smaller than 2k. This, in turn, implies that |pi|+ |pj |+ |a|+ |c| and |pi|+ |pj |+ |b|+ |d|
are even. These two expressions are the lengths of the “twisted” cycles a, pi, c, pj and
b, pi, d, pj . As a consequence, these lengths are at least 2k. In particular,

|pi|+ |pj |+ |a|+ |c| ≥ 2k = |a|+ |b|+ |c|+ |d|.(3.1)

Our third claim is that for any two vertices x, y on the cycle C there exists a
shortest path between them that uses at most one shortcut. Consider a shortest
path between x and y that contains at least two shortcuts. Let pi and pj be two
consecutive shortcuts appearing on the path. Let c be the portion of the path that
connects them, as shown again in the middle of Fig. 3.2. From (3.1), we get that
|pi| + |c| + |pj | ≥ |b| + |c| + |d|. We can therefore replace the portion pi, c, pj of the
path by the path b, c, d without increasing the length. Continuing in this way, we
can obtain a shortest path that uses at most one shortcut. In view of Lemma 3.2, a
shortest path that uses more than one shortcut must connect two antipodal vertices,
i.e., two vertices whose distance is k, on the cycle.

It is convenient at this point to fix a consecutive numbering 0, 1, . . . , 2k−1 of the
vertices of the cycle C and to identify the vertices of C with their numbers. We let
ai and bi, where ai < bi, be the two endpoints of the shortcut pi. To every shortcut
pi we attach the following interval:

Ci =

[
ai + bi − |pi| − 1

2
,
ai + bi + |pi|+ 1

2

]
.

Both endpoints of this interval are integral since bi−ai and |pi| have different parities;
otherwise, C would not have been a SELC. As |pi| < bi− ai, we get that Ci ⊆ [ai, bi].
The interval Ci corresponds to a subset of the vertices of C.

We claim that if v ∈ Ci, then for every vertex u on C, if a shortest path between
v and u uses the shortcut pi as its only shortcut, then the path between v and u
along the cycle C is an almost shortest path between v and u. Recall that an almost
shortest path between v and u is a path whose length is at most d(v, u) + 1. To see
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this, suppose that v ∈ Ci and that some shortest path from v to u uses pi as its only
shortcut. This shortest path must either go along portion e of the cycle C from v to
ai, then use pi, and then go again along C, or go along portion f of the cycle C from
v to bi, then use pi, and then go again along C. Both cases are shown on the right of
Fig. 3.2. The definition of Ci implies, however, that

|e| = v − ai ≤ bi − v + |pi|+ 1 = |f |+ |pi|+ 1,

|f | = bi − v ≤ v − ai + |pi|+ 1 = |e|+ |pi|+ 1.

The path e, pi can therefore be replaced by the path f , and the path f, pi can be
replaced by the path e while increasing the length by at most one, as required.

Our final task is to show that the intersection ∩si=1Ci of all these intervals is not
empty. If v0 ∈ ∩si=1Ci, then the paths along C from v0 to all other vertices on the
cycle are almost shortest paths, as required. As all the Ci’s are intervals, it is enough
to show that any two of them intersect. Let Ci and Cj be two such intervals where
ai < aj . The fact that pi and pj cross one another implies that ai < aj < bi < bj . To
show that Ci and Cj intersect, we show that

aj + bj − |pj | − 1

2
≤ ai + bi + |pi|+ 1

2

and

ai + bi − |pi| − 1

2
≤ aj + bj + |pj |+ 1

2
.

The first inequality is equivalent to |pi| + |pj | + (2k − bj + ai) + (bi − aj) + 2 ≥ 2k.
But |pi|+ |pj |+ (2k − bj + ai) + (bi − aj) is the length of the twisted cycle a, pi, c, pj
shown in the middle of Fig. 3.2. The length of this cycle is at least 2k by (3.1),
proving the first inequality. The second inequality follows immediately from the fact
that ai < aj < bi < bj . We have shown therefore that the intervals Ci and Cj , and
therefore all the intervals, do intersect.

Any vertex v0 ∈ ∩si=1Ci can play the role of v0 in the statement of the lemma.
This completes the proof of the lemma.

If a SELC C is edge disjoint from all other SELCs, then a sharp inequality holds in

(3.1). This can be used to show that all the intervals C ′i = [ai+bi−|pi|+1
2 , ai+bi+|pi|−1

2 ]
intersect. Every vertex v0 in this intersection has the property that the shortest
paths along the cycle C from v0 to all other vertices are in fact shortest paths. The
intersection ∩si=0C

′
i may, however, be empty if C is not edge disjoint from all other

SELCs.
Let v0, . . . , v2k−1 be an ordering of C that satisfies the conditions of Lemma 3.1.

In view of Lemma 3.2, it is impossible that d(v0, vk−1) = d(v0, vk+1) = k− 2, because
this yields two shortest paths of lengths k − 1 from v0 to vk. We may therefore
assume, without loss of generality, that d(v0, vk−1) = k − 1. We call v0 a root of C.
If d(v0, vk) = k we call C a cycle of type one with respect to (w.r.t.) v0, and if
d(v0, vk) = k−1 we call C a cycle of type two w.r.t. v0. Every cycle of type two w.r.t.
v0 has a unique 0 < j < k such that d(v0, v2k−j) = j, and d(v0, v2k−j−1) = j. We call
j the index of C w.r.t. the root v0.

Finally, we note that if v0, . . . , v2k−1 is an ordering of C that satisfies the condi-
tions of Lemma 3.1, then vk, . . . , v2k−1, v0, . . . , vk−1 is also such an ordering; i.e., vk
can play the role of v0.
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4. An O(V 2) algorithm for finding a shortest even cycle. Relying on
Lemma 3.1, we obtain an O(V 2) algorithm for finding a SELC in an undirected
graph G = (V,E). The algorithm starts a BFS from every vertex, but stops it as soon
as an even cycle is detected. This ensures that the time spent in each such BFS is at
most O(V ). We show that the shortest even cycle found in this way by the algorithm
is indeed a SELC of the graph.

The BFS performed is an augmented version of the standard BFS capable of
detecting even cycles. Let a be a vertex from which such an augmented BFS is
performed (a is called the root of the BFS). For every vertex v, we record a set of
four variables. The first two variables are standard; the other two are used to detect
even cycles. These four variables are:

d(v): the distance of v from a, i.e., the level of v in the BFS tree; d(v) =∞ if v has
not yet been discovered.

π(v): the parent of v in the BFS tree; π(v) = 0 if v = a or if v has not yet been
discovered. If π(v) 6= 0 then d(v) = d(π(v)) + 1.

θ(v): the match of v; if θ(v) 6= 0 then θ(v) is a vertex in the same level of v such
that (v, θ(v)) ∈ E. A vertex v is said to be matched if θ(v) 6= 0. If v is
matched then θ(v) will also be matched and θ(θ(v)) = v. The set of edges
{(v, θ(v)) | θ(v) 6= 0} is therefore a matching.

ρ(v): the highest proper ancestor of v in the BFS tree that is matched. If v has no
matched proper ancestors, then ρ(v) = 0.

We now describe how we process a vertex v that has been popped out of the BFS
queue. Before we start scanning v’s neighbors, we assume that ρ(v), d(v), and π(v)
are correctly set (v may or may not be matched at this point depending on whether
it is adjacent to a vertex in its level that has been processed before it). The action
taken for an edge (v, u) depends on the value of d(u), θ(v), and θ(u) in the following
way:

1. If d(u) = d(v) − 1, do nothing (this edge has been processed before, in its
opposite direction).

2. If d(u) =∞, let d(u)← d(v) + 1, π(u)← v and enqueue u to the BFS queue.
3. If d(u) = d(v) + 1, halt the BFS since an even cycle was found. Let c

be the lowest common ancestor, in the BFS tree, of v and u. Then the
c ∼ v and c ∼ u tree paths and the edge (v, u) form an even cycle of length
2(d(v) + 1− d(c)). This cycle is shown in Fig. 4.1.

4. If d(u) = d(v) and θ(v) = u (which also means that θ(u) = v), do nothing
(this edge has been processed before, in its opposite direction).

5. If d(u) = d(v) and θ(v) 6= u, and θ(v) and θ(u) are not both zero, halt the
BFS since an even cycle was found. Assume, for example, that θ(v) = x 6= 0.
Let c be the lowest common ancestor, in the BFS tree, of x and u. The c ∼ x
and c ∼ u tree paths and the edges (x, v), (v, u) form an even cycle of length
2(d(v) + 1− d(c)). This cycle is shown in Fig. 4.1.

6. If d(u) = d(v) and θ(v) = θ(u) = 0, test whether ρ(v) = ρ(u). If they are
equal, let θ(v) ← u, θ(u) ← v. If they are not equal, halt the BFS since
an even cycle is found as follows. Assume, for example, that ρ(v) = x 6= 0
and let y = θ(x). Let c be the lowest common ancestor, in the BFS tree,
of y and u. Then the c ∼ y tree path followed by the edge (y, x) followed by
the x ∼ v tree path followed by the edge (v, u) followed by the u ∼ c tree
path closes an even cycle of length 2(d(v) + 1− d(c)). This cycle is shown in
Fig. 4.1. Note that this is a cycle (i.e., it is simple) since x is not an ancestor
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Fig. 4.1. The even cycles detected by rules 3, 5, and 6.

of u.

After we finish scanning all the neighbors of v, we rescan them to set ρ(u) for
every u that has become a child of v. We put ρ(u) ← ρ(v) unless ρ(v) = 0 and
θ(v) 6= 0, in which case we put ρ(u) ← v. This completes the description of the
algorithm.

Theorem 4.1. The augmented BFS scans no more than 3|V |/2 edges and there-
fore runs in O(V ) time. Furthermore, if C is a SELC of length 2k and v0 is a root
of it, then an augmented BFS that starts from v0 finds an even cycle of length 2k.

Proof. When the BFS halts (either because it has completed, or because an even
cycle has been found), the only edges scanned are the BFS tree edges, the edges
between matched vertices (these edges form a matching), and possibly an edge that
closes an even cycle. There are at most |V | − 1 tree edges and at most (|V | − 1)/2
edges in the matching (the root of the BFS is never matched). The total number of
edges scanned is therefore at most 3|V |/2. The complexity claim is obvious because
scanning an edge entails only a constant number of operations.

We now prove the second part of the theorem. Consider an augmented BFS that
starts at a root v0 of a SELC C. Note, according to the above six rules, that if the
BFS halts while scanning the neighbors of a vertex v, the even cycle found has a
length of at most 2(d(v) + 1).

Suppose that C is a SELC of type one w.r.t. v0 (type-one and type-two SELCs
were defined at the end of the previous section). Then vk−1 and vk+1 are both in level
k− 1 of the BFS. Suppose that vk+1 is processed after vk−1. If an even cycle is found
before the edge (vk+1, vk) is scanned, its length must be 2k (it cannot be shorter, of
course). Otherwise, an even cycle of length 2k is found, using rule 3, when the edge
(vk+1, vk) is scanned.

Suppose that C is a SELC of type two, with index j = k − 1 w.r.t. v0. Then
vk−1, vk, vk+1 are all in level k − 1 of the BFS. If an even cycle of length 2k is not
found before processing the vertex vk, such a cycle is found, using rule 5, when vk is
processed since it is adjacent to two vertices in its level.

Finally, suppose that C is a SELC of type two, with j < k − 1. Then both
vk−1 and vk are in level k − 1 of the BFS (and vk+1 is in level k − 2). We claim
that ρ(vk−1) 6= ρ(vk), and therefore an even cycle is found (using rule 6) when the
edge (vk−1, vk) is scanned, if such a cycle were not found before. First, note that
θ(v2k−j−1) = v2k−j . (Both are in level j; there is an edge between them; and we did
not halt at level j.) Second, note that (v0, v1, . . . , vk−1), (v0, v2k−1, . . . , v2k−j), and
(vk, vk+1, . . . , v2k−j−1) are shortest paths in G (refer to Fig. 4.2). As these shortest
paths connect vertices whose distance is less than k, they must be the unique shortest
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Fig. 4.2. If ρ(vk) = ρ(vk−1) = vm then |C1| = 2(j − r + 1) < 2k.

paths between these vertices (cf. Lemma 3.2). These paths must therefore be tree
paths; i.e., they must be contained in the BFS tree. It follows that v2k−j−1 is the
ancestor of vk at level j. Therefore, ρ(vk) 6= 0. If ρ(vk−1) = 0 we are done. Otherwise
ρ(vk−1) = vm where 1 ≤ m < k − 1 since v0, v1, . . . , vk−2 are the proper ancestors
of vk−1 (and v0 is unmatched). Assume, for contradiction, that ρ(vk) = vm. Since
v2k−j−1 is a matched ancestor of vk, we have m < j, and vm is an ancestor of v2k−j−1.
Let wm = θ(vm) be the match of vm, and let v2k−r be the lowest common ancestor,
in the BFS tree, of wm and v2k−j (v2k−r may be v0). We obtain the following even
cycle (cycle C1 in Fig. 4.2) in G: vm ∼ v2k−j−1 − v2k−j ∼ v2k−r ∼ wm − vm,
where vm ∼ v2k−j−1, v2k−j ∼ v2k−r, and v2k−r ∼ wm denote the tree paths between
these vertices, and v2k−j−1 − v2k−j , wm − vm are the edges matching these vertices.
The tree paths vm ∼ v2k−j−1 and vm ∼ vk−1 may coincide initially; this causes no
problems. The cycle C1 is indeed a cycle; i.e., it is simple, because it is composed of
tree paths that cannot intersect one another. The length of C1 is 2(j−r+1) ≤ 2k−2,
contradicting the minimality of C.

As a corollary of Theorem 4.1, we get that any graph containing more than
3(V − 1)/2 edges contains an even cycle. A simple example shows that this bound
is the best possible. Just take any connected graph whose biconnected components
are triangles. Furthermore, checking whether a graph contains an even cycle and
exhibiting one if it does can be done in O(V ) time. Just perform one augmented BFS
from an arbitrary vertex.

Finally, we point out that the result of this section is not implied by the results
of section 2. We cannot afford checking, for k = 1, 2, . . ., whether the graph contains
a C2k since the length of the smallest even cycle may be large.

5. Finding a shortest odd cycle in undirected and directed graphs.
Shortest odd length cycles (SOLCs) can be found in polynomial time in both directed
and undirected graphs. Our objective in this section is to describe very simple, yet
efficient, algorithms for both of these problems. Monien [6] obtained a simple O(VE)
time algorithm for finding SOLCs in undirected graphs. Using fast Boolean matrix
multiplication algorithms we obtain an O(M(V ) log V ) algorithm for the same task.
This algorithm is more efficient than Monien’s algorithm for dense graphs.
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Theorem 5.1. There is an O(M(V ) log V ) time algorithm that finds a shortest
odd cycle in an undirected graph G = (V,E).

Proof. Let A be the adjacency matrix of G. We assume that G is nonbipartite
since otherwise it contains no odd cycles. Recall that Ak(i, i) = 1 iff there is a closed
walk of length k from i to itself (the multiplications used to obtain Ak are assumed
to be Boolean). Since any closed walk of an odd length contains an odd cycle, the
length of the SOLCs of G is the minimal odd k for which there exists an i such
that Ak(i, i) = 1. Since G is undirected, At(i, i) = 1 implies At+2(i, i) = 1. We
can therefore look for this minimal k using the following approach. Start computing
A,A3, A7, . . . , A2i−1, . . . until A2s−1(i, i) = 1 for some i. A binary search along the
odd numbers between 2s−1 − 1 and 2s − 1 can then be used to find k. The number
of Boolean matrix multiplications required is clearly O(log V ). A specific SOLC of
length k can be found without increasing the complexity of the algorithm.

We turn our attention now to finding shortest odd cycles in directed graphs.
Unlike in the undirected case, subpaths of SOLCs are not necessarily shortest paths,
and therefore a simple BFS from every vertex does not suffice. Let ed(u, v) be the
length of a shortest even length directed walk from u to v. Similarly, let od(u, v) be
the length of a shortest odd length directed walk from u to v. If no odd (even) length
walk exists we set od(u, v) = ∞ (ed(u, v) = ∞). Note that the existence of a walk
of length ed(u, v) (od(u, v)) does not imply the existence of a simple walk of length
ed(u, v) (od(u, v)).

Lemma 5.2. If C = (v0, v1, . . . , vk−1) is a SOLC of a directed graph G, then
ed(v0, v2i) = 2i and od(v0, v2i−1) = 2i− 1 for every 1 ≤ i ≤ k−1

2 .
Proof. Any closed walk of an odd length contains an odd cycle. There is an odd

length closed walk containing v0 whose length is ed(v0, v2i) + k − 2i. The minimality
of C implies that ed(v0, v2i) ≥ 2i. There is, however, a path of length 2i between v0
and v2i, and therefore ed(v0, v2i) = 2i. The second equality in the statement of the
lemma follows using similar arguments.

Given a vertex s, we can easily compute ed(s, v) and od(s, v) for every v ∈ V as
follows. Construct a graph G′ = (V ′, E′) where

V ′ = {ve, vo | v ∈ V },

E′ = {(xe, yo), (xo, ye) | (x, y) ∈ E}.

The graph G′ is a directed bipartite graph that contains an even representative ve
and an odd representative vo for every vertex v ∈ V . It is easily seen that ed(u, v) =
d′(ue, ve) and that od(u, v) = d′(ue, vo), for every u, v ∈ V , where d′(u′, v′) denotes
the distance between u′ and v′ in G′. By performing a BFS on G′ from se, we can
therefore find ed(s, v) and od(s, v), for every v ∈ V , in O(E) time (we assume the
graph contains no isolated vertices).

For every s ∈ V , we can find, in O(E) time, a shortest odd length closed walk that
contains s. We simply compute oc(s) = min{ed(s, v) + 1 | (v, s) ∈ E}. If oc(s) 6=∞,
then a closed walk of length oc(s), which is the minimal possible odd length, is easily
found by tracing a shortest odd path from s to any vertex for which the minimum was
achieved. The shortest odd length closed walk found in this way must be a SOLC.
We thus obtain the following.

Theorem 5.3. A shortest odd length cycle in a directed graph G = (V,E), if one
exists, can be found in O(VE) time.
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6. Concluding remarks. We have shown that interesting combinatorial prop-
erties of even cycles in undirected graphs lead to very efficient algorithms for finding
even cycles of a given length and for finding shortest even cycles. Note that if the
input graph is given using an adjacency matrix, then these O(V 2) algorithms are opti-
mal. It seems plausible to conjecture that O(V 2) is the best possible bound, in terms
of V , for these problems even if the adjacency lists of the graphs are given as input.
Note that O(V 2) time is currently the best known time even for finding quadrilaterals
(C4’s).

Based on the results of this paper, Alon, Yuster, and Zwick [2] have recently
obtained an O(E4/3) algorithm for finding a C4 in undirected graphs. More generally,

a C4k can be found in O(E2−( 1
k−

1
2k+1 )) time. These algorithms are better than the

O(V 2) time algorithms presented here for relatively sparse graphs. It is interesting to
note that the hardest cases for the C4 problem, for example, are graphs with Θ(V 3/2)
edges.
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Abstract. This paper introduces and studies the question of balancing the load on processors
participating in a given quorum system. Our proposed measure for the degree of balancing is the
ratio between the load on the least frequently referenced element and on the most frequently used
one.

We give some simple sufficient and necessary conditions for perfect balancing. We then look at
the balancing properties of the common class of voting systems and prove that every voting system
with odd total weight is perfectly balanced. (This holds, in fact, for the more general class of ordered
systems.)

We also give some characterizations for the balancing ratio in the worst case. It is shown that for
any quorum system with a universe of size n, the balancing ratio is no smaller than 1/(n − 1), and
this bound is the best possible. When restricting attention to nondominated coteries (NDCs), the
bound becomes 2/

(
n−log2 n+o(logn)

)
, and there exists an NDC with ratio 2/

(
n−log2 n−o(logn)

)
.

Next, we study the interrelations between the two basic parameters of load balancing and quorum
size. It turns out that the two size parameters suitable for our investigation are the size of the largest
quorum and the optimally weighted average quorum size (OWAQS) of the system. For the class of
ordered NDCs (for which perfect balancing is guaranteed), it is shown that over a universe of size
n, some quorums of size d(n + 1)/2e or more must exist (and this bound is the best possible). A
similar lower bound holds for the OWAQS measure if we restrict attention to voting systems. For
nonordered systems, perfect balancing can sometimes be achieved with much smaller quorums. A
lower bound of Ω(

√
n) is established for the maximal quorum size and the OWAQS of any perfectly

balanced quorum system over n elements, and this bound is the best possible.
Finally, we turn to quorum systems that cannot be perfectly balanced, but have some balancing

ratio 0 < ρ < 1. For such systems we study the trade-offs between the required balancing ratio ρ
and the quorum size it admits in the best case. It is easy to get an analogue of the result for perfect
balancing, yielding a lower bound of

√
nρ. We actually get a better estimate by a refinement of the

argument.
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1. Introduction.

1.1. Motivation. Quorum systems serve as a basic tool providing a uniform
and reliable way for achieving coordination between processes in a distributed system.
Quorum systems are defined as follows. Suppose that the system is composed of n
elements u1, . . . , un, taken from a universe U , representing sites, nodes, processors,
or other abstract entities. A set system is a collection S of sets over the universe
U . A set system S is said to satisfy the quorum intersection requirement if for every
two sets Si and Sj in S, the intersection Si ∩ Sj is not empty. A quorum system is
a collection of sets that enjoys the quorum intersection property. The sets of S are
referred to as the quorums of the system.
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Applications for quorum systems in distributed systems include control and man-
agement problems such as mutual exclusion (cf. [R86]), name servers (cf. [MV88]),
and replicated data management (cf. [H84]). In all of these cases, the use of quorum
systems is centered on the following basic idea. The application requires that certain
information items be stored in the network in a reliable and consistent way. Storing
the information at a single central site is problematic in case that site crashes. Stor-
ing the information at one particular set of sites may overcome this problem, but will
prevent working in the system if a communication failure causes a partition in the
network, since if users at different parts of the network continue working separately,
the information can no longer be guaranteed to be consistent.

The conceptual solution based on quorum systems is to make use of a large
collection of possible sets of sites in the system. Each such set forms a quorum in the
sense that any query or update operation concerning the information at hand can be
performed by accessing the elements of this single set alone, and the choice of the
particular quorum to be used can be made arbitrarily (i.e., all quorums are equally
adequate).

In particular, in order to perform an update to the information, the user selects
one quorum Si in the quorum system S, and records the update in every one of the
elements that compose Si. Likewise, a potential consumer of this information may
choose any quorum Sj ∈ S, and query the elements of Sj for the needed informa-
tion. Note that the consumer must query each of the elements of Sj in order to be
certain of obtaining the latest version. The reason for this is that a sequence of k
updates, performed by a number of different users, may make use of different quorums
Si1 , . . . , Sik , and therefore the elements of a quorum Sj used in a subsequent query
may contain different information. Specifically, if the element x ∈ Sj does not belong
to Sik then the information stored in it will not be the most recent one. Moreover, it
is impossible to tell, just by inspecting the data stored at x, whether this is the last
version. Luckily, since the intersection of every two quorums in a quorum system is
not empty, the consumer is guaranteed to encounter at least one element that is able
to supply the most up-to-date version (namely, the element at the intersection of Sj
and Sik).

This type of solution is capable of withstanding crashes and network partitions
(up to a point), due to the greater degree of freedom the user has in choosing the
quorum. In particular, in the case of crashes, the consumer can choose a quorum that
does not include the crashed elements, and in the case of a partition, it may still be
possible for one part of the network to contain a complete quorum. (Of course, it is
quite impossible for two disconnected parts of the system to both contain complete
quorums!)

Considerable attention is given in the literature to a special type of quorum system
called a coterie (see [GB85] and [IK90]). A coterie is a quorum system in which the
quorums are not allowed to fully contain each other. A subclass of special interest
is that of nondominated coteries (or NDCs), which are better than other coteries in
terms of fault tolerance and communication cost. This subclass is defined as follows.
Given two coteries S1 and S2 over the same universe U , we say that S2 dominates S1

if S2 6= S1 and for every quorum S ∈ S1 there is a quorum T ∈ S2 such that T ⊆ S.
An NDC is a coterie which is not dominated by any other coterie (see [GB85]).

1.2. Load balancing. There are many types of quorum systems, and many
parameters of quorum systems affecting the applications using them. Such parameters
include quorum sizes (affecting communication costs) and the number of quorums
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(affecting immunity to partitioning).

Of special interest are parameters for evaluating the distribution of workload
over the system, and measuring the degree of balancing possible for a given quorum
system. If all the users of the system prefer to use one particular quorum while
possible (e.g., in a failure-free execution), then the elements participating in this
quorum will be overloaded compared to others. So it makes sense to try to use a
more uniform distribution for selecting the quorum to be accessed. Formally, given
a quorum system S = {S1, . . . , Sm}, a quorum load vector (QLV) is a vector v =
(v1, v2, . . . , vm) expressing the distribution of relative loads placed on the quorums of
S. (That is, in a long sequence of quorum accesses, a vi fraction of the accesses is
directed at quorum Si.)

This distribution induces an access rate for each element uj , which is the sum of
the access frequencies of the quorums it belongs to, aj =

∑
uj∈Si vi. Thus the element

load vector (ELV) a = (a1, a2, . . . , an) induced by the QLV v expresses the relative
loads placed on the elements of U when using the QLV v.

Our proposed measure for the degree of balancing is the ratio between the rate
of accesses to the least frequently used element in the quorum system and the rate
of accesses to the most frequently used one. Formally, given a QLV v for S and the
induced ELV a, we let ρS,v = min{aj}/max{aj}, and define the balancing ratio ρS
of S as the maximum ρS,v over all QLVs v. A system is said to be perfectly balanced
if all the elements are accessed at the same rate, namely, ρS = 1.

This paper focuses on issues related to balancing. In current technologies, a
common and promising way to increase computing power is by connecting many
fast processors together into compound systems. Quorum systems can be used for
coordination in such systems. For small systems, the effect of the particular quorum
system used on the communication cost is not significant. However, when the systems
become larger, the importance of choosing a good quorum system may significantly
increase. In particular, some quorum systems may be well adapted to the demand of
load balancing, while for others, such a demand may impose heavy communication
costs. Worse yet, certain types of quorum systems may be incapable of providing
perfect or even partial balancing, regardless of the cost.

In this paper we introduce and address this issue, defining the fundamental notions
and concepts relevant to load balancing, and developing some basic results on the
balancing properties of a variety of quorum system classes.

Let us remark that to the best of our knowledge, currently existing systems do
not address the issue of load balancing at all. Consequently, the quorum selection
mechanisms used in existing systems typically do not provide such balancing, as they
base the selection on some arbitrary choice, or worse, on a fixed search pattern,
perpetuating the imbalance.

However, even though current quorum systems do not provide any means for
balancing the load on the processors, it should be clear that there is no inherent reason
that prevents them from doing so. In fact, given a desirable QLV v for the quorum
system S at hand (i.e., a QLV v for which ρS,v = ρS), it is rather straightforward
to develop a simple randomized protocol for quorum selection, based on interpreting
v as a probability distribution over the quorums, and drawing a quorum at random
according to v. Such a protocol will in fact enforce an actual load distribution close
to the optimal one, with high probability. For many natural quorum system classes
(including most of the specific classes discussed in what follows), this protocol will
also enjoy an efficient (and fast) distributed implementation.
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1.3. Related work. Synchronization and coordination are central issues in the
area of distributed systems. Many types of synchronization protocols rely on variants
of quorum systems. In [H84] quorum intersection is defined between read quorums and
write quorums, and also between other abstract types of quorums. In [MV88] aspects
of distributed control are examined and lower bounds are presented for certain types
of quorum systems. The issues of fault tolerance and availability of quorum systems
are studied in [PW93]. For more on the applicability of quorum-based techniques in
distributed systems, and on the examples mentioned above, the reader is referred to
[H84, GB85] and the references therein. We are unaware of previous discussion of
load balancing issues in the context of quorum systems in the literature.

Set systems in general (including intersecting hypergraphs in particular) were
studied extensively in recent years (cf. [B86]). The terms coterie and nondominated
coterie (NDC) are defined in [GB85], and many properties of coteries and NDCs
are presented. Some interesting properties of NDCs are derived in [L73]. In [IK90]
a relationship is established between coteries and boolean functions. Properties of
coteries and NDCs are derived from properties of the appropriate functions.

1.4. Contributions. This paper focuses on a number of questions related to the
issue of balancing the load on processors participating in a given quorum system.

We begin by giving some simple sufficient and necessary conditions for perfect bal-
ancing. (One trivial necessary condition is that the system is nonredundant; namely,
that every element participates in some quorum.)

We then look at the balancing properties of the common class of voting systems.
(A voting system is based on assigning a number of “votes” to each element of the
universe; the votes induce a quorum system by taking as a quorum any collection of
elements that holds a “minimal” majority of all the votes.) We define the class of
ordered NDCs, which is an extension of voting systems, and prove that every ordered
NDC is perfectly balanced. It follows, in particular, that every voting system with
odd total number of votes is perfectly balanced.

Next we turn to characterizations for the balancing ratio in the worst case. We
show that for any quorum system with a universe of size n, the balancing ratio is no
smaller than 1/(n−1), and this bound is the best possible. When restricting attention
to NDCs, the bound becomes 2/

(
n− log2 n+o(logn)

)
, and there exists an NDC with

ratio 2/
(
n− log2 n− o(logn)

)
.

Next, we study the interrelationships between the two basic parameters of load
balancing and quorum size. It turns out that the two size parameters suitable for our
investigation are the size of the largest quorum and the optimally weighted average
quorum size (OWAQS) of the system (corresponding to an optimal load vector).

For the class of ordered NDCs (for which perfect balancing is guaranteed), it
is shown that over a universe of size n, some quorums of size d(n + 1)/2e or more
must exist (and this bound is the best possible). A similar lower bound holds for the
OWAQS measure if we restrict attention to voting systems.

For nonordered systems, perfect balancing can sometimes be achieved with much
smaller quorums. A lower bound of Ω(

√
n) is established for the maximal quorum

size and the OWAQS of any perfectly balanced quorum system over n elements, and
this bound is the best possible.

Finally, we turn to quorum systems that cannot be perfectly balanced, but have
some balancing ratio 0 < ρ < 1. For such systems we study the trade-offs between
the required balancing ratio ρ and the quorum size it admits in the best case. It is
easy to get an analogue of the result for perfect balancing, yielding a lower bound of
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√
nρ. We actually get a better estimate, by a refinement of the argument.

2. Basic notions.
Definition. A quorum system is a pair (U,S), where U is a nonempty finite set

and S is a set of nonempty subsets of U such that the intersection of every two sets
in S is nonempty. We refer to the set U as the universe and to the sets in S as the
quorums of the system.

It is sometimes convenient to represent a quorum system by a matrix of 0’s and
1’s.

Definition. The quorum matrix of a quorum system (U,S) is the m×n matrix
Ŝ = (ŝij) obtained as follows: the elements of U are enumerated as u1, u2, . . . , un, the
quorums in S are enumerated as S1, S2, . . . , Sm, and

ŝij =
{

1 if uj ∈ Si,
0 otherwise.

We shall usually be interested in quorum systems in which no quorum contains
another, since in the case of containment the larger quorum is redundant for our
purposes.

Definition. A coterie is a quorum system in which no quorum contains another
quorum.

In order to describe and analyze a coterie, it is often convenient to refer to the
set of subsets of the universe which contain some quorum. This is facilitated by the
following definition.

Definition. A monotone quorum system (MQS) is a quorum system (U,M)
such that S ∈ M and S ⊆ T ⊆ U imply T ∈ M. Given a coterie (U,S), a superquo-
rum is any subset of U that contains a quorum of S. The MQS generated by (U,S)
is the collection of superquorums of (U,S), namely, the system (U, S̄), where T ∈ S̄
if and only if T ⊇ S for some S ∈ S. Conversely, if we are given a MQS (U, S̄) then
the coterie (U,S) is determined uniquely (S ∈ S if and only if S ∈ S̄ and no proper
subset of S is in S̄) and is called the coterie derived from (U, S̄).

Example 2.1. Minimal Majority Coterie. Let |U | = n and let S̄ =
{
S ⊆ U : |S| >

n
2

}
; that is, the superquorums are the sets containing a majority of elements. The

coterie derived from (U, S̄) is that in which the quorums are all subsets of U of size⌈
n+1

2

⌉
.

Notation. When U = {u1, u2, . . . , un} and x1, x2, . . . , xn are real numbers, we
denote the x-weight of a subset S ⊆ U by

x(S) =
∑
uj∈S

xj .

Example 2.2. Voting Coterie. Let U = {u1, u2, . . . , un} and assume that to
each uj ∈ U we assign a nonnegative integer wj , called the weight of uj . Then we

define the MQS S̄ =
{
S ⊆ U : w(S) > w(U)

2

}
. The coterie derived from (U, S̄) is

that in which the quorums are those subsets of U which carry a majority of the
total weight and are inclusion-minimal with respect to this property. A coterie (U,S)
obtained in this manner is called a voting system. Observe that the minimal majority
coterie of Example 2.1 is a special case of a voting system, in which all weights are
equal.

Example 2.3. Star Coterie. Let U = {u1, u2, . . . , un} and let S consist of the
n− 1 quorums {u1, u2}, {u1, u3}, . . . , {u1, un}. Then (U,S) is a coterie. We call such
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a coterie a star . Observe that a star is also a voting system (take w1 = n − 1,
w2 = · · · = wn = 1).

Voting systems play a distinguished role in the study of quorum systems because
of the natural and simple way in which they are specified. The defining weights
also supply a ranking of the elements of U in terms of their importance for forming
quorums. This notion is captured by the following definition.

Notation. Let U = {u1, u2, . . . , un}, and let S ⊆ U with ui /∈ S, uj ∈ S. We
denote by Sij the replacement set

(
S \ {uj}

)
∪ {ui}.

Definition. Let (U,S) be a coterie. We say that (U,S) is ordered if it is possible
to enumerate the elements of U as u1, u2, . . . , un so that the following holds: if 1 ≤
i < j ≤ n and S is a superquorum with ui /∈ S, uj ∈ S, then Sij is also a superquorum.

Intuitively, the above property means that if i < j then ui is at least as useful as
uj for forming quorums. The reason that the definition refers to superquorums rather
than quorums is that it may happen that S is a quorum but Sij is a nonminimal
superquorum. It is straightforward to check, and we will do so now.

Fact 2.4. Every voting system is ordered.

Proof. This is proved by enumerating the elements so that w1 ≥ w2 ≥ · · ·
≥ wn.

The converse is known to be false; that is, there exist ordered coteries that cannot
be obtained as a voting system [Os85]. There are also coteries that are not ordered,
as witnessed by the following class of examples.

Example 2.5. FPP. Let U and S be the sets of points and lines, respectively, of a
finite projective plane (see [H86]). We recall that in a finite projective plane of order
q (abbreviated FPP(q)) there are n points and n lines, where n = q2 + q + 1. Each
line contains q+ 1 points and there are q+ 1 lines going through each point. Any two
lines have exactly one point in common, and through any two points there is exactly
one line. A FPP(q) is known to exist for every q which is a prime power. Clearly,
if (U,S) is a FPP(q), q ≥ 2, then (U,S) is not ordered, since no point can replace
another in a line.

A special class of coteries arises from a concept of domination among coteries (see
[GB85]).

Definition. Let (U,S1) and (U,S2) be coteries. We say that (U,S2) dominates
(U,S1) if S2 6= S1 and for every quorum S ∈ S1 there is a quorum T ∈ S2 such that
T ⊆ S. A nondominated coterie (NDC) is a coterie which is not dominated by any
other coterie.

The following fact (cf. Cor. 2.1 in [IK90]) can be used as a convenient alternative
definition of an NDC.

Proposition 2.6. Let (U,S) be a coterie. Then (U,S) is an NDC if and only
if for every partition of U into two parts S1 and S2, one of the Si (i = 1, 2) is a
superquorum.

We now record a simple but useful property of NDCs.

Proposition 2.7. Let (U,S) be an NDC, and let u ∈ U be in ∪S (that is, u
belongs to at least one quorum). Then:

(a) There exist two quorums S and T such that S ∩ T = {u}.
(b) If, moreover, (U,S) is ordered with corresponding enumeration u1, u2, . . . , un

of U and u = uj, then there are two quorums S and T such that S∩T = {uj}
and S ∪ T ⊇ {u1, . . . , uj}.

Proof. Let S be a quorum containing u. Applying the property given in Propo-
sition 2.6 to the partition S \ {u}, (U \ S) ∪ {u}, we conclude that (U \ S) ∪ {u} is a
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superquorum. Let T be a quorum contained in it. Then S ∩ T ⊆ {u}, and since the
intersection of two quorums is nonempty we have S ∩ T = {u}, establishing part (a).

To prove part (b), assume that i < j and ui /∈ S∪T . By the property of an ordered
coterie it follows that the replacement set T ij is a superquorum. This, however, is a

contradiction since T ij is disjoint from S.
Let us examine the above examples of coteries to see whether they are NDCs.
Fact 2.8.

(a) The minimal majority coterie of Example 2.1 is an NDC if and only if n
is odd.
(b) A sufficient condition for a voting system (Example 2.2) to be an NDC is
that the total weight be odd.
(c) A star coterie (Example 2.3) is dominated.
(d) A finite projective plane FPP(q) (Example 2.5) is an NDC for q = 2 but
is dominated for all q > 2.

Proof. Parts (a) and (b) [GB85] are seen easily from Proposition 2.6. Part
(c) follows since neither {u1} nor {u2, . . . , un} is a superquorum. For Part (d) see
[P70, C93].

We remark that despite Fact 2.8(d), FPP(q) satisfies the property of Proposition
2.7(a) for all q.

The central concept of this research deals with load balancing.
Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij), i =

1, . . . ,m, j = 1, . . . , n. A quorum load vector (QLV) is a vector v = (v1, v2, . . . , vm)
whose components are real nonnegative numbers (not all zero) expressing the relative
loads that are to be placed on the quorums of S. The element load vector (ELV)
induced by the QLV v is the vector a = a(S,v) = (a1, a2, . . . , an) computed by a = vŜ
and expressing the relative loads placed on the elements of U when using the QLV v.

Definition. Let (U,S) be a quorum system. Given a QLV v = (v1, v2, . . . , vm)
which induces the ELV a = (a1, a2, . . . , an), we define the balancing ratio for S and
v as

ρS,v =
minj=1,...,n{aj}
maxj=1,...,n{aj}

.

The balancing ratio of (U,S) is defined as

ρS = max{ρS,v: v is a QLV}.

A straightforward continuity and compactness argument shows that ρS is well
defined. We have associated with each quorum system (U,S) a parameter 0 ≤ ρS ≤ 1,
which tells us how evenly we can spread the load among the elements of U if we are
allowed to assign the relative loads to the quorums optimally. The higher the ρS , the
better behaved the quorum system is from the point of view of load balancing.

We note the following basic fact regarding the balancing ratio.
Fact 2.9. If U 6= ∪S then ρS = 0.
Proof. If U 6= ∪S, then there is some element ui ∈ U that does not participate

in any quorum of S. Hence, no matter which QLV v we choose, ai will be zero, and
thus the balancing ratio ρS,v will be zero too.

Consequently, in studying the balancing ratio it is natural to make the assumption
that each element appears in some quorum.

Definition. A quorum system (U,S) is nonredundant if each element of U
appears in some quorum; i.e., U = ∪S.
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Once this assumption holds, we have ρS > 0. The most pleasing situation is when
all element loads can be made equal; that is, ρS = 1.

Definition. A quorum system (U,S) is perfectly balanced if ρS = 1.

3. Perfect balancing. We begin with a simple sufficient condition for perfect
balancing.

Definition. Let (U,S) be a quorum system and let u ∈ U . The degree of u in S
is dS(u) =

∣∣{S ∈ S: u ∈ S}
∣∣. We say that (U,S) is regular if all elements of U have

the same degree in S.
Proposition 3.1. Every regular quorum system is perfectly balanced.
Proof. The proposition is proved by assigning equal loads to all quorums.
As an application of Proposition 3.1, we note that the minimal majority quorum

systems of Example 2.1 and the FPP coterie of Example 2.5 are regular, and hence
perfectly balanced. The star coterie (Example 2.3), on the other hand, is not perfectly
balanced (when n ≥ 3), since it can be seen that the load on the center of the star is
the sum of the loads on the other elements.

In trying to determine when a given quorum system is perfectly balanced, the
following characterization is useful.

Proposition 3.2. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un}.
Then (U,S) is perfectly balanced if and only if there exists no x = (x1, x2, . . . , xn) ∈ Rn
satisfying

x(S) ≥ 0 for all S ∈ S,(1)

x(U) < 0.(2)

(Recall the x-weight notation.)
Proof. The quorum system (U,S) is perfectly balanced if there exists a real

nonnegative vector v solving the equation system vŜ = 1, where 1 denotes the n-
dimensional vector of 1’s. By the Minkowski–Farkas Lemma ([F01]; cf. [C83]), this is
equivalent to the condition that the system of inequalities xŜ> ≥ 0, x·1> < 0 has
no solution.

Our main result in this section is concerned with ordered NDCs. It will be derived
from the following lemma.

Lemma 3.3. Let (U,S) be a nonredundant NDC. Suppose that (U,S) is ordered
with corresponding enumeration u1, u2, . . . , un of U . Let x = (x1, x2, . . . , xn) ∈ Rn
and α ∈ R satisfy

x(S) ≥ α for all S ∈ S,(3)

x(U) ≤ 2α.(4)

Then xj ≥ 0 for j = 1, 2, . . . , n.
Proof. Suppose, for contradiction, that xj < 0 for some j, and let J be the

largest such j. By Proposition 2.7(b) there exist two quorums S and T such that
S ∩T = {uJ} and S ∪T ⊇ {u1, . . . , uJ}. By the choice of J , we have xi ≥ 0 for every
ui ∈ U \ (S ∪ T ), and hence x(U)− x(S ∪ T ) = x

(
U \ (S ∪ T )

)
≥ 0. Therefore, using

(3) and xJ < 0, we get

x(U) ≥ x(S ∪ T ) = x(S) + x(T )− xJ > 2α,

which contradicts (4).
Theorem 3.4. Every ordered nonredundant NDC is perfectly balanced.
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Proof. For the sake of contradiction, let (U,S) have the properties stated, but fail
to be perfectly balanced. By Proposition 3.2 there exists x ∈ Rn satisfying (1) and (2).
We may apply Lemma 3.3 with α = 0 and conclude that xj ≥ 0 for j = 1, 2, . . . , n.
But this is inconsistent with (2).

By Facts 2.4 and 2.8(b) we have the following corollary.
Corollary 3.5. Every nonredundant voting system (Example 2.2) with odd total

weight is perfectly balanced.
We remark that none of the assumptions made in Theorem 3.4 is superfluous.

Indeed, the nonredundancy assumption is necessary for perfect balancing by Fact
2.9. If we drop the assumption of nondomination, the star coterie is an example that
satisfies the other assumptions but not the conclusion. A class of examples indicating
that the assumption of being ordered cannot be dispensed with will be presented in
the following section (Example 4.3).

4. The balancing ratio in the worst case.

4.1. Characterization for the balancing ratio. The following proposition
gives a dual formulation for the balancing ratio in the case when it is less than 1; it
complements Proposition 3.2, which dealt with the case when the balancing ratio is
1.

We shall use the following notation: if U = {u1, u2, . . . , un} and x = (x1, x2, . . .,
xn) ∈ Rn then

P = {uj ∈ U : xj > 0},
N = {uj ∈ U : xj < 0}.

The expressions x(P ) and x(N) will be used following our x-weight notation.
Proposition 4.1. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un} and

ρS < 1. Then

ρS = min{x(P )},

where the minimum is taken over all x = (x1, x2, . . . , xn) ∈ Rn satisfying

x(S) ≥ 0 for all S ∈ S,(5)

x(N) = −1.(6)

Proof. The balancing ratio ρS can be defined as the optimal value of ρ in the
linear programming problem

ρS = max
v,ρ
{ρ},

subject to

vŜ ≤ 1,

ρ− vŜ ≤ 0,

v ≥ 0,

ρ ≥ 0,

where Ŝ is the quorum matrix, α denotes (for α ∈ R) the vector of appropriate
dimension with all components equal to α, vector inequalities are understood com-
ponentwise, and the maximum is taken over all QLVs v and ρ ∈ R. Note that this
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formulation is equivalent to the definition of ρS , since the QLV v can always be nor-
malized so that the largest component of the induced ELV a becomes 1. By linear
programming duality, we can express ρS in the form

ρS = min
y,z
{y(U)}

subject to

z(U) ≥ 1,(7)

y(S)− z(S) ≥ 0, for all S ∈ S,(8)

y ≥ 0,(9)

z ≥ 0,(10)

where the minimum is taken over all vectors y, z ∈ Rn.
We begin by showing that there exists a vector x satisfying (5) and (6) and

also x(P ) ≤ ρS . The inequality ρS ≥ min{x(P )} then follows. Suppose now that
y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) satisfy (7)–(10), and yield the optimal
value in the dual linear programming problem. We may assume that z(U) = 1, since
we can achieve this by decreasing the values of the components of z without affecting
the value of the solution or the validity of the constraints. Let x = y − z, and let
N ⊆ U be defined with respect to x as in the statement of the proposition.

We observe first that x(U) < 0. Indeed,

x(U) = y(U)− z(U) = ρS − 1

and ρS < 1 by assumption. It follows in particular that N 6= ∅, and therefore
x(N) < 0. On the other hand, by (9) and (10),

x(N) =
∑
uj∈N

yj − zj ≥ −
∑
uj∈N

zj ≥ −
∑
uj∈U

zj = −1.

Therefore, we can find a real number α ≥ 1 so that αx(N) = −1; hence the vector
αx satisfies (6). It follows from (8) that x, and hence also αx, satisfies (5). Thus αx
satisfies both (5) and (6). We have

αx(P ) = αx(U)− αx(N) = αx(U) + 1 ≤ x(U) + z(U) = y(U) = ρS

(where the inequality relies on x(U) < 0 and α ≥ 1, and on (7)).
It remains to show, in the other direction, that any x = (x1, x2, . . . , xn) ∈ Rn

which satisfies (5) and (6) has x(P ) ≥ ρS . The inequality ρS ≤ min{x(P )} follows
immediately. Let x be such a vector. We define the vectors y = (y1, y2, . . . , yn) and
z = (z1, z2, . . . , zn) by

yj =

{
xj if xj > 0,
0 otherwise,

zj =
{−xj if xj < 0,

0 otherwise.

It can be checked that y and z satisfy (7)–(10). It follows that y(U) ≥ ρS . Since
y(U) = x(P ), we are done.
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4.2. A lower bound for the balancing ratio. We now address the following
question: within the class of all nonredundant quorum systems with a universe of size
n, how low can the balancing ratio be in the worst case?

Theorem 4.2. Let (U,S) be a nonredundant quorum system with U = {u1, u2,
. . . , un}, n ≥ 2. Then ρS ≥ 1/(n− 1). This bound is the best possible.

Proof. We may assume that ρS < 1. By Proposition 4.1, we have to prove that
any x = (x1, x2, . . . , xn) ∈ Rn which satisfies (5) and (6) has x(P ) ≥ 1/(n− 1). Since
x(N) = −1 (by (6)) and |N | ≤ n − 1 (due to (5)), there exists some uj ∈ N with
xj ≤ −1/(n − 1). Using the nonredundancy assumption, let S be a quorum with
uj ∈ S. Then

x(P ) ≥ x(S ∩ P ) ≥ −x(S ∩N) ≥ −xj ≥ 1/(n− 1)

(where the second inequality is due to (5) again).
A candidate for attaining the worst case is the star coterie of Example 2.3, whose

balancing ratio is easily seen to be 1/(n− 1).

4.3. A lower bound for the balancing ratio on NDCs. The worst case for
the balancing ratio occurs for the star, which is a dominated coterie. What happens
if we restrict attention to NDCs? The following construction, taken from [EL74],
exhibits a low balancing ratio.

Example 4.3. Nucleus Coterie. Let r ≥ 2 be an integer and let U be the disjoint
union of the sets K and L, where |K| = 2r − 2 and |L| =

(
2r−2
r−1

)
/2. Let the elements

of L be put in a one-to-one correspondence with the halvings of K. That is, to every
unordered pair A,B of disjoint subsets of K of size r − 1 each there corresponds an
element uA,B of L. Let S consist of all sets of the form A ∪ {uA,B} and B ∪ {uA,B},
where A,B is a halving of K, as well as all subsets of K of size r. It is easy to verify
that (U,S) is an NDC (using Proposition 2.6) and it is nonredundant. The number
of elements is n = 2r − 2 +

(
2r−2
r−1

)
/2. The balancing ratio is 1 when r = 2 and is

ρS = 4/
(

2r−2
r−1

)
when r ≥ 3. The latter can be verified by noting that (a) the QLV v

assigning zero load to the quorums contained in K and load 1 to every other quorum
satisfies ρS,v = 4/

(
2r−2
r−1

)
, and (b) the vector x = (x1, x2, . . . , xn) defined by

xj =


2

(r−1)(2r−2
r−1 )

if uj ∈ K,

− 2

(2r−2
r−1 )

if uj ∈ L,

satisfies (5) and (6) and x(P ) = 4/
(

2r−2
r−1

)
.

We observe that for r = 3 the above construction gives a nonredundant NDC
(U,S) with |U | = 7 which has balancing ratio ρS = 2/3. It is therefore an example
showing that Theorem 3.4 does not remain true if the assumption of being ordered
is removed. No such example with universe of size smaller than 7 exists. Indeed,
for n ≤ 5 it is known that every NDC is a voting system and hence ordered [GB85].
For n = 6, an exhaustive search shows that all nonredundant NDCs are perfectly
balanced.

For large r, the above construction gives almost the worst case as will be proved
next.

Theorem 4.4. For every nonredundant NDC (U,S) with U = {u1, u2, . . . , un},
ρS ≥ 2/

(
n − log2 n + o(logn)

)
. Furthermore, there exists such an NDC (U,S) with

ρS = 2/
(
n− log2 n− o(logn)

)
.
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Proof. Let (U,S) satisfying the assumptions be given, and let us write

ρS =
2

n− α

for a suitable real number α. We have to prove that α ≥ log2 n− o(logn).
Let x = (x1, x2, . . . , xn) ∈ Rn be a vector which satisfies (5) and (6) and has

x(P ) =
2

n− α.(11)

Given any uj ∈ N we can find, using Proposition 2.7(a), two quorums Sj and Tj such
that Sj ∩ Tj = {uj}. We have then (relying on (5) for the second inequality)

x(P ) ≥ x(Sj ∩ P ) + x(Tj ∩ P )

≥ −x(Sj ∩N)− x(Tj ∩N) ≥ −2xj .(12)

It follows now from (11) and (12) that

xj ≥ −
1

n− α for all uj ∈ N.(13)

Before continuing the proof, let us note that at this stage we could easily deduce
that α ≥ 2. Indeed, in (12) it must be the case that Sj ∩P and Tj ∩P are nonempty
(since both Sj and Tj contain uj ∈ N , yet by (5) both x(Sj), x(Tj) ≥ 0). As these
sets are disjoint, we know that |P | ≥ 2 and hence |N | ≤ n− 2. It follows by (6) that
there exists uj ∈ N with xj ≤ −1/(n − 2). In view of (13), this implies that α ≥ 2.
Thus we have a simple proof of the estimate ρS ≥ 2/(n − 2). In order to get the
slightly better estimate stated in the theorem, some more work is needed.

Assume without loss of generality (w.l.o.g.) that x1 ≥ x2 ≥ · · · ≥ xn. Split U
into three disjoint parts by setting the boundary values

M1 = − 1√
log2 n (n− α)

and M2 = − 2

3(n− α)
,

and defining

A = {u1, u2, . . . , u`} =

{
uj ∈ U : xj ≥M1

}
,

B ={u`+1, u`+2, . . . , up}=

{
uj ∈ U : M2 ≤ xj < M1

}
,

C ={up+1, up+2, . . . , un}=
{
uj ∈ U : xj < M2

}
.

Note that P ⊆ A. Hence using these definitions plus (13) and (6), we can deduce

M1`+M2(p− `)− 1

n− α (n− p) ≤M1 · |P |+ x(A∩N) + x(B) + x(C) ≤ x(N) = −1.

This can be rewritten as

α ≥ 1

3
p+

(
2

3
− 1√

log2 n

)
`.(14)
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For each uj ∈ C, let us choose as above two quorums Sj and Tj such that
Sj ∩ Tj = {uj}. Let us write S′j = Sj \ {uj}, T ′j = Tj \ {uj}. We now establish some
properties of these sets.

First, we claim that

S′j , T
′
j ⊆ A ∪B for j = p+ 1, . . . , n.(15)

To see this, suppose for instance that uk ∈ S′j ∩ C for some k 6= j. Then we may
sharpen (12) to get

x(P ) ≥ −2xj − xk >
2

n− α,

which contradicts (11).
Second, we estimate the B portion of each set S′j by

|S′j ∩B| <
2

3

√
log2 n for j = p+ 1, . . . , n.(16)

This is seen again by sharpening (12) in the form

x(P ) ≥ −2xj − x(S′j ∩B) >
4

3(n− α)
+

|S′j ∩B|√
log2 n (n− α)

and comparing with (11).
Third, we argue that

S′j 6= S′k for j 6= k, p+ 1 ≤ j, k ≤ n.(17)

Indeed, if S′j = S′k then S′j ∩ T ′k = ∅ which implies, by (15), that Sj ∩ Tk = ∅, in
contradiction to the quorum intersection property.

It follows from (15)–(17), by considering the mapping j 7→ S′j , that

n− p ≤ 2`
∑

i< 2
3

√
log2 n

(
p− `
i

)
.(18)

Going back to (14) we see that if p ≥ 3 log2 n we are done. So we assume that
p < 3 log2 n and then obtain from (18) that

n− 3 log2 n < 2`(3 log2 n)
2
3

√
log2 n.

Taking logarithms we get ` > log2 n− o(logn). Using (14) and p ≥ ` we have

α ≥
(

1− 1√
log2 n

)
` >

(
1− 1√

log2 n

)(
log2 n− o(logn)

)
= log2 n− o(logn)

as required.
An example of a coterie nearly matching the bound is the nucleus coterie of

Example 4.3, which for large r has ρS = 2/
(
n− log2 n− o(logn)

)
.

We add two comments concerning Theorem 4.4 and its proof:
1. By some finer tuning of the proof it is possible to replace the o(logn) term
by 4

3

√
log2 n. Details are omitted.

2. The theorem remains true, with the same proof, if instead of an NDC we
consider any quorum system having the property given in Proposition 2.7(a).
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5. Load balancing and quorum size.

5.1. Measures for quorum size. In this section we study the extent of compat-
ibility of two desirable goals: having a high balancing ratio and having small quorum
sizes. The general theme will be that a high balancing ratio cannot be obtained with
small quorum sizes.

Definition. A quorum system is r-uniform if every quorum has r elements.
If a quorum system is r-uniform then clearly we should use r as the parameter

describing the quorum size. But for more general quorum systems, the question arises
as to which parameter should be used for evaluating quorum sizes. Two conceivable
parameters that do not serve our purposes well are the minimum quorum size and
the average quorum size. This is illustrated by the following example.

Example 5.1. Wheel Coterie. Let U = {u1, u2, . . . , un} and let S consist of the n−
1 quorums {u1, u2}, {u1, u3}, . . . , {u1, un} and the additional quorum {u2, u3, . . . , un}.
This differs from the star coterie (Example 2.3) only in the addition of the last quorum.
It is easy to check that (U,S) is perfectly balanced. Yet the minimum quorum size is
2 and the average quorum size is 3(n− 1)/n, both low numbers. We remark also that
(U,S) is a voting system and an NDC.

It turns out that two other parameters are more suitable for our investigation.
Definition. Let (U,S) be a quorum system. The rank of (U,S) is defined as

rS = max
{
|S|: S ∈ S

}
.

Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij),
i = 1, . . . ,m, j = 1, . . . , n. Let v = (v1, v2, . . . , vm) be a QLV. The weighted average
quorum size (WAQS) of (U,S) corresponding to v is

gS,v =
1∑m
i=1 vi

m∑
i=1

vi|Si| =
∑n
j=1 aj∑m
i=1 vi

,

where a = (a1, a2, . . . , an) is the ELV induced by v, that is, a = vŜ. In the case
when v is an optimizing QLV (that is, ρS,v = ρS), we refer to gS,v as an optimally
weighted average quorum size (OWAQS).

As an illustration, let us apply these notions to the wheel coterie of Example
5.1. The rank there is n − 1. The unique (up to proportionality) optimizing QLV is
v = (1, 1, . . . , 1, n − 2), which gives the OWAQS gS,v = n(n − 1)/(2n − 3), which is
slightly more than n/2.

In our context of load balancing, it seems that the notion of an OWAQS is the
suitable way to measure quorum size. The rank is also interesting as a worst case
measure. If the quorum system is r-uniform then all approaches give r as the answer.
In general, the WAQS and even the OWAQS are not unique, as they depend on v.
Clearly, for every QLV v we have gS,v ≤ rS .

5.2. Quorum size bounds for ordered NDCs. In the first part of our anal-
ysis we shall focus on ordered nonredundant NDCs. This is a natural class of quorum
systems for which we know that perfect balancing is guaranteed (Theorem 3.4). So it
is interesting to ask what quorum sizes this class admits, or more precisely, how low
we can make the rank and the OWAQS within this class.

Theorem 5.2. Let (U,S) be an ordered nonredundant NDC with universe of size
n. Then rS ≥

⌈
(n+ 1)/2

⌉
. This bound is the best possible.
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Proof. Let u1, u2, . . . , un be an enumeration of U with respect to which (U,S) is
ordered. Applying Proposition 2.7(b) with u = un, we obtain two quorums S and T
such that S ∩ T = {un} and S ∪ T = U . Then |S| + |T | = n + 1, so at least one of
them has size ≥

⌈
(n+ 1)/2

⌉
.

For odd n, the optimality of the bound is shown by the minimal majority co-
terie of Example 2.1. For even n this is shown by a slight modification of that
example.

We note that no assumption of the theorem is redundant. The nucleus coterie of
Example 4.3 is an r-uniform nonredundant NDC with r ∼ 1

2 log2 n. The star (Example
2.3) is a 2-uniform ordered nonredundant coterie. If the nonredundancy assumption
is removed then n may be made arbitrarily large without affecting anything else.

A similar lower bound on the OWAQS holds if we restrict attention to voting
systems, a subclass of ordered coteries.

Theorem 5.3. Let (U,S) be a perfectly balanced voting system with universe of
size n. Then for every optimizing QLV v, the OWAQS is greater than n/2.

Proof. Let Ŝ = (ŝij), i = 1, . . . ,m, j = 1, . . . , n, be the quorum matrix, and let
v = (v1, v2, . . . , vm) be a QLV such that ρS,v = 1. Then the ELV induced by v is

a = vŜ = (a1, a2, . . . , an) with all aj equal, say, to the common value a. Let w> be
a column vector whose components w1, w2, . . . , wn are weights which determine the
voting system (U,S). Then it follows from the definition of a voting system that every
component of Ŝw> is greater than w(U)/2. Therefore

vŜw> >
w(U)

2

m∑
i=1

vi.(19)

On the other hand, since every component of vŜ equals a, we have

vŜw> = aw(U).(20)

Combining (19) and (20) we get a > 1
2

∑m
i=1 vi. Therefore

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
na∑m
i=1 vi

>
n

2
.

Comparing the last two theorems, it is natural to ask whether the (stronger)
conclusion of Theorem 5.3 holds under the conditions of Theorem 5.2. The question
involves the class of ordered NDCs that are not voting systems (and therefore Theorem
5.3 does not apply to them). It is not easy to construct examples for this class, but
this has been done: two such examples with universe of size 13 are given in [Os85]. In
the following theorem we show not only that there is a member of this class for which
the conclusion of Theorem 5.3 fails, but that it fails for every member of this class.

Theorem 5.4. Let (U,S) be an ordered nonredundant NDC with universe of size
n. Suppose further that (U,S) is not a voting system. Then there exists an optimizing
QLV v whose OWAQS is equal to n/2.

Proof. Let (U,S) satisfy the assumptions of the theorem and assume that (U,S)
is ordered with corresponding enumeration u1, u2, . . . , un of U .

As the first step in the proof, we claim that there is no pair (x, α), where x =
(x1, x2, . . . , xn) ∈ Rn and α is a real number, such that

x(S) > α > x(U \ S) for all S ∈ S.(21)
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To prove the claim, suppose that such x and α exist. Then we may change the value
of α, if necessary, to be x(U)/2, and (21) will still hold. Indeed, x(S) > x(U \ S)
implies that x(S) > x(U)/2 > x(U \ S). So we shall assume that α = x(U)/2.
Applying Lemma 3.3 we deduce that xj ≥ 0 for j = 1, 2, . . . , n. Now, let T be
any subset of U . If T is a superquorum, say T ⊇ S ∈ S, then it follows from (21)
and the nonnegativity of the components of x that x(T ) ≥ x(S) > α. If T is not
a superquorum, then it follows from Proposition 2.6 that U \ T is a superquorum,
and therefore x(T ) = x(U) − x(U \ T ) < x(U) − α = α. We have shown that
S̄ =

{
T ⊆ U : x(T ) > α

}
. This indicates that (U,S) is a voting system (strictly

speaking, our definition of a voting system requires the weights to be integers, but
this can be arranged by taking good enough rational approximations of the xj ’s and
clearing denominators). As this contradicts our assumption, we have proved the claim.

Let y1,y2, . . . ,ym ∈ {0, 1}n be the characteristic vectors of the quorums S1, S2,
. . . , Sm (S = {S1, . . . , Sm}). Let

Y = {y1,y2, . . . ,ym},
Z = {1− y1,1− y2, . . . ,1− ym},

where 1 is the all-1 n-dimensional vector. The claim asserts that there is no hyperplane
that separates the points of Y from those of Z. It follows that

A = conv(Y ) ∩ conv(Z) 6= ∅,

where conv(X) denotes the convex closure of X. The set A is convex and symmetric
about 1

2 (that is, a ∈ A implies 1 − a ∈ A). Hence 1
2 ∈ A, and in particular

1
2 ∈ conv(Y ). The latter means that there exists a QLV v = (v1, v2, . . . , vm) with∑m
i=1 vi = 1 which induces the ELV a = 1

2 . For this v we get

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
n · 1

2

1
=
n

2
.

Theorems 5.3 and 5.4 yield the following characterization of voting systems within
ordered NDCs.

Corollary 5.5. Let (U,S) be an ordered nonredundant NDC with universe of
size n. Then the following are equivalent:

(a) (U,S) is a voting system.
(b) Every OWAQS is greater than n/2.
(c) No OWAQS is equal to n/2.

Before leaving the ordered world, we want to mention without details two exam-
ples that we have constructed:

1. An ordered coterie which is perfectly balanced but whose rank is less than
n/2. (This shows that the nondomination assumption in Theorems 5.2 and
5.4 cannot be removed, even if we add the assumption of perfect balancing. It
also shows that relaxing “voting system” to “ordered” in Theorem 5.3 admits
examples where the theorem’s conclusion fails in a more essential sense than
indicated by Theorem 5.4.)
2. A quorum system satisfying all the assumptions of Theorem 5.4 for which
there is an OWAQS which is less than n/2. (This shows that the existential
quantifier in the theorem’s conclusion cannot be made universal.)
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5.3. Quorum size bounds for (nonordered) perfectly balanced quorum
systems. The foregoing theorems indicate that certain methods for constructing quo-
rum systems or certain properties of quorum systems which guarantee perfect balanc-
ing are costly in terms of quorum size. But perfect balancing can be achieved with
considerably smaller quorums. Indeed, a FPP(q) (Example 2.5) is (q + 1)-uniform
and has a universe of size n = q2 + q + 1, so its rank is roughly

√
n. It is perfectly

balanced by Proposition 3.1.
Our next goal is to prove the optimality (in terms of quorum size) of the finite

projective planes among all perfectly balanced quorum systems. For this purpose, we
first review some known concepts and results on fractional matchings in hypergraphs.
We express them using the terminology of the current paper.

Definition. Let (U,S) be a quorum system with quorum matrix Ŝ = (ŝij), i =
1, . . . ,m, j = 1, . . . , n. A fractional matching in (U,S) is a QLV v = (v1, v2, . . . , vm)
such that the induced ELV a = vŜ = (a1, a2, . . . , an) satisfies aj ≤ 1, j = 1, . . . , n.
The size of a fractional matching v = (v1, v2, . . . , vm) is defined as

|v| =
m∑
i=1

vi.

The fractional matching number of (U,S) is defined as

ν∗S = max
{
|v|: v is a fractional matching in (U,S)

}
.

It is easy to deduce the following from the quorum intersection property.
Proposition 5.6. Let (U,S) be a quorum system. Then for every quorum S ∈ S

we have ν∗S ≤ |S|. As a consequence, ν∗S ≤ gS,v for every WAQS gS,v.
The following finer estimate for ν∗S is due to Füredi.
Proposition 5.7 (see [F81]). Let (U,S) be a quorum system of rank rS = r.

Then ν∗S ≤ r − 1 + 1/r.
A FPP(r–1), if it exists, is an r-uniform quorum system with universe of size

r2 − r + 1 and fractional matching number r − 1 + 1/r. Thus Füredi’s bound is
attained for those values of r such that a FPP(r–1) exists. The following corollary of
Proposition 5.7 had been proved earlier by Lovász.

Proposition 5.8 (see [L75]). Let (U,S) be an r-uniform, regular quorum system.
Then |U | ≤ r2 − r + 1.

Note that this bound too is attained for those values of r such that a FPP(r–1)
exists.

We now return to our investigation of quorum size in perfectly balanced quorum
systems.

Theorem 5.9. Let (U,S) be a perfectly balanced quorum system with |U | = n.
Then every OWAQS is at least

√
n.

Proof. Let v = (v1, v2, . . . , vm) be a QLV with ρS,v = 1. Then the ELV induced
by v is a = (a1, a2, . . . , an) with all aj equal. By a suitable normalization, which does
not affect gS,v, we may assume that a1 = a2 = · · · = an = 1. With this assumption,
v is a fractional matching. We have

gS,v =

∑n
j=1 aj∑m
i=1 vi

=
n

|v| ≥
n

ν∗S
,

and therefore

n ≤ gS,vν∗S .(22)
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Using Proposition 5.6 this implies

n ≤ g2
S,v,

which yields the desired lower bound on gS,v.
The foregoing theorem establishes the asymptotic optimality (in terms of OWAQS)

of the finite projective planes among all perfectly balanced quorum systems. We can
get exact optimality in terms of the rank, as follows.

Theorem 5.10. Let (U,S) be a perfectly balanced quorum system of rank rS = r.
Then |U | ≤ r2 − r + 1.

Proof. We obtain (22) as in the proof of the previous theorem. Then, from
gS,v ≤ r and Proposition 5.7, we get |U | = n ≤ r(r − 1 + 1/r) = r2 − r + 1.

The last theorem is seen to be a generalization of the result of Lovász (Proposi-
tion 5.8): the uniformity assumption is dispensed with, as the rank suffices, and the
regularity assumption is relaxed to perfect balancing.

5.4. Size-balancing trade-offs for unbalanced quorum systems. We have
seen that if we insist on perfect balancing then the best we can do is to use quorums
of size ∼

√
n. What if we relax perfect balancing and are willing to accept a balancing

ratio not worse than some number ρ, 0 < ρ < 1? Is there a trade-off between the
required level ρ and the quorum size it admits in the best case?

It is easy to get an analogue of Theorem 5.9 (or 5.10) by observing that when
ρS,v ≥ ρ one obtains an adaptation of (22) in the form nρ ≤ gS,vν

∗
S . From this

it follows that gS,v ≥
√
nρ. We shall get a better estimate by a refinement of the

argument, based on the following lemma.
Lemma 5.11. Let ρ, a1, a2, . . . , an be real numbers such that 0 < ρ ≤ 1 and

ρ ≤ aj ≤ 1 for j = 1, . . . , n. Then∑n
j=1 a

2
j(∑n

j=1 aj

)2 ≤
(1 + ρ)2

4nρ
.

Proof. Given ρ and n, consider the problem of maximizing

f(a1, a2, . . . , an) =

∑n
j=1 a

2
j(∑n

j=1 aj

)2

subject to ρ ≤ aj ≤ 1, j = 1, . . . , n. For any 1 ≤ i ≤ n we have

∂f

∂ai
=

2
∑n

j=1
j 6=i

(ai − aj)aj(∑n
j=1 aj

)3 .

Since the numerator in the above expression is an increasing function of ai, it follows
that the maximum under consideration is attained when ai = ρ or ai = 1. Indeed, if
ρ < ai < 1 and ∂f

∂ai
= 0, then ∂f

∂ai
is negative for smaller values of ai and positive for

larger values of ai, so we are looking at a minimum of f as a function of ai.
Thus, it suffices to consider points (a1, a2, . . . , an) where k of the aj ’s equal ρ and

the other n− k equal 1. Letting x = k/n we have for such points

f(a1, a2, . . . , an) =
ρ2k + n− k

(ρk + n− k)2
=

1− (1− ρ2)x

n
(
1− (1− ρ)x

)2 .



LOAD BALANCING IN QUORUM SYSTEMS 241

One can show by elementary analysis that this expression is maximized in the interval
0 ≤ x ≤ 1 when x = 1/(1 + ρ), and attains there the value (1 + ρ)2/4nρ.

Theorem 5.12. Let (U,S) be a quorum system with |U | = n. Let 0 < ρ ≤ 1 and
let v be a QLV such that ρS,v ≥ ρ. Then

gS,v ≥
2
√
nρ

1 + ρ
.

Proof. Let Ŝ = (ŝij), i = 1, . . . ,m, j = 1, . . . , n, be the quorum matrix. By
a normalization which does not affect ρS,v or gS,v, we may assume that the ELV

a = vŜ = (a1, a2, . . . , an) induced by v satisfies ρ ≤ aj ≤ 1, j = 1, . . . , n. We observe

that by the quorum intersection property we have ŜŜ> ≥ 1̂, where 1̂ denotes the
m×m all-1 matrix, and the inequality holds entry-by-entry. Therefore,

n∑
j=1

a2
j = a · a> = vŜŜ>v> ≥ v1̂v> = |v|2.

Using this and Lemma 5.11 we have

g2
S,v =

(∑n
j=1 aj

)2

|v|2 ≥

(∑n
j=1 aj

)2

∑n
j=1 a

2
j

≥ 4nρ

(1 + ρ)2
.

Upon taking square roots we obtain the required result.
We now describe a construction showing that the bound given in Theorem 5.12

is rather tight.
Example 5.13. Ext-FPP. Let 0 < ρ < 1

2 and let r be a positive integer such
that a FPP(r–1) exists. Let P and L be the sets of points and lines, respectively, of
a FPP(r–1). Let K be a set of size

[
(1 − 2ρ)/ρ

]
(r2 − r + 1), disjoint from P , and

let M be the set of all subsets of K of size (1 − 2ρ)r. (We ignore adjustments that
need to be made when these numbers are not integers. The effect of such adjustments
is negligible when r is large.) Let U = P ∪ K and let S consist of all sets of the
form L ∪M , where L ∈ L and M ∈ M. Then S satisfies the quorum intersection
requirement, because any two lines in L intersect. Since P has r2 − r + 1 points and
each line in L contains r points, we see that |U | = n = [(1− ρ)/ρ] (r2 − r + 1) and
each quorum in S has size 2(1− ρ)r.

Let v be a QLV assigning equal load to all the quorums in S. Then it can be
verified that ρS,v = ρ. Indeed, it follows from considerations of symmetry that the
induced ELV is constant over K and over P , and the ratio between the two constants
can be computed as

|M | · |P |
|L| · |K| =

(1− 2ρ)r · (r2 − r + 1)

r · 1−2ρ
ρ (r2 − r + 1)

= ρ

(here M ∈M and L ∈ L). To evaluate the performance of this construction, we have
to compare

gS,v = 2(1− ρ)r

with the bound of Theorem 5.12:

2
√
nρ

1 + ρ
=

2
√

1− ρ
√
r2 − r + 1

1 + ρ
.
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It is readily seen that the ratio between the two quantities approaches 1 as ρ→ 0 and
r →∞. The ratio is in general less than

(
1 + ρ/2)(1 + 1/(2r)

)
.

The theorem and the construction delineate with a good degree of precision a
trade-off between the required level of balancing ρ (when 0 < ρ < 1

2 ) and the quorum
size it admits in the best case. We remark that we do not know how to handle
profitably the case when 1

2 ≤ ρ < 1: if the required level of balancing is in this
interval, the construction with smallest quorum size that we know is the same as for
perfect balancing (namely, the finite projective plane).

5.5. Size-balancing trade-offs for NDCs. In view of the distinguished role
played by NDCs among quorum systems, it is interesting to investigate the relation
between the level of balancing and the quorum size within this special class. We start
by describing a construction, borrowed from [EL74], of an NDC with quorums of size
O(
√
n) which is, as we shall show, perfectly balanced.
The method of construction is inductive. In the inductive step, we are given an

(r − 1)-uniform quorum system (U ′,S ′). We take a set R of size r, disjoint from U ′,
and form the new universe U = U ′ ∪ R. We define the collection S by: S ∈ S if and
only if S = S′ ∪ {u} for some S′ ∈ S ′ and u ∈ R, or S = R. We thus obtain a new
system (U,S).

Proposition 5.14. Let (U,S) be obtained from the quorum system (U ′,S ′) as
above. Then:

(a) (U,S) is an r-uniform quorum system.
(b) If (U ′,S ′) is an NDC then so is (U,S).
(c) If (U ′,S ′) is perfectly balanced then so is (U,S).

Proof. Part (a) is straightforward. Part (b) can be verified using Proposition
2.6. Indeed, let S1, S2 be a partition of U . Since (U ′,S ′) is an NDC and S′1, S

′
2 is

a partition of U ′ (where S′i = Si ∩ U ′), we may assume that S′1, say, contains some
S′ ∈ S ′. Then, if S1 ∩ R 6= ∅ we conclude that S1 contains a quorum of the form
S′ ∪ {u}; if, on the other hand, S1 ∩R = ∅ then S2 contains the quorum R.

To prove part (c), let v′ be a QLV for (U ′,S ′) which induces a load of 1 on each
element of U ′. Let v be the QLV for (U,S) defined by: the load of S′ ∪ {u}, where
S′ ∈ S ′ and u ∈ R, is 1/r of the load of S′ in v′, and the load of R is 1− |v′|/r (this
quantity is positive by virtue of Proposition 5.6). Then v induces a load of 1 on each
element of U .

Example 5.15. Triangular. Let (Ur,Sr) be an r-uniform quorum system obtained
by successive applications of the inductive step described above, starting from a system
of one element. We call (Ur,Sr) a triangular system. It follows from Proposition
5.14 that (Ur,Sr) is an NDC and is perfectly balanced. The size of its universe is
|Ur| = n = (r + 1)r/2.

We observe that the quorum size achieved in the above construction is about
√

2n
and is thus within a multiplicative constant factor of the lower bound of

√
n given in

Theorem 5.9 (for all perfectly balanced quorum systems, not just NDCs). It seems
plausible that the lower bound can be improved for the class of NDCs, but we are
unable to do this. On the other hand, we can achieve a (very) slight improvement on
the construction. Let

n(r) = max
{
|U |: (U,S) is an r-uniform, perfectly balanced NDC

}
.

Then the above construction gives n(r) ≥ (r+1)r/2. For r = 3 this becomes n(3) ≥ 6,
but the Fano plane (FPP(2)) shows that n(3) ≥ 7 (in fact, we can deduce from
Theorem 5.10 that n(3) = 7). When the inductive method described above is applied
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starting from the Fano plane, we obtain that n(r) ≥ (r+ 1)r/2 + 1 for r ≥ 3. In order
to introduce a further improvement we need the following definition and easy facts.

Definition. Let (U,S) be a quorum system, with U = {u1, u2, . . . , un}. Let
(Uj ,Sj), j = 1, . . . , n, be quorum systems, with the Uj’s pairwise disjoint. The com-
posite quorum system (CQS) formed by substituting (Uj ,Sj), j = 1, . . . , n, for the
elements of (U,S), denoted CQS(S, {Sj}), has as its universe

⋃n
j=1 Uj and as its

quorums all sets obtained as follows: take any S = {uj1 , uj2 , . . . , ujk} ∈ S and for

each ji, i = 1, . . . , k, take any Sji ∈ Sji , and form the (composite) quorum
⋃k
i=1 Sji .

Proposition 5.16.

(a) If (U,S) is r-uniform and each (Uj ,Sj) is s-uniform, then the CQS is
rs-uniform.
(b) If (U,S) is uniform and regular, and all of the (Uj ,Sj) are regular with
the same common degree and the same number of quorums, then the CQS is
regular.
(c) If (U,S) and each of the (Uj ,Sj) are NDCs, then the CQS is an NDC.

Now, consider the CQS formed by substituting seven copies of the Fano plane for
the seven points of a Fano plane. By Proposition 5.16, this is a 9-uniform, regular
(hence perfectly balanced) NDC. This shows that n(9) ≥ 49, whereas (r+ 1)r/2 = 45
for r = 9. When the inductive method is applied successively starting from this CQS,
we obtain that n(r) ≥ (r + 1)r/2 + 4 for r ≥ 9.

Conjecture 5.17. n(r) = (r + 1)r/2 +O(1).

We observe that if (U,S) is an r-uniform, perfectly balanced quorum system with
|U | = n, then ν∗S = n/r. Thus, the above conjecture can be reformulated as saying
that if (U,S) is an r-uniform, perfectly balanced NDC then ν∗S ≤ (r+ 1)/2 +O(1/r).
We believe, in fact, that this holds even without the assumptions of uniformity and
perfect balancing. That is, we believe that the assumption of nondomination alone
should permit the following improvement on Füredi’s bound (Proposition 5.7).

Conjecture 5.18. Let (U,S) be an NDC of rank rS = r. Then ν∗S ≤ (r+1)/2+
O(1/r).

If we do not insist on perfect balancing, but continue to consider only NDCs, how
low can we make the quorum size? It follows from a more general result in [T85] that
any nonredundant NDC having rank r has universe of size smaller than

(
2r
r

)
. Recalling

the nucleus coterie of Example 4.3, where the size of the universe is larger than(
2r−2
r−1

)
/2, we see that Tuza’s bound is within a multiplicative constant factor of being

best possible. Stating the result differently, we can say that the smallest possible rank
among all nonredundant NDCs with universe of size n is 1

2 log2 n+ 1
4 log2 log2 n+O(1).

Suppose we require some level of balancing; that is, we consider NDCs with
balancing ratio not worse than some number ρ, 0 < ρ < 1. How low can we make the
quorum size then? We are unable to improve on the lower bound given in Theorem
5.12 (which is not restricted to NDCs). A construction that attempts to approach
that lower bound using NDCs is given next. It is not as good as the one (using
dominated coteries) given by the Ext-FPP coterie of Example 5.13.

Example 5.19. CQS (Triangular, Nucleus). Let (Ur,Sr) be an r-uniform tri-
angular NDC with |Ur| = (r + 1)r/2 which is perfectly balanced, as in Example
5.15. Let (Us,Ss) be an s-uniform nucleus NDC with |Us| = 2s − 2 +

(
2s−2
s−1

)
/2 and

ρSs = 4/
(

2s−2
s−1

)
, as in Example 4.3. Let (Urs ,Srs ) be the CQS formed by substituting

(r + 1)r/2 copies of (Us,Ss) for the elements of (Ur,Sr). It follows from Proposition
5.16 that (Urs ,Srs ) is an rs-uniform NDC. It is easy to see that ρSrs = ρSs . A rough
computation shows that in terms of the size n of the universe and the balancing ratio
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Table 1

Quorum systems Hypergraph theory Game theory

element vertex player

universe vertex-set player-set

quorum hyperedge minimal winning coalition

superquorum nonindependent set of winning coalition
vertices

quorum system intersecting hypergraph proper simple game

monotone quorum system intersecting filter monotone proper simple game

coterie intersecting antichain (minimal winning coalitions of a)
monotone proper simple game

nondominated coterie 3-chromatic intersecting (minimal winning coalitions of a)
antichain constant-sum game

rank rank size of a largest
minimal winning coalition

voting system threshold weighted majority game

ordered shifted having a complete
desirability relation

nonredundant no isolated vertices without dummies

quorum load vector fractional matching weight assignment to the
(up to normalization) minimal winning coalitions

perfectly balanced quasi-regularizable having a balanced collection of
minimal winning coalitions

ρ, the quorums of the CQS have size ∼ √nρ · 1
2 log2

1
ρ . The ratio of this to the lower

bound of Theorem 5.12 is O
(
log 1

ρ

)
.

Appendix: A polyglot dictionary. The motivation for the research reported
in this paper came from computer science, but the concepts involved have also been
studied in other areas of science, under various interpretations and using various
systems of terminology. To help overcome the language barriers, we thought it useful
to provide here translations of the concepts into the languages of two other areas:
hypergraph theory and game theory. Our little dictionary (Table 1) is only schematic,
and for more information we refer the reader to books such as [B89] and [Ow82]. We
should also mention that, due to scope limitations, our dictionary leaves out several
other areas in which these concepts have come up. These include Boolean functions
theory, reliability theory, neural networks, percolation theory, etc.

As an illustration of the possible appeal of our work to researchers in other areas,
we rephrase Theorem 3.4 in game-theoretic terms and Conjecture 5.18 in hypergraph
terms.

Theorem 3.4
∗
. Let G be a constant-sum game without dummies, having a com-

plete desirability relation. Then G has a balanced collection of minimal winning coali-
tions.

Conjecture 5.18
∗
. Let H be a 3-chromatic intersecting hypergraph of rank r.

Then ν∗H ≤ (r + 1)/2 +O(1/r).

Acknowledgment. We thank the anonymous referees for their helpful com-
ments.



LOAD BALANCING IN QUORUM SYSTEMS 245

REFERENCES

[B89] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[B86] B. Bollobás, Combinatorics, Cambridge University Press, Cambridge, UK, 1986.
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Abstract. We present a general theorem that can be used to identify the limiting distribution
for a class of combinatorial schemata. For example, many parameters in random mappings can be
covered in this way. In particular, we can derive the limiting distribution of those points with a given
number of total predecessors.

Key words. random mappings, combinatorial constructions, limiting distributions
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1. Introduction. By a random mapping ϕ ∈ Fn ⊆ F =
⋃
n≥0 Fn we mean an

arbitrary mapping ϕ : {1, . . . , n} → {1, . . . , n} such that every mapping has equal
probability n−n. The main purpose of this paper is to obtain limit theorems, when n
tends to infinity, for special parameters in random mappings, e.g., for the number of
image points. Since every random mapping ϕ ∈ Fn has equal probability it suffices
to count the number of random mappings ϕ ∈ Fn satisfying a special property, e.g.,
that the number of image points equals k. By dividing this number by nn we get
the probability of interest. In order to get the limit distribution for n → ∞ it is
not necessary to know the exact value. We just have to evaluate these numbers
asymptotically. We shall show that this can be done by a singularity analysis of a
proper bivariate generating function.

It should be noted that some of our limit distributions on random mappings
are well known (compare with [4, 16]). But our main goal is to provide a general
method to derive such limit theorems. In particular, we use bivariate generating
functions and singularity analysis. Especially we are able to characterize the (up to
now unknown) limit distribution of the number of those points with a fixed number
of total predecessors. It is a Gaussian distribution.

Our basic combinatorial concept is that of labelled combinatorial constructions
and the relation to exponential generating functions. A big advantage of such com-
binatorial constructions is that we can mark a parameter in the constructions which
directly leads to a bivariate generating function for the number of objects according
to their size and the value of the parameter of interest.

2. Marking in random mappings. Every mapping ϕ ∈ Fn can be identified
with its functional graph Gϕ where V (Gϕ) = {1, . . . , n} and E(Gϕ) = {(i, ϕ(i)) | 1 ≤
i ≤ n}. It is obvious that each component of Gϕ consists of a cycle (at least of a
loop), and every cyclic point is the root of (labelled) tree (see Figure 1).

Hence we can interpret a mapping ϕ ∈ F as a set of cycles of trees. Furthermore,
since there is no restriction on their structure, the trees (usually known as Cayley
trees) can be recursively described as a root followed by a set of trees:

F = set(cycle(T )),(1)

T = ◦ · set(T ).(2)
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Fig. 1.

Both structures F and T fit into the concept of (labelled) combinatorial structures
synthesized by Flajolet [11] (see also [17]). Let us give a short description of such
structures.

Let C be a combinatorial structure of (labelled) elements, |c| denote the size of
c ∈ C, and cn = |{c ∈ C | |c| = n}| denote the number of elements of size n. (Labelled
means that there are always n! “isomorphic” elements c ∈ C of size n which differ by
their labels 1, . . . , n.) Furthermore we associate a (labelled) combinatorial structure
C with the (exponential) generating function

ĉ(x) =
∑
c∈C

x|c|

(|c|)! =
∑
n≥0

cn
n!
xn.(3)

The advantage of these generating functions is that there is a correspondence between
special combinatorial constructions and special operations with the corresponding
generating functions. For example, if the (labelled) combinatorial structure C is the
product C1 · C2, then

ĉ(x) = ĉ1(x)ĉ2(x).(4)

Note that C1 · C2 is not the set theoretic cartesian product because you have to
transform the labelling {1, . . . , k} of c1 ∈ C1 and the labelling {1, . . . , n−k} of c2 ∈ C2

to a labelling {1, . . . , n} of c ∈ C1 · C2. Since there are k! “isomorphic” elements in
C1 and (n− k)! “isomorphic” elements in C2 we have

cn
n!

=
n∑
k=0

c1,k
k!

c2,n−k
(n− k)!

according to (4). Hence, if C = set(C1) then we get

ĉ(x) =
∑
m≥0

1

m!
ĉm1 (x) = eĉ1(x),(5)

and if C = cycle(C1) then we have

ĉ(x) =
∑
m≥1

1

m
ĉm1 (x) = log

1

1− ĉ1(x)
.(6)

Applying this concept to random mappings, the (exponential) generating function

f̂(x) =
∑
n≥0

nn

n!
xn(7)
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satisfies

f̂(x) = exp

(
log

1

1− t̂(x)

)
=

1

1− t̂(x)
,(8)

where t̂(x), the generating function for Cayley trees, is given by

t̂(x) = xet̂(x).(9)

A big advantage of such combinatorial constructions is that we can formally mark
a parameter in the constructions by a symbol like [u]. And this marking directly leads
to bivariate generating function for the number of objects according to their size and
the value of the parameter of interest.

For example, if we are interested in the number of trees in graphs of random
mappings we have to mark the trees in the combinatorial construction

F = set(cycle([u]T )).

Formally this leads to

f̂(x, u) = exp

(
log

1

1− ut̂(x)

)
=

1

1− ut̂(x)
,

which is exactly the generating function f̂(x, u) =
∑
fnk

xn

n! u
k of the numbers fnk of

random mappings with k trees in the graph representation. (Note that the number
of trees is exactly the number of cyclic points.)

Or if we are interested in the number of components, we have to mark

F = set([u]cycle(T ))

and get

f̂(x, u) = exp

(
u log

1

1− t̂(x)

)
=

1

(1− t̂(x))u
.

Next we will use this marking method to describe special parameters related to
image and preimage points.

Points at distance d to a cycle. First we will discuss preimages of cyclic points.
For this purpose let Yϕ denote the cyclic points of a random mapping ϕ ∈ F and
d ≥ 1. Specifically, we are interested in ϕ−d(Yϕ) \ ϕ−d+1(Yϕ), i.e., noncyclic points
at distance d to the cyclic points.

Lemma 1. Let

A0(x, u) =
1

1− u

and

Ad+1(x, u) = Ad(x, xe
u)

for d ≥ 1. Then

f̂(x, u) = Ad(x, ut̂(x))(10)
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is the (exponential) generating function of random mappings where points contained
in ϕ−d(Yϕ) \ ϕ−d+1(Yϕ) are marked.

Proof. Let t̂d(x, u) denote the (exponential) generating function of labelled rooted
trees where nodes of distance d ≥ 0 from the root are marked. Obviously we have

t̂0(x, u) = ut̂(x) and

t̂d+1(x, u) = xet̂d(x,u) for d ≥ 0,

which directly leads to

f̂(x, u) =
1

1− t̂d(x, u)
= Ad(x, ut̂(x)).

Points with in-degree r. Another interesting parameter is the number of points ν
with |ϕ−1({ν})| = r, where r ≥ 0 is a fixed integer.

Lemma 2. Let p̂r(x, u) denote the solution of

p̂r(x, u) = xep̂r(x,u) + (u− 1)x
p̂r(x, u)r

r!
.(11)

Then

f̂(x, u) =
1

1−
(
xep̂r(x,u) + (u− 1)x p̂r(x,u)r−1

(r−1)!

)(12)

is the (exponential) generating function of random mappings where points ν with
|ϕ−1({ν})| = r are marked.

Proof. According to the recursive structure of Cayley trees T = ◦ · set(T ), the
nodes with in-degree r are those followed by r subtrees. Hence the bivariate generating
function for trees with variable u marking nodes with in-degree r satisfies

p̂r(x, u) = x
∑
m 6=r

p̂r(x, u)m

m!
+ ux

p̂r(x, u)r

r!

= xep̂r(x,u) + (u− 1)x
p̂r(x, u)r

r!
.

Now a cyclic point in the functional graph of a random mapping has in-degree r if
and only if it has in-degree r − 1 in the corresponding trees. This proves (12).

Notice that the expression of the bivariate generating function is simpler if we
neglect the edges between cyclic points (i.e., cyclic points are marked if they have
in-degree r + 1, and noncyclic points are marked if they have in-degree r). Actually,
we then consider sequences of Cayley trees instead of random mappings.

Lemma 2′. The (exponential) generating function of sequences of Cayley trees,
where marked nodes are those with in-degree r, is

f̂(x, u) =
1

1− p̂r(x, u)
,(13)

where p̂r(x, u) is the same as in Lemma 2.
Points with r-antecedents. Finally, we want to count those points where the total

number of preimages equals r ≥ 0.
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Lemma 3. Let âr(x, u) denote the solution of

âr(x, u) = xeâr(x,u) + (u− 1)trx
r,(14)

where tr = rr−1

r! . Then

f̂(x, u) =
1

1− âr(x, u) + (u− 1)trxr
exp

(
xr

r

r∑
m=0

rr−m

(r −m)!
(um − 1)

)
(15)

is the (exponential) generating function of random mappings where points ν with∣∣∣∣∣∣
⋃
d≥0

ϕ−d({ν})

∣∣∣∣∣∣ = r

are marked.
Proof. As in the proof of Lemma 2 we first mark the nodes with the total number

of preimages r in Cayley trees : a node is marked if and only if it is the root of a tree
of total size r (the root is considered to be its own preimage). Hence we get (14),
where tr is the coefficient of xr in the series expansion

t̂(x) =
∑
n≥0

tnx
n.

Since t̂(x) satisfies the functional equation (9), using Lagrange’s inversion theorem we
get

tn =
1

n
[yn−1]eyn =

nn−1

n!
.

For cyclic points in a random mapping all points in the corresponding component (of
the functional graph) are preimages. Hence for a component with m cyclic points,
the bivariate generating function, with u marking the number of points having r
preimages, is (

xeâr(x,u)
)m

m
+

1

m
(um − 1)xr[vr]t̂(v)m,

where

[vr]t̂(v)m =
m

r
[yr−m]eyr =

mrr−m

r(r −m)!

is the number of forests composed with m components and of total size r. This
directly gives (15).

dth iterate points. It is also interesting to consider ϕd({1, . . . , n}), the dth iterate
image points.

Lemma 4. Set

h0(x) = 0 and

hi+1(x) = xehi(x) for i ≥ 0,
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and let îd(x, u) be the solution of

îd(x, u) = xueîd(x,u) − (u− 1)hd(x).(16)

Then

f̂(x, u) =
1

1− îd(x, u)− (u− 1)hd(x)
(17)

is the (exponential) generating function of random mappings where points ν ∈
ϕd({1, . . . , n}) are marked.

Proof. Clearly, hd(x) is the (exponential) generating function of Cayley trees with
height < d. In Cayley trees, the dth iterate image points are points at distance ≥ d
from a leaf. Hence, îd(x, u), the bivariate generating function of trees where nodes
having a leaf at distance ≥ d are marked, satisfies (16). For random mappings, since
all cyclic points are dth iterate image points we get

f̂(x, u) =
1

1− uxeîd(x,u)
,

which leads to (17).
Here again, as in the case of points with in-degree r, the expression of the bivariate

generating function is simpler if we neglect the edges between cyclic points.
Lemma 4′. The (exponential) generating function of random mappings, where

the marked points are those at distance ≥ d from a leaf of their own subtree, is

f̂(x, u) =
1

1− îd(x, u)
,(18)

where îd(x, u) is the same as in Lemma 4.
Direct dth iterate points. The most difficult example (from the combinatorial point

of view) is the case of dth iterate image points of nonimage points ϕd({1, . . . , n} \
ϕ({1, . . . , n})). In other words we will count those nodes that are connected by a
(directed) path of length d to a nonimage point. Nevertheless, there is a rather easy
subcase where edges between cyclic points are neglected; i.e., the problem can be
reduced to a problem inside trees. Although this is only a very small change, it will
turn out that the corresponding limiting distributions differ. (And it will also be the
case for Lemmas 2 and 4 versus Lemmas 2′ and 4′.)

Lemma 5. Set

c0(x, y) = x and

ci+1(x, y) = x
(
ey − ey−ci(x,y)

)
for i ≥ 0,

and let l̂d(x, u) be the solution of

l̂d(x, u) = xel̂d(x,u) + (u− 1)cd(x, l̂d(x, u)).(19)

Then

f̃(x, u) = exp

(
log

1

1− l̂d(x, u)

)
=

1

1− l̂d(x, u)
(20)
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is the (exponential) generating function of random mappings, where marked points are
those connected to a leaf by a path of length d which does not contain cyclic edges.
(Note that the root of a tree of size 1 is also a leaf.)

Proof. Let l̂d(x, u) denote the generating function of Cayley trees where nodes
having a leaf at distance d are marked. The generating function where leaves are
marked is l̂0(x, u) = ux + x(el0(x,u) − 1) and, inductively, l̂d(x, u) = yd(x, u) +

xel̂d(x,u)−yd−1(x,u) , where yd(x, u) is the generating function for trees with a leaf

at distance d to the root : yd(x, u) = ucd(x, l̂d(x, u)), and for i = 1, . . . , (d − 1),

yi(x, u) = ci(x, l̂d(x, u)). Since xel̂d(x,u)−yd−1(x,u) = xel̂d(x,u) − cd(x, l̂d(x, u)) repre-

sents the trees such that the root is not at distance d to a leaf, l̂d(x, u) satisfies (19)
and hence (20).

Lemma 5′. Let ci(x, y) and l̂d(x, u) be defined as in Lemma 5 and f̂d(x, u) be the
(exponential) generating function of random mappings where points ν ∈ ϕd({1, . . . , n}\
ϕ({1, . . . , n})) are marked.

For d = 0 and d = 1 we have

f̂0(x, u) =
1

1− xel̂0(x,u)
and f̂1(x, u) =

1

1− l̂1(x, u)
.(21)

For d = 2 set y1(x, u) = c1(x, l̂2(x, u)), y2(x, u) = uc2(x, l̂2(x, u)), and

y12(x, u) = ux
(
el̂2(x,u) − el̂2(x,u)−x − el̂2(x,u)−y1(x,u) + el̂2(x,u)−y1(x,u)−x

)
.

Then

(22)

f̂2(x, u) =
1

1− l̂2(x, u)− (u− 1)
(
y1(x, u)(1− y2(x, u))− y12(x, u)(1− l̂2(x, u))

) .
Proof. The results for f̂0(x, u) and f̂1(x, u) are obvious : for d = 0, cyclic points are

not leaves of random mappings and, for d = 1, edges inside cycles are of no importance.
For d = 2, the situation gets more delicate : in addition to the interpretations of
y1(x, u) and y2(x, u) observe that y12(x, u) corresponds to those trees having both a
leaf at distance 1 to the root and a leaf at distance 2 to the root. (For the sake of
shortness we will use the terms y1-tree (respectively, y2-tree) for a tree with a leaf at
distance 1 (respectively, 2) to the root.) Set

w = u(y1 − y12) + (l̂2 − y1 − y2 + y12) and

s = uy12 + (y2 − y12).

Then w corresponds to also marking y1-trees that are not y2-trees. In the same way,
s corresponds to twice marking y2-trees that are y1-trees too. We will show (at the
end of the proof) that the generating function

wm

m
+
ym2
m

+
1

m

m−1∑
k=1

k∑
l=1

Amkls
l(l̂2 − y2)lwm−k−lyk−l2(23)

corresponds to a cycle of m trees where all nodes having a leaf at distance 2 are marked
(Amkl, see below, counts the number of cycles of length m containing k y2-trees, (k−l)
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of which are followed by a y2-tree). Since

∑
m≥1

1

m

m−1∑
k=1

k∑
l=1

Amkls
l(l̂2 − y2)lwm−k−lyk−l2

= log
1

1− y2 − s(l̂2−y2)
1−w

− log
1

1− y2
,

we immediately get (22).
Therefore, it remains to interpret (23). The problem on a cycle is that a y1-

tree forces an additional mark at the next root on the cycle if and only if this next
root is not marked, i.e., the corresponding tree is not a y2-tree. For example, if a
cycle of length m contains no y2-tree, then it is immediately clear that 1

mw
m is the

correct corresponding function, whereas the case of a cycle containing only y2-trees
the generating function of interest is 1

my
m
2 . For the remaining cases consider a cycle

containing exactly k (0 < k < m) y2-trees such that l (0 < l ≤ k) of these trees are
followed by a tree that is not a y2-tree. Note that

Amkl =
m

l

(
m− k − 1

l − 1

)(
k − 1

l − 1

)
(24)

is the number of such arrangements on a (labelled) cycle of length m. In any of these

cases the corresponding generating function is 1
my

k−l
2 slwm−k−l(l̂2− y2)l. This proves

(23).

3. General theorems. Let c(x) =
∑
cnx

n be the generating function of a com-
binatorial structure and c(x, u) =

∑
cnkx

nuk the bivariate generating function where
a parameter of interest has been marked, i.e., c(x, 1) = c(x). Now we will be inter-
ested in the asymptotic distribution of this parameter in the system of combinatorial
objects of size n when n tends to infinity. For this purpose we introduce a sequence
of random variables Xn, n ≥ 1, defined by

Pr[Xn = k] =
cnk
cn

=
[xnuk]c(x, u)

[xn]c(x, 1)
,

where Pr denotes probability. Now the above problem reduces to finding the limiting
distribution of Xn.

An important analytic schema, related to combinatorial constructions “sequence”
or “set of cycles,” is

c(x, u) =
1

1− a(x, u)
.

The next three theorems study this schema when a(x, u) has an algebraic singularity
ρ(u) of square-root type such that a(ρ(1), 1) = 1. According to further analytic
properties of a(x, u), the limiting distribution of Xn is shown to be either Gaussian,
Rayleigh, or the convolution of Gaussian and Rayleigh, and in each case the global
limit result (convergence of distribution functions) is accompanied by a local limit
result (convergence of densities).

Let us first state precisely the general form of the analytic schemas under consid-
eration.
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Hypothesis [H]. Let c(x, u) =
∑
n,k cnkx

nuk be a power series in two variables
with nonnegative coefficients cnk ≥ 0 such that c(x, 1) has a radius of convergence of
ρ > 0.

We suppose that c(x, u) expresses as c(x, u) = 1/d(x, u), where d(x, u) has the
local representation

d(x, u) = g(x, u) + h(x, u)

√
1− x

ρ(u)
(25)

for |u − 1| < ε and |x − ρ(u)| < ε, arg(x − ρ(u)) 6= 0, where ε > 0 is some fixed real
number, and g(x, u), h(x, u), and ρ(u) are analytic functions.

Furthermore, these functions satisfy g(ρ, 1) = 0, h(ρ, 1) > 0, and ρ(1) = ρ.
In addition, x = ρ(u) is the only singularity on the circle of convergence |x| =

|ρ(u)| for |u − 1| < ε and d(x, u), respectively c(x, u), can be analytically continued
to a region |x| < ρ+ δ, |u| < 1 + δ, |u− 1| > ε

2 for some δ > 0.
Under this hypothesis, the limiting distribution of Xn in c(x, u) depends on ρ′(1)

and gu(ρ(1), 1), as stated in the following three theorems.
Theorem 1. Let c(x, u) be a bivariate generating function satisfying [H]. If

ρ(u) = ρ = const for |u − 1| < ε and gu(ρ, 1) < 0, then the sequence of random
variables Xn defined by

Pr[Xn = k] =
[xnuk]c(x, u)

[xn]c(x, 1)
(26)

has a Rayleigh limiting distribution; i.e.,

Xn√
n

d→ R(λ),(27)

where λ = h(ρ,1)2

2gu(ρ,1)2 and R(λ) has density λx exp
(
−λ2x2

)
for x ≥ 0. Expected value

and variance are given by

EXn =

√
π

2λ

√
n+O(1) and VXn =

(
2− π

2

) n
λ

+O(
√
n).(28)

Moreover, we have the local law

Pr[Xn = k] =
λk

n
exp

(
−λk

2

2n

)
+O((k + 1)n−

3
2 ) +O(n−1)(29)

uniformly for all k ≥ 0.
Theorem 2. Let c(x, u) be a bivariate generating function satisfying [H]. If

ρ′(1) 6= 0 and α = ∂
∂ug(ρ(u), u)|u=1 = 0, then Xn has a Gaussian limiting distribution;

i.e.,

Xn − µn√
σ2n

d→ N (0, 1),(30)

where µ = −ρ′(1)/ρ and σ2 = µ2 + µ − ρ′′(1)/ρ. Expected value and variance are
given by

EXn = µn+O(1) and VXn = σ2n+O(
√
n).(31)
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Furthermore, there is local law of the form

Pr[Xn = k] =
1√

2πσ2n
exp

(
− (k − µn)2

2σ2n

)
+O(n−

3
4 )(32)

uniformly for all k ≥ 0.
Theorem 3. Let c(x, u) be a bivariate generating function satisfying [H]. If

ρ′(1) 6= 0 and α = ∂
∂ug(ρ(u), u)|u=1 < 0, then the limiting distribution of Xn is the

convolution of a Gaussian and a Rayleigh distribution ; i.e.,

Xn − µn√
σ2n

d→ N (0, 1) ∗ R(λ),(33)

where λ = h(ρ,1)2σ2

2α2 and µ and σ2 are defined as in Theorem 2. Expected value and
variance are given by

EXn = µn−
√
πα

h(ρ, 1)

√
n+O(1) and VXn =

(
σ2 +

(4− π)α2

h(ρ, 1)2

)
n+O(

√
n)(34)

and there is local law of the form

Pr[Xn = k] =
λ

1 + λ

1√
2πσ2n

exp

(
− (k − µn)2

σ2n

)
(35)

+
λ

(1 + λ)
3
2

k − µn
σ2n

exp

(
− λ

1 + λ

(k − µn)2

σ2n

)
Φ

(
k − µn√

(1 + λ)σ2n

)
+ O(n−

3
4 )

uniformly for all k ≥ 0, where

Φ(x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt.(36)

(If α > 0 then the corresponding Rayleigh distribution is supported on the negative
real axis and a similar local law holds.)

Remark. It should be noticed that condition g(ρ, 1) = 0 in the theorems is not
a real restriction. In fact, it turns out that the case g(ρ, 1) = 0 is the most difficult
one, and the limiting distribution for other cases can be found also.

If g(ρ, 1) > 0 then c(x, u) has a local representation of the form

c(x, u) =
1

g(x, u) + h(x, u)
√

1− x/ρ(u)
= G(x, u)−H(x, u)

√
1− x

ρ(u)
.(37)

On the other hand, if g(ρ, 1) < 0, the algebraic singularity is not the domi-
nating one. Here d(ρ, 1) = 0 for ρ < ρ and (usually) dx(ρ, 1) 6= 0. Hence, by
the Weierstrass preparation theorem, d(x, u) has a local representation of the form
d(x, u) = D(x, u)(1−x/ρ(u)), where D(x, u) and ρ(u) are analytic functions satisfying
D(ρ, 1) 6= 0, ρ(1) = ρ, and ρ′(1) 6= 0. Thus

c(x, u) =
1/D(x, u)

1− x
ρ(u)

.(38)
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In both cases, (37) and (38), we can apply Bender’s theorem [5] (compare also with
[6] and [7]) to get asymptotic normality if ρ′(1) < 0. (Evaluating the expected value
shows that ρ′(1) cannot be positive.)

When ρ(u) = const (see also [14] for this case), the limiting distribution is Gauss-
ian for g(ρ, 1) > 0 and discrete for g(ρ, 1) < 0 (for example, there is a derivated
geometric law for the schema c(x, u) = (1− ua(x))−1).

Finally, we want to remark that the assumption ρ(u) = const in Theorem 1 can
be weakened to ρ′(1) = 0. However, the proof would be a little bit more complicated.
Furthermore, no example is known where ρ′(1) = 0 but ρ(u) 6= const.

Before proving Theorems 1, 2, 3 (see section 5) we want to discuss why such
theorems have some importance in relation to random mappings.

4. Applications to random mappings. In this section we apply our theorems
to obtain the limiting distributions for various parameters of random mappings. It
should be noted that some of the obtained results are known, but our intention is to
provide all the results by applying only one general principle. The underlying point is
that the combinatorial specification of random mappings out of Cayley trees, together
with the analytic form of the Cayley trees series, imply that all bivariate generating
functions f̂(x, u) constructed in section 2 satisfy Hypothesis [H].

4.1. Analytic frame. The basic property is that solutions of functional equa-
tions usually have algebraic singularities of square-root type.

Proposition 1. Let F (a, x, u) be a power series on three variables with non-
negative coefficients and F (0, 0, 0) = 0. Suppose that the system of equations

a0 = F (a0, x0, 1),(39)

1 = Fa(a0, x0, 1)(40)

has positive solutions a0 > 0, x0 > 0 (which are supposed to be minimal) such that
(a0, x0, 1) is contained in the region of convergence of F (a, x, u) and that

Fx(a0, x0, 1) 6= 0 and Faa(a0, x0, 1) 6= 0.(41)

Then there exists a unique analytic solution a = a(x, u) =
∑
nk ankx

nuk of

a = F (a, x, u)(42)

with nonnegative coefficients ank ≥ 0 and a00 = 0 such that a(x, u) has the local
representation

a(x, u) = g(x, u)− h(x, u)

√
1− x

ρ(u)
(43)

for |u− 1| < ε and |x− ρ(u)| < ε, arg(x− ρ(u)) 6= 0, where g(x, u), h(x, u), and ρ(u)
are analytic functions that satisfy

g(x0, 1) = a0, h(x0, 1) =

√
2x0Fx(a0, x0, 1)

Faa(a0, x0, 1)
, and ρ(1) = x0(44)

and ε > 0 is some fixed real number. Furthermore, if there are n1, n2, n3 and k1 <
k2 < k3 such that an1k1an2k2an3k3 > 0 and gcd(k3 − k1, k2 − k1) = 1 and if

gcd

{
n− l :

∑
k

ank > 0

}
= 1,
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where

l = min

{
m :

∑
k

amk > 0

}
,

then x = ρ(u) is the only singularity on the circle of convergence |x| = |ρ(u)| for
|u−1| < ε, and there exists some δ > 0 such that a(x, u) can be analytically continued
in the region |x| < x0 + δ, |u| < 1 + δ, |u− 1| > ε

2 .
The proof of Proposition 1 is a combination of the implicit function theorem and

the Weierstrass preparation theorem (cf. [7, 8]).
Now it is easy to see the connection to random mappings. In any of the above

combinatorial constructions the solution a(x, u) (satisfying a( 1
e , 1) = 1) of a functional

equation of the type (42) is used to construct a final generating function that is more
or less of the form

c(x, u) =
1

1− a(x, u)
.

Hence, we can directly apply our theorems to obtain the kind of asymptotic distribu-
tion we are seeking.

4.2. Distribution of parameters. The examples mentioned in section 2 cover
the three types of limiting distributions, Gaussian, Rayleigh, or a convolution of both.
It should be noted that in Applications 2, 4, and 5, small structural modifications
(neglecting cyclic edges) lead to different limit laws.

For the sake of brevity we will only mention the weak convergence law. However,
in all the cases the local law and the asymptotic expansions for mean and variance
hold, too.

Application 1 (see [16]). Let Xn denote the number of noncyclic points at a
fixed distance d > 0 to a cycle in random mappings of size n. Then

Xn√
n

d→ R(1).(45)

Proof. From Proposition 1 it follows that t̂(x) has a local representation of the
kind

t̂(x) = a(x)− b(x)
√

1− ex,

where a(x) and b(x) are analytic functions around x0 = 1
e with a( 1

e ) = 1 and b( 1
e ) =√

2. Furthermore, we can use the Taylor series expansion of

Ad(x, u)−1 =
∑
l,k≥0

clk(u− 1)l
(
x− 1

e

)k
,

where c00 = 0 and c10 = −1 to see that Ad(x, ut̂(x, u)) has a representation of the
kind

Ad(x, ut̂(x, u))−1 = g(x, u) + h(x, u)
√

1− ex,

where g( 1
e , 1) = c00 = 0 and h( 1

e , 1) = −c10b(
1
e ) =

√
2. Hence, we can apply Theo-

rem 1.
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Application 2 (see [4]). Let r ≥ 0 be a fixed integer, and let Xn denote the
number of points ν with |ϕ−1({ν})| = r in mappings ϕ ∈ Fn. Then

Xn − µn√
σ2n

d→ N (0, 1),(46)

where µ = 1
er! and σ2 = µ+ (1 + (r − 1)2)µ2.

Proof. Let

F (p, x, u) = xep + (u− 1)x
pr

r!
.

Then another application of Proposition 1 provides a local representation of

p̂r(x, u) = a(x, u)− b(x, u)

√
1− x

ρ(u)
,

where p̂r(x, 1) = t̂(x), and, consequently, ρ(1) = 1
e , a( 1

e , 1) = 1, and b( 1
e , 1) =

√
2.

Hence, we obtain

f̂(x, u) =
1

1−
(
p̂r(x, u)− (u− 1)x p̂r(x,u)r

r! + (u− 1)x p̂r(x,u)r−1

(r−1)!

)
=

1

g(x, u) + h(x, u)
√

1− x/ρ(u)

in which g( 1
e , 1) = 0, h( 1

e , 1) =
√

2, and

α =
∂

∂u
g(ρ(u), u)|u=1 = − ∂

∂u
a(ρ(u), u)|u=1 +

1

er!
− 1

e(r − 1)!
.

Since p(u) = a(ρ(u), u) = p̂r(ρ(u), u) satisfies the system of equations

p(u) = F (p(u), ρ(u), u),

1 = Fp(p(u), ρ(u), u),

implicit differentiation gives

ρ′(1) = −
Fu(1, 1

e , 1)

Fx(1, 1
e , 1)

= − 1

er!
,

ρ′′(1) =
1

FppF 3
x

(F 2
x (F 2

pu − FppFuu) + F 2
u(F 2

px − FppFxx)

−2FxFu(FpxFpu − FppFxu))

= − (r − 1)2

e3(r!)2
,

p′(1) =
FpxFu − FpuFx

FppFx
=

1

er!
− 1

e(r − 1)!
.

Thus we can apply Theorem 2.
Application 2′. Let r ≥ 0 be a fixed integer and let Xn denote the number of

nodes with in-degree r in a sequence of Cayley trees of total size n. Then

Xn − µn√
σ2n

d→ N (0, 1) ∗ R(λ),
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where µ and σ2 are the same as in Application 2, and λ = σ2(er!)2

(1−r)2 . In the special case

r = 1, the limiting distribution is only Gaussian since λ−1 = 0.
Proof. In this case α = p′(1) is not equal to 0, except for r = 1. Hence, the

convolution results by Theorem 3.
Application 3. Let r ≥ 0 be a fixed integer, and let Xn denote the number of

points ν with ∣∣∣∣∣∣
⋃
d≥0

ϕ−d({ν})

∣∣∣∣∣∣ = r

in mappings ϕ ∈ Fn. Then

Xn − µn√
σ2n

d→ N (0, 1),(47)

where µ = rr−1

r! e−r and σ2 = µ− 2rµ2.
Proof. First notice that the analytic factor exp(· · ·) in (15) has no influence on

the parameters of interest α, ρ′(1), and ρ′′(1). Therefore, we can neglect it. Hence
we can proceed as in the proof on Application 2. Here we have

ρ′(1) = −tre−r−1,

ρ′′(1) = (1 + 2r)t2re
−2r−1,

a′(1) = tre
−r.

Consequently, α = 0 and we obtain a Gaussian limiting distribution.
Application 4. Let d ≥ 0 be a fixed integer, and let Xn denote the number of

points ν ∈ ϕd({1, . . . , n}) mappings ϕ ∈ Fn. Then

Xn − µn√
σ2n

d→ N (0, 1),(48)

where µ = hd(
1
e ) and σ2 = 2

eh
′
d(

1
e )(1− µ)− µ.

Proof. The proof is almost the same as the proof of Application 2.
We want to mention that the mean value was already determined in [13].
Application 4′. Let d ≥ 0 be a fixed integer, and let Xn denote the number of

points at distance ≥ d from a leaf of their own subtree in random mappings of size n.
Then

Xn − µn√
σ2n

d→ N (0, 1) ∗ R(λ),(49)

where µ and σ2 are the same as in Application 4, and λ = σ2

h2
d
( 1
e )

.

Proof. In this case, α = hd(
1
e ) 6= 0. Hence the convolution result.

Application 5. Let d ≥ 0 be fixed and Xn denote the number of nodes that are
connected to a leaf by a path of length d containing no cyclic edge in random mappings
of size n. Then

Xn − µn√
σ2n

d→ N (0, 1) ∗ R(λ),(50)
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where µ = cd = cd(
1
e , 1), σ2 = cd(1 − 2

ecd,x) + 2cdcd,y − c2d,y, and λ−1 = (cd −
cd,y)2/σ2 (cd,x = ∂

∂xcd(
1
e , 1), cd,y = ∂

∂y cd(
1
e , 1)). Since λ−1 = 0 for d = 1, the limiting

distribution is only Gaussian in this special case.
Proof. The proof runs along the same lines as the preceding ones. You only have

to apply Theorem 3 since α = cd − cd,y 6= 0 for d 6= 1.
Application 5′. Let d ∈ {0, 1, 2} be fixed and let Xn be the number of points

x ∈ ϕd({1, . . . , n} \ ϕ({1, . . . , n})) in mappings ϕ ∈ Fn. Then

Xn − µn√
σ2n

d→ N (0, 1),(51)

where µ and σ2 are as in Application 5; i.e.,

cd(e
−1, 1) =


e−1 for d = 0,

1− e−e−1

for d = 1

1− e−(1−e−1/e) for d = 2,

and

σ2 =



e−1 − 2e−2 for d = 0,

e−e
−1 (

1− 2e−1
) (

1− e−e−1
)

for d = 1,

2e−1+e−1/e−e−1 − e−1+e−1/e

for d = 2.

−2e−2+e−1/e−e−1 − e−2+2e−1/e−2e−1

+2e−3+2e−1/e−e−1

Proof. Especially in the case d = 2 you have to calculate α very carefully, but in
all the cases α = 0.

Note. In the case d > 2, the combinatorial description is much more involved.
Nevertheless, it may be conjectured that the limiting distribution is still Gaussian.

5. Proof of the theorems. The proofs of Theorems 1, 2, 3 proceed in the fol-
lowing way. First we derive asymptotic expansions for mean value and variance; then
we prove a weak limit theorem using characteristic functions and, finally, we establish
the corresponding local limit theorem. This procedure seems to be redundant, and
in fact it is. But our aim is not only to prove special theorems but to provide an
example for a general method to analyze the asymptotic distribution of a parameter
in combinatorial constructions.

5.1. Preliminaries. We first list some useful formulae related to Gaussian and
Rayleigh distributions.

Lemma 6. Let γ be a Hankel contour starting from +e2πi∞, passing around 0,
and tending to +∞. Then

1

2πi

∫
γ

e−z√
−z − is

dz =
1√
π
ϕR(
√

2s),(52)

where

ϕR(t) =

∫ ∞
0

eitxxe−x
2/2 dx

= 1 + ite−t
2/2

(√
π

2
− i
∫ t

0

eu
2/2 du

)
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denotes the characteristic function of the Rayleigh distribution.
Proof. It suffices to compare the Taylor expansion around s = 0. By the Hankel

integral representation of Γ(s)−1 we get

1

2πi

∫
γ

e−z√
−z − is

=
1

2πi

∫
γ

∑
n≥0

(is)n(−z)−
n+1

2 e−z dz =
∑
n≥0

(is)n

Γ
(
n+1

2

) .
On the other hand we have

ϕR(t) =

∫ ∞
0

∑
n≥0

(it)nxn+1e−x
2/2 dx

=
∑
n≥0

(it)n2
n
2

Γ
(
n
2 + 1

)
Γ(n+ 1)

=
√
π
∑
n≥0

1

Γ
(
n+1

2

) ( it√
2

)n
,

where we have used the duplication formula for the Γ-function.
Lemma 7. Let γ be as in Lemma 6. Then

1

2πi

∫
γ

e−s
√
−z−z dz =

s

2
√
π
e−s

2/4(53)

and

1

2πi

∫
γ

e−z√
−z

dz =
1√
π
.(54)

Proof. (53) and (54) follow immediately from the substitution z = w2.
Lemma 8. Let γ be as in Lemma 6 and α, β be real constants. Then

1

2πi

∫ ∞
−∞

∫
γ

eiαw−w
2/2−z

√
−z − iβw

dz dw(55)

=
e−α

2/2

√
2( 1

2 + β2)
−
√
παβ

( 1
2 + β2)

3
2

exp

(
− α2

4( 1
2 + β2)

)
Φ

− αβ√
1
2 + β2

 .

Proof. Since both sides of (56) can be interpreted as analytic functions in α, β
around the real axis, it suffices to prove (56) for the case αβ > 0. In this case we can

use the substitutions z = u2

2 and w = v + iα to obtain

e−α
2/2

2π

∫ ∞
−∞

∫ ∞
−∞

e−
1
2 (u2+v2)

1√
2
u+ βv + iαβ

u du dv.

Then we can apply the polar substitution u = r cosϕ, v = r sinϕ to get∫ ∞
−∞

∫ ∞
−∞

e−
1
2 (u2+v2)

1√
2
u+ βv + iαβ

u du dv
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=

∫ ∞
0

∫ 2π

0

r2e
1
2 r

2

cosϕ

r
(

1√
2

cosϕ+ β sinϕ
)

+ iαβ
dϕ dr

=

∫ ∞
0

r2e−
1
2 r

2

∫
|z|=1

1
2 (z + z−1)

r
(

1
2
√

2
(z + z−1) + β

2i (z − z−1)
)

+ iαβ

dz

iz
dr

=

∫ ∞
0

r2e−
1
2 r

2

√
2π

r
(

1
2 + β2

)
1− αβ√

α2β2 + r2
(

1
2 + β2

)
 dr

=

√
2π

1
2 + β2

− 2π
3
2αβ(

1
2 + β2

) 3
2

exp

(
α2β2

2
(

1
2 + β2

))Φ

− αβ√
1
2 + β2

 ,

where the integral
∫ 2π

0
. . . dϕ is solved by using the substitution z = eiϕ and the

residue theorem∫
|z|=1

z2 + 1

r( i√
2

+ β)z2 − 2αβz + r( i√
2
− β)

dz

z

= 2πi

 − i√
2
− β

r( 1
2 + β2)

+

i√
2
αβ + β

√
α2β2 + r2( 1

2 + β2)

r( 1
2 + β2)

√
α2β2 + r2( 1

2 + β2)


=

√
2π

r( 1
2 + β2)

1− αβ√
α2β2 + r2( 1

2 + β2)

 .

The residues have to be calculated for

z1 = 0 and for z2 =
αβ −

√
α2β2 + r2( 1

2 + β2)

r( 1
2 + β2)

.

This completes the proof of Lemma 8.

5.2. Proof of Theorem 1. We first derive asymptotic expansions for mean
value and variance. Since

c(x, u) =
1

g(x, u) + h(x, u)
√

1− x/ρ(u)
,(56)

we get

[xn]c(x, 1) = [xn]
1

h(x, 1)

(
1− x

ρ

)− 1
2

+
ρgx(ρ, 1)

h(ρ, 1)
+O(

√
1− x/ρ)

=
ρ−nn−

1
2

h(ρ, 1)
√
π

(1 +O(n−1))

and

[xn]cu(x, 1) = [xn]

(
−gu(x, 1)

h(x, 1)2

(
1− x

ρ

)−1

+
−hu(x, 1)

h(x, 1)2

(
1− x

ρ

)− 1
2

)

=
−gu(ρ, 1)ρ−n

h(ρ, 1)2
(1 +O(n−

1
2 )).
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Hence,

EXn =
[xn]cu(x, 1)

[xn]c(x, 1)
=
−gu(ρ, 1)

h(ρ, 1)

√
πn+O(1).

Similarly, we get

[xn]cuu(x, 1) =
4gu(ρ, 1)2

√
πh(ρ, 1)3

ρ−nn
1
2 (1 +O(n−

1
2 ))

and

VXn =
[xn]cuu(x, 1)

[xn]c(x, 1)
+ EXn − (EXn)2 = (4− π)

gu(ρ, 1)2

h(ρ, 1)2
n+O(n

1
2 ).

Next we will determine the characteristic function of Xn/
√
n. Since

EeitXn/
√
n =

[xn]c(x, e
it√
n )

[xn]c(x, 1)
,(57)

we have to expand [xn]c(x, u) for u = eit/
√
n = 1 + i t√

n
+ O(n−1). For this purpose

we will use Cauchy’s formula

[xn]c(x, u) =
1

2πi

∫
Γ

c(z, u)
dz

zn+1
(58)

for the following path of integration Γ = Γ1 ∪ Γ2:

Γ1 =
{
z = ρ

(
1 +

s

n

)
: s ∈ γ′

}
,(59)

Γ2 =

{
z = Reiϑ : R = ρ

∣∣∣∣1 +
log2 n+ i

n

∣∣∣∣ , arg

(
1 +

log2 n+ i

n

)
≤ |ϑ| ≤ π

}
,

where γ′ = {s : |s| = 1,<s ≤ 0} ∪ {s : 0 < <s < log2 n,=s = ±1} is the major part
of a Hankel contour γ.

First let us concentrate on the path Γ1. By using the substitution z = ρ
(
1 + s

n

)
we get

1

2πi

∫
Γ1

c(z, u)
dz

zn+1
=
ρ−n

2πi

∫
γ′

e−s(1 +O(s2n−1))

gu(ρ, 1) it√
n

+ h(ρ, 1)
√
−s
n +O

(
s
n

) dsn
=
ρ−nn−

1
2

h(ρ, 1)

∫
γ′

e−s
√
−s+ i gu(ρ,1)

h(ρ,1) t
ds+O(ρ−nn−1).(60)

Since ∫
γ\γ′

e−s√
−s+ iCt

ds = O
(
e− log2 n

)
we immediately get by (60) and Lemma 6

1

2πi

∫
Γ1

c(z, u)
dz

zn+1
=

ρ−nn−
1
2

√
πh(ρ, 1)

ϕR

(
−
√

2gu(ρ, 1)

h(ρ, 1)
t

)
+O(ρ−nn−1).(61)
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Now we make use of the fact that there are ε1 > 0, δ1 > 0 such that

max
|x|=x1,| arg x|≥ϑ1

|c(x, u)| = |c(x1e
iϑ1 , u)|

for 1 ≤ x1 ≤ 1 + δ1 and |u − 1| < ε1. You only have to observe that cnk ≥ 0, that
x = ρ is the only singularity on the circle of convergence, and that c(x, u) has the
local representation (56). Hence, it follows from∣∣∣∣c(ρ(1 +

log2 n+ i

n

)
, e

it√
n

)∣∣∣∣ = O
(
n

1
2 logn

)
that ∫

Γ2

c(z, u)
dz

zn+1
= O

(
n

1
2 logn e− log2 n

)
.(62)

Consequently, by (57), (58), (61), and (62),

EeitXn/
√
n = ϕR

(
−
√

2gu(ρ, 1)

h(ρ, 1)
t

)
+O(n−

1
2 ).

Thus we have proved a weak limit theorem.
In order to prove the local limit theorem we again use Cauchy’s formula

[xnuk]c(x, u) =
1

(2πi)2

∫
Γ

∫
∆

c(z, u)
du

uk+1

dz

zn+1
,

where Γ = Γ1 ∪ Γ2 is as above (see (59)), and ∆ will be properly chosen.
If z = ρ(1 + s

n ) ∈ Γ1 then the mapping u 7→ c(z, u) has a polar singularity at
u0 = 1 + t0√

n
, where

t0 = − h(ρ, 1)

gu(ρ, 1)

√
−s+O

( s
n

)
with residue

1

gu(ρ, 1)

(
1 +O

( s
n

))
.

Hence, we can transform ∆ in a way that

1

2πi

∫
∆

c(z, u)
du

uk+1

= − u−k−1
0

gu(ρ, 1)

(
1 +O

( s
n

))
+

1

2πi

∫
|u|=1+ε2

c(z, u)
du

uk+1

=
−1

gu(ρ, 1)
exp

(
k√
n

h(ρ, 1)

gu(ρ, 1)

√
−s
)(

1 +O
(

(k + 1)s

n

))
+O

(
(1 + ε2)−k

)
.

Consequently,

1

(2πi)2

∫
Γ1

∫
∆

c(z, u)
du

uk+1

dz

zn+1
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=
−1

gu(ρ, 1)

ρ−n

2πi

∫
γ′

exp

(
−s+

k√
n

h(ρ, 1)

gu(ρ, 1)

√
−s
)(

1 +O
(

(k + 1)s2

n

))
ds

n

+O
(
ρ−n(1 + ε2)−k

)
=

k

n
3
2

h(ρ, 1)

gu(ρ, 1)2

ρ−n

2
√
π

exp

(
− k

2

4n

h(ρ, 1)2

gu(ρ, 1)2

)
+O

(
ρ−n

k + 1

n2

)
+O

(
ρ−n

(1 + ε2)−k

n

)
.

By elementary considerations we obtain

max
z∈Γ2,|u|=1

c(z, u) = O
(
n

1
2 logn

)
.

Hence, by choosing ∆ = {u : |u| = 1} for z ∈ Γ2 we can estimate the remaining
integral by

1

(2πi)2

∫
Γ2

∫
∆

c(z, u)
du

uk+1

dz

zn+1
= O

(
n

1
2 logn e− log2 n

)
and finally have proved the local limit theorem.

5.3. Proof of Theorem 2. As above we have

[xn]c(x, 1) =
ρ−nn−

1
2

h(ρ, 1)
√
π

(1 +O(n−1))

and from

cu(x, 1) =
−ρ′(1)

2ρh(ρ, 1)

(
1− x

ρ

)− 3
2

− α

h(ρ, 1)2

(
1− x

ρ

)− 1
2

+ O
((

1− x

ρ

) 1
2

)
we immediately get (α = 0)

EXn =
[xn]cu(x, 1)

[xn]c(x, 1)

= −ρ
′(1)

ρ
n+O(1)

= µn+O(1),

and from a little bit more refined analysis we get

VXn = σ2n+O(
√
n).

Since

ϕ(Xn−µn)/
√
σ2n(t) = e−it

√
nµ/σϕXn

(
t√
σ2n

)
= e−it

√
nµ/σ [xn]c(x, eit/

√
σ2n)

[xn]c(x, 1)
,

we have to determine

[xn]c(x, u) =
1

2πi

∫
Γ

c(z, u)
dz

zn+1
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for u = eit/
√
σ2n = 1 + i t√

σ2n
− t2

2σ2n +O(n−2) in which we use the following path of

integration Γ = Γ1 ∪ Γ2:

Γ1 =
{
z = ρ(u)

(
1 +

s

n

)
: s ∈ γ′

}
,

Γ2 =

{
z = Rei(ϑ−arg(u)) : R = |ρ(u)|

∣∣∣∣1 +
log2 n+ i

n

∣∣∣∣ ,(63)

arg

(
1 +

log2 n+ i

n

)
≤ |ϑ| ≤ π

}
.

From

ρ(u)−n = ρ−n exp

(√
n
µ

σ
− t2

2

)(
1 +O(n−

1
2 )
)

and from

g(z, u) + h(z, u)
√

1− z/ρ(u) = h(ρ, 1)

√
−s
n

+O
( s
n

)
for x ∈ Γ1, by applying Lemma 7 we directly get

1

2πi

∫
Γ1

c(z, u)
dz

zn+1

=
ρ(u)−n

h(ρ, 1)
√
n

1

2πi

∫
γ′

e−s√
−s

(
1 +O

(
s2

n
+
∣∣∣ s
n

∣∣∣)) ds

= exp

(√
n
µ

σ
− t2

2

)
ρ−nn−

1
2

h(ρ, 1)
√
π

(
1 +O(n−

1
2 )
)
.

It remains to estimate the integral on Γ2. But this can be done as in the proof of
Theorem 1 since

max
z∈Γ2

|c(z, u)| = O(n
1
2 logn).

In order to prove the local law we again use Cauchy’s formula

[xnuk]c(x, u) =
1

(2πi)2

∫
∆

∫
Γ

c(z, u)
dz

zn+1

du

uk+1
,

where ∆ = {u : |u| = 1}. For u ∈ ∆1 = {u = eit : |t| ≤ n−5/12} let Γ = Γ1 ∪ Γ2 as
in the proof of the weak limit theorem; for u ∈ ∆2 = {u = eit : n−5/12 < |t| < ε}
(for some sufficiently small ε > 0) let Γ = {z : |z| = 1

2 (ρ + |ρ(eit)|)}; and for
u ∈ ∆3 = {u = eit : ε ≤ |t| ≤ π} let Γ = {z : |z| = ρ(1 + δ)} for some sufficiently
small δ > 0.

First, let u = eit ∈ Γ1, i.e., |t| ≤ n−5/12, and z ∈ Γ1. By direct approximation we
have

g(z, u) + h(z, u)
√

1− z/ρ(u) = n−
1
2h(ρ, 1)

√
−s(1 +O(n−

1
3 ))

(note that α = 0 and that |s| ≥ 1) and

z−nu−k = ρ−ne−it(k−µn)− 1
2 t

2σ2n−s(1 +O(n−
1
4 )).
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Hence, we obtain by using the methods of [12] and a saddle-point-like integration
(compare with [9])

1

(2πi)2

∫
∆1

∫
Γ1

c(z, u)
dz

zn+1

du

uk+1

=
ρ−n√
nh(ρ, 1)

1

(2πi)2

∫ n−5/12

−n−5/12

∫
γ′

e−it(k−µn)− 1
2 t

2σ2n−s
√
−s

(1 +O(n−
1
4 )) ds dt

=
ρ−n√
nh(ρ, 1)

1√
π

1√
2πσ2n

(
exp

(
− (k − µn)2

2σ2n

)
+O(n−

1
4 )

)
.

Therefore, the proof is finished if the remaining integrals are sufficiently small. As
above we have

1

(2πi)2

∫
∆1

∫
Γ2

c(z, u)
dz

zn+1

du

uk+1
= O

(
ρ−nn

1
12 logn e− log2 n

)
.

Next we get

1

(2πi)2

∫
∆2

∫
Γ

c(z, u)
dz

zn+1

du

uk+1
= O

(
ρ−ne−cn

1
6

)
since |ρ(u)| ≥ ρ(1 + c1n

−5/6) for u ∈ ∆2 (and some sufficiently small constants
c, c1 > 0). Finally, since c(z, u) is bounded for u ∈ ∆3 and z ∈ Γ we obtain

1

(2πi)2

∫
∆3

∫
Γ

c(z, u)
dz

zn+1

du

uk+1
= O

(
ρ−n(1 + δ)−n

)
,

which completes the proof of the local theorem.

5.4. Proof of Theorem 3. As in the proof of Theorem 2 we get

EXn = µn−
√
π

α

h(ρ, 1)

√
n+O(1)

and

VXn =

(
σ2 + (4− π)

α2

h(ρ, 1)2

)
n+O(

√
n).

Now, if we use the same normalization and the same path of integration (63) as in

Theorem 2, by applying Lemma 6 we obtain for u = eit/
√
σ2n

1

2πi

∫
Γ1

c(z, u)
dz

zn+1

=
ρ(u)−n

h(ρ, 1)
√
n

1

2πi

∫
γ′

e−s√
−s+ iαt/(h(ρ, 1)σ)

(
1 +O

(
s2

n
+
∣∣∣ s
n

∣∣∣)) ds

=
ρ−nn−

1
2

h(ρ, 1)
√
π

exp

(√
n
µ

σ
− t2

2

)
ϕR

(
−
√

2α

h(ρ, 1), σ

)(
1 +O(n−

1
2 )
)
.

The remaining integral on Γ2 can be estimated as above. Hence, we have proved the
weak convergence property.
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In order to prove the local law we will proceed as in the proof of Theorem 2. As
above we can concentrate on the path of integration ∆1×Γ1. The remaining integrals
are negligible. Direct approximation yields

1

(2πi)2

∫
∆1

∫
Γ1

c(z, u)
dz

zn+1

du

uk+1

=
ρ−n√
nh(ρ, 1)

1

(2πi)2

∫ n−5/12

−n−5/12

∫
γ′

e−it(k−µn)− 1
2 t

2σ2n−s
√
−s+ i α

h(ρ,1)

√
nt

(1 +O(n−
1
4 )) ds dt.

Hence an application of Lemma 8 and easy tail estimates complete the proof of The-
orem 3.

6. Conclusions. The main purpose of this paper is to provide general techniques
to obtain the limiting distribution of parameters in combinatorial constructions. It is
the second paper of a (planned) series of papers [10] devoted to this topic. Theorems 1–
3 should be considered as examples of analytic theorems providing a link between
combinatorial constructions and their asymptotic distributions. (They seem to be
proper theorems to discuss random mappings.) The authors are convinced that the
methods presented in the preceding proofs can be used in many other (different)
problems. The basic ideas are singularity analysis (introduced by Flajolet and Odlyzko
[12]) and saddle-point approximation.

Random mappings are widely and intensively discussed in literature; e.g., in
Kolchin’s book [15] a probabilistic approach via branching processes is presented,
whereas Aldous and Pitman [3] use a completely different probabilistic concept re-
lated to Aldous’s continuum random trees [1, 2]. Our concept of generating functions
goes back to Arney and Bender [4] and to Flajolet and Odlyzko [13]. They could
identify many limiting distributions and provided asymptotic expansions for mean
and variance. (One gap could be filled by Application 3.) It should be mentioned,
too, that Arney and Bender [4] discussed a slightly more general case, namely that the
number of immediate predecessors of a point |ϕ−1({ν})| is not arbitrary but must be
contained in a subset D of nonnegative integers; i.e., the corresponding tree function
t̂D(x) satisfies the functional equation

t̂D(x) = x
∑
n∈D

t̂D(x)n

n!
= xφ(t̂D(x))

and the corresponding generating function for those mappings

f̂D(x) =
1

1− xφ′(t̂D(x))
.

From Proposition 1 it follows that ifD contains a number ≥ 2 then it has a square-root
singularity

t̂D(x) = gD(x)− hD(x)
√

1− x/ρD,

around x = ρD = t0/φ(t0), where t0 > 0 satisfies t0φ
′(t0) = φ(t0). Hence, ρDφ

′(t0) =
1 and we are in a similar situation as in the classical case. Especially we can adapt all
the combinatorial constructions to this more general case and obtain analog results
by applying our theorems.
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Abstract. In this paper we describe new constructions for de Bruijn sequences and Perfect
Factors. These constructions are all based upon the idea of constructing one sequence (or set of
sequences) from another. As a result of this fact, the sequences obtained from these construction
methods possess simple decoding algorithms based on decoding the sequences used to construct them.
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1. Introduction.

1.1. de Bruijn sequences, Perfect Factors, and the decoding problem.
In this paper we address two main issues relating to the existence and decoding of
Perfect Factors and de Bruijn sequences.

• Perfect Factors, i.e., sets of uniformly long cycles whose elements are drawn
from an alphabet of size c and in which every possible v-tuple of elements occurs
exactly once, are of significance for two main reasons.

− They can be used to construct Perfect Maps (or two-dimensional de Bruijn
arrays) (see, for example, [4, 9, 10]), which are of practical importance in certain
position–location applications.

− They are special cases of Perfect Maps themselves, and hence their existence is
of significance in deciding whether Perfect Maps exist for all parameter sets satisfy-
ing certain simple necessary conditions. (It has recently been established that these
necessary conditions are sufficient for prime power size alphabets [12, 13].)
They are also of combinatorial interest in their own right [4].

It has been conjectured [6] that the simple necessary conditions for the existence
of a Perfect Factor are sufficient for all finite alphabets and for all window sizes. This
conjecture was established by Paterson for c, a prime power [11], and for v < 5 in [7].
In this paper we describe two new construction methods for Perfect Factors, yielding
Perfect Factors with parameters not previously known to exist.

• The problem of decoding de Bruijn sequences and Perfect Maps, i.e., of finding
the position within the sequence (or array) of any specified v-tuple (or subarray), is
of fundamental importance in certain practical applications (see [2, 3, 14]). It has
recently been shown that de Bruijn sequences which have simple decoding methods
can be constructed [8]; in this paper we present another construction method for de
Bruijn sequences which also yields sequences with a simple decoding technique.

In addition, it has been shown that Perfect Maps can be constructed using a
combination of Perfect Factors and de Bruijn sequences, for which decoding the Per-
fect Map can be reduced to decoding its component sequences [9]. The methods for
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constructing Perfect Factors presented here all allow simple decoding methods to be
devised, and hence contribute to the simpler decoding of certain Perfect Maps.

1.2. Notation. We first set up some notation which we will use throughout the
paper.

We are concerned here with c-ary periodic sequences, where by the term c-ary
we mean sequences whose elements are drawn from the set {0, 1, . . . , c − 1}. We
refer throughout to c-ary cycles of period n, by which we mean periodic sequences
[s0, s1, . . . , sn−1], where si ∈ {0, 1, . . . , c− 1} for every i (0 ≤ i < n).

If t = (t0, t1, . . . , tv−1) is a c-ary v-tuple (i.e., ti ∈ {0, 1, . . . , c − 1} for every i
(0 ≤ i < v)) and s = [s0, s1, . . . , sn−1] is a c-ary cycle of period n (n ≥ v), then we
say that t occurs in s at position j if and only if

ti = si+j

for every i (0 ≤ i < v), where i+ j is computed modulo n.

If s0, s1, . . . , st−1 are t cycles of the same length, n say, and if

si = [si0, si1, . . . , si(n−1)] (0 ≤ i < t),

then I(s0, s1, . . . , st−1) denotes the t-fold interleaving of these cycles, i.e.,

I(s0, s1, . . . , st−1) = [s00, s10, . . . , s(t−1)0, s01, s11, . . . , s(t−1)(n−1)],

a cycle of length nt.

Given a cycle s = [si] (0 ≤ i < n) and any integer k, we define Tk(s) to be the
cyclic shift of s by k places to the right. That is, if we write s ′ = [s′i] = Tk(s) then

s′i+k = si (0 ≤ i < n),

where i+ k is calculated modulo n.

Suppose s = [s0, s1, . . . , sn−1] and s ′ = [s′0, s
′
1, . . . , s

′
n′−1] are c-ary cycles of peri-

ods n and n′, respectively. Then define the concatenation of s and s ′, written

s||s ′,

to be the c-ary cycle of period n+ n′

t = [t0, t1, . . . , tn+n′−1] = s||s ′,

where

ti =

{
si if 0 ≤ i < n,
s′i−n if n ≤ i < n+ n′.

In addition, if s is a cycle of length n and k > 0, then sk denotes the k-fold concate-
nation of s with itself, and hence sk is a cycle of period nk.

Throughout we will write 0 i for the i-tuple of all zeros and 1 i for the i-tuple of
all ones.

Finally note that throughout this paper the notation (m,n) represents the greatest
common divisor of m and n (given that m,n are a pair of positive integers).
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1.3. Fundamental definitions and results. We next define the objects of
fundamental importance to this paper.

Definition 1.1. If s = (s0, s1, . . . , sn−1) is a c-ary cycle of period n, then we
say that s is a v-window sequence if no c-ary v-tuple occurs in two distinct positions
within a period of s. Equivalently, it contains n distinct v-tuples in a period of the
cycle.

Using this definition we also have the following one.

Definition 1.2. A c-ary de Bruijn sequence of span v is then simply a v-window
sequence of period equal to cv; equivalently, every possible c-ary v-tuple occurs precisely
once in a period of a de Bruijn sequence.

A c-ary punctured de Bruijn sequence of span v (sometimes called a pseudoran-
dom sequence) is a v-window sequence in which every c-ary v-tuple except for 0 v

occurs, and so a punctured de Bruijn sequence has period cv − 1. A span v de Bruijn
sequence can be “punctured” by deleting one of the zeros in 0 v, and a punctured de
Bruijn sequence can be transformed into a de Bruijn sequence by adding a zero to any
one of the c− 1 occurrences of 0 v−1.

We next have the following definition.

Definition 1.3. Suppose n, c, and v are positive integers, where c ≥ 2. An
(n, c, v)-Perfect Factor, or simply an (n, c, v)-PF, is a collection of cv/n c-ary cycles
of period n with the property that every c-ary v-tuple occurs in one of these cycles.

Note that because we insist that a Perfect Factor contain exactly cv/n cycles
and because there are clearly cv different c-ary v-tuples, each v-tuple will actually
occur exactly once somewhere in the collection of cycles (and hence all the cycles are
distinct). Also observe that a (cv, c, v)-PF is simply a c-ary span v de Bruijn sequence.

The following necessary conditions for the existence of a Perfect Factor are trivial
to establish.

Lemma 1.4. Suppose A is an (n, c, v)-PF. Then

1. n|cv, and
2. v < n ≤ cv (or n = v = 1).

It was conjectured in [6] that these necessary conditions are sufficient for the
existence of a Perfect Factor. Paterson [11] has shown that the conjecture holds if c
is a prime power, and it has also been shown that the conjecture holds if v < 5 [7].

Finally, we define a related set of combinatorial objects, first introduced in [6].

Definition 1.5. Suppose n, k, c, and v are positive integers satisfying n|cv and
c ≥ 2. An (n, k, c, v)-Perfect Multifactor, or simply an (n, k, c, v)-PMF, is a collection
of cv/n c-ary cycles of period nk with the property that for every c-ary v-tuple t and
for every integer j in the range 0 ≤ j < k, t occurs at a position p ≡ j (mod k) in
one of these cycles.

Note that because a Perfect Multifactor contains exactly cv/n cycles of length
nk and because there are cv different c-ary v-tuples, each v-tuple will actually oc-
cur exactly k times in the collection of cycles, once in each of the possible position
congruency classes (mod k). This also implies that all the cycles are distinct.

The following necessary conditions for the existence of a Perfect Multifactor are
simple to establish.

Lemma 1.6. Suppose A is an (n, k, c, v)-PMF. Then

1. n|cv and
2. v < nk (or v = nk and n = 1).

It has been shown [6] that the above necessary conditions are sufficient if k ≥ v.
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2. A span-dividing construction for Perfect Factors. In this section we
describe a novel method for constructing a Perfect Factor from a Perfect Multifactor.
This method involves reducing the span and at the same time increasing the alphabet
size. The method is of practical interest because a simple decoding algorithm for the
Perfect Factor can be derived from a decoding algorithm for the Perfect Multifactor
used to construct it.

2.1. The construction method.
Construction 2.1. Suppose c, k, n, and v are positive integers, where c ≥ 2,

n|cv, and k|v, and let A = {ai : 0 ≤ i < cv/n} be an (n, k, c, v)-PMF.
Now define D = {di : 0 ≤ i < cv/n} to be the set of cv/n ck-ary cycles of

period n defined so that di is obtained from ai by dividing ai into disjoint k-tuples
and regarding each k-tuple as the c-ary representation of an element from an alphabet
of size ck.

Theorem 2.2. Suppose c, k, n, v, and A satisfy the conditions of Construc-
tion 2.1. If D is constructed from A using Construction 2.1, then D is an (n, ck, v/k)-
PF.

Proof. Let u = v/k and suppose e and e ′ are u-tuples from D occurring at
positions p and p′ in cycles di and di′ , respectively (0 ≤ p, p′ < n and 0 ≤ i, i′ < cv/n).
We need to show that these tuples are distinct unless p = p′ and i = i′.

Now if e = e ′ then f = f ′, where f and f ′ are c-ary v-tuples derived, respectively,
from e and e ′ by substituting every ck-ary element with a c-ary k-tuple (inverting the
procedure used to derive D in Construction 2.1). Now f and f ′ occur at positions kp
and kp′ in cycles ai and ai′ , respectively. Hence, since A is a Perfect Multifactor and
kp ≡ kp′ (mod k), we have

i = i′ and kp ≡ kp′ (mod nk),

and the desired result follows.

2.2. An example. We now give a simple example.
Example 2.3. Let n = v = 4 and c = k = 2. Also let

A =

{
a0 =

[
0 0 0 0 1 1 1 1

]
, a1 =

[
1 0 0 0 0 1 1 1

]
,

a2 =
[

0 1 0 1 1 0 1 0
]
, a3 =

[
0 0 1 0 1 1 0 1

] } ,
a (4,2,2,4)-PMF.

Then, using the above construction, we obtain

D = { d0 =
[

0 0 3 3
]
, d1 =

[
2 0 1 3

]
,d2 =

[
1 1 2 2

]
, d3 =

[
0 2 3 1

]
},

a (4,4,2)-PF.

2.3. A decoding algorithm. We now present a simple algorithm for decoding
cycles which have been obtained using Construction 2.1; the algorithm is based on
the use of a partial decoder for the Perfect Multifactor A.

Algorithm 2.4. Suppose c, k, n, v, and A satisfy the conditions of Construc-
tion 2.1 and D has been constructed from A using Construction 2.1. Suppose also
that the pair of functions (E1, E2) acts as a partial decoder for A; i.e., if x is a c-ary
v-tuple then 0 ≤ E1(x ) < cv/n, 0 ≤ E2(x ) < n, and x occurs at position kE2(x )
in cycle aE1(x) of A. That is, the partial decoder will find the unique location of the
specified tuple in a position congruent to 0 modulo k.
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Then the pair (E1, E2) is a decoder for D; i.e., if y is a ck-ary u-tuple, then y
occurs at position E2(y) in cycle dE1(y).

Proof. This result follows immediately from the way in which D is constructed.

2.4. Constructing suitable Perfect Multifactors. We now consider the prob-
lem of constructing Perfect Multifactors with parameters suitable for use in Construc-
tion 2.1. We first observe that, using Constructions 6.1 and 6.4 of [6], we have the
following theorem.

Theorem 2.5. Suppose c, m, n, s, and v are positive integers, where c ≥ 2,
m|n, and (s,m) = 1, and suppose also that there exists an (n, c, v)-PF. Then an
(m,ns/m, c, v)-PMF can be constructed.

Remark 2.6. An examination of the construction methods in [6] reveals that a
decoding algorithm for the Perfect Multifactors can very easily be derived from a
decoding algorithm for the Perfect Factor used to construct it.

Note also that the (4,2,2,4)-PMF of Example 2.3 was obtained from an (8,2,4)-PF
using exactly this method.

There are two simple ways in which we can combine Theorem 2.5 with our new
construction method.
• First, suppose that n = cv, k|v, and (k, cv) = 1, and put m = n and s = k

(and hence (s,m) = 1). Then, starting with a (cv, c, v)-PF (a c-ary span v de Bruijn
sequence), we can obtain a (cv, k, c, v)-PMF. Now, since k|v, we can apply Construc-
tion 2.1 to obtain a (cv, ck, v/k)-PF, i.e., a ck-ary span v/k d e Bruijn sequence. Most
significantly, this new de Bruijn sequence can be trivially decoded using a decoder for
the de Bruijn sequence used to construct it.
• Second, suppose k|v and n|cv, and put m = n/(k, n) and s = k/(k, n) (and hence

(s,m) = 1). Then, starting with an (n, c, v)-PF, we can obtain an (n/(k, n), k, c, v)-
PMF. Now, since k|v, we can apply Construction 2.1 to obtain an (n/(k, n), ck, v/k)-
PF. Again, this new Perfect Factor can be trivially decoded using a decoder for the
Perfect Factor used to construct it.

Remark 2.7. Note that in the first case considered immediately above we could
replace the initial de Bruijn sequence with any c-ary v-window sequence of period n,
as long as (n, k) = 1 and k|v. We would then obtain a ck-ary (v/k)-window sequence,
also of period n. Thus if (cv − 1, k) = 1 then we could start with a punctured c-ary
span v de Bruijn sequence, in which case the final sequence would also be a punctured
de Bruijn sequence.

2.5. Example.
Example 2.8. Let v = 4, c = k = 2, and n = cv − 1 = 15 (and hence (k, n) =

(2, 15) = 1). Also let

a ′ =
[

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
]
,

a 2-ary span 4 punctured de Bruijn sequence.
Then, using Constructions 6.1 and 6.4 of [6], we obtain

a =
[

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
]
.

Using Construction 2.1, we obtain

d =
[

0 1 0 3 1 1 3 2 0 2 1 2 2 3 3
]
,

a 4-ary span 2 punctured de Bruijn sequence.
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3. Constructing Perfect Factors by interleaving. We now present another
method for constructing Perfect Factors with a simple decoding algorithm. It also
enables the construction of Perfect Factors for parameter sets for which the existence
question was previously unanswered (examples of new parameter sets are given in
section 3.4 below).

3.1. The construction method. We start by describing the method of con-
struction.

Construction 3.1. Suppose c, n, t, v are positive integers satisfying c ≥ 2 and
t|nt−1. Moreover, suppose that

A = {a0,a1, . . . ,acv/n−1}

is an (n, c, v)-PF.
Consider the set S of all n-ary t-tuples (x0, x1, . . . , xt−1) with the property that∑t−1

i=0 xi ≡ n − 1 (mod n). If x ,y ∈ S then write x ∼ y if and only if x can be
obtained from y by a cyclic shift operation. It is straightforward to verify that ∼ is an
equivalence relation on S which partitions S into nt−1/t classes, each of size t. Now
let

X = {x0,x1, . . . , xnt−1/t−1}

be a set of elements of S chosen so that X contains precisely one element of each
equivalence class under ∼.

Next let

U = {(ai0 ,ai1 , . . . ,ait−1) : ai0 ,ai1 , . . . ,ait−1
∈ A}

be the set of all t-tuples of elements of A, and hence |U | = ctv/nt.
Finally, let B be the set of all interleaved cycles of the form

I(T0(ai0),Tx0(ai1),Tx0+x1(ai2), . . . ,Tx0+x1+···+xt−2(ait−1)),

where (x0, x1, . . . , xt−1) ∈ X and (ai0 ,ai1 , . . . ,ait−1
) ∈ U . Hence |B| = |X| · |U | =

(nt−1/t)(ctv/nt) = ctv/tn.
We can now state and prove the following result.
Theorem 3.2. Suppose c, n, t, v, and A satisfy the conditions of Construction 3.1.

If B is constructed from A using Construction 3.1 then B is a (tn, c, tv)-PF.
Proof. Suppose y is any c-ary tv-tuple. We need to show that y occurs in one of

the cycles of B. Suppose

y = I(z0, z1, . . . , zt−1),

where z0, z1, . . . , zt−1 are c-ary v-tuples. Now suppose that zi occurs in cycle a`i at
position ki for every i satisfying 0 ≤ i < t. In addition, we define a further n-ary
t-tuple x = (x0, x1, . . . , xt−1), where xi ≡ ki − ki+1 (mod n) for every i satisfying
0 ≤ i < t− 1 and xt−1 ≡ kt−1 − k0 − 1 (mod n).

First observe that x ∈ S since

t−1∑
i=0

xi ≡
t−2∑
i=0

(ki − ki+1) + (kt−1 − k0 − 1) ≡ −1 (mod n).
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Hence there exists some cyclic shift of x , say

Tt−u(x ) = (xu, xu+1, . . . , xt−1, x0, . . . , xu−1),

which is a member of X. Hence if we define the n-ary t-tuple (v0, v1, . . . , vt−1) by

vi =


0 if i = 0,∑i+u−1
j=u xj mod n if 0 < i ≤ t− u,∑t−1
j=u xj +

∑i+u−t−1
j=0 xj mod n if t− u < i ≤ t− 1,

then the following cycle is a member of B:

w = I(Tv0(a`u),Tv1(a`u+1
), . . . ,Tvt−u−1

(a`t−1
),Tvt−u(a`0), . . . ,Tvt−1

(a`u−1
)).

Now zu+i occurs in Tvi(a`u+i) at position ku+i + vi (0 ≤ i < t− u) and zi occurs in
Tvi+t−u(a`i) at position ki + vt−u+i (0 ≤ i ≤ u− 1). In addition, by the definition of
(xi) we have

vi =

 0 if i = 0,
ku − ku+i mod n if 0 < i < t− u,
ku − ku−t+i − 1 mod n if t− u ≤ i ≤ t− 1.

Thus zu+i occurs in Tvi(a`u+i) at position ku (0 ≤ i < t − u) and zi occurs in
Tvi+t−u(a`i) at position ku − 1 (0 ≤ i ≤ u − 1). Hence y occurs in w at position
kut− u and the result follows.

3.2. Examples. Before proceeding we give two simple examples of the construc-
tion method.

Example 3.3. Let n = 4 and c = v = t = 2. Then let A be the following
(4, 2, 2)-PF (a de Bruijn sequence):

a0 =
[

0 0 1 1
]
.

Then

S = { ( 0 3 ), ( 3 0 ), ( 2 1 ), ( 1 2 ) }.

Then we can define

X = { ( 0 3 ), ( 2 1 ) }.

In addition,

U = {( a0, a0 )}.

Hence

B = { I( T0(a0), T0(a0) ), I( T0(a0), T2(a0) ) }
= { I(

[
0 0 1 1

]
,
[

0 0 1 1
]

), I(
[

0 0 1 1
]
,
[

1 1 0 0
]

) }
= {

[
0 0 0 0 1 1 1 1

]
,
[

0 1 0 1 1 0 1 0
]
}

is an (8, 2, 4)-PF.
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Example 3.4. Let n = c = t = 3 and v = 1. Then let A be the following
(3, 3, 1)-PF (a de Bruijn sequence):

a0 = [ 0 1 2 ].

Then

S = { ( 0 0 2 ), ( 0 2 0 ), ( 0 1 1 ),

( 2 0 0 ), ( 2 2 1 ), ( 2 1 2 ),

( 1 0 1 ), ( 1 2 2 ), ( 1 1 0 ) }.

Then we can define

X = { ( 0 0 2 ), ( 0 1 1 ), ( 2 2 1 ) }.

In addition,

U = {( a0, a0, a0 )}.

Hence

B = {I(T0(a0),T0(a0),T0+0(a0)), I(T0(a0),T0(a0),T0+1(a0)),

I(T0(a0),T2(a0),T2+2(a0))}
= {I( [0 1 2], [0 1 2], [0 1 2]), I( [0 1 2], [0 1 2], [2 0 1]), I( [0 1 2], [1 2 0], [2 0 1])}
= {

[
0 0 0 1 1 1 2 2 2

]
,
[
0 0 2 1 1 0 2 2 1

]
,
[
0 1 2 1 2 0 2 0 1

]
}

is a (9, 3, 3)-PF.

3.3. A decoding algorithm. We next show how, given a Perfect Factor con-
structed using the above method, a simple decoding algorithm can be devised which
reduces decoding the constructed Perfect Factors to decoding the Perfect Factor and
the set of rotation vectors used as components in the construction.

Algorithm 3.5. Suppose c, n, t, v, and A satisfy the conditions of Construc-
tion 3.1 and B has been constructed from A using Construction 3.1. Suppose also
that the pair of functions (E1, E2) acts as a decoder for A; i.e., if z is a c-ary v-tuple
then 0 ≤ E1(z ) < cv/n and 0 ≤ E2(z ) < n and z occurs at position E2(z ) in cycle
aE1(z ) of A.

We also need to define labelings for the sets U and B (defined in Construction 3.1).
If 0 ≤ i < ctv/nt, then suppose it−1it−2, . . . , i1i0 is the (cv/n)-ary representation of i
(with least significant digit i0), i.e., 0 ≤ ij < cv/n (0 ≤ j < t) and

i =

t−1∑
j=0

(cv/n)jij ,

and let

ui = (ai0 ,ai1 , . . . ,ait−1).

It should be clear that U = {ui : 0 ≤ i < ctv/nt}.
Next, if ui ∈ U , say

ui = (ai0 ,ai1 , . . . ,ait−1),
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and xj ∈ X, say

xj = (x0, x1, . . . , xnt−1/t−1),

then put

bij = I(T0(ai0),Tx0
(ai1),Tx0+x1

(ai2), . . . ,Tx0+x1+···+xt−2
(ait−1

)),

and hence B = {bij : 0 ≤ i < ctv/nt, 0 ≤ j < nt−1/t}.
Define the triple of functions

F11 : T → {0, 1, . . . , ctv/nt − 1},
F12 : T → {0, 1, . . . , nt−1/t− 1},
F2 : T → {0, 1, . . . , nt− 1}

as follows, where T is the set of all c-ary tv-tuples.
First, suppose y ∈ T and suppose

y = I(z0, z1, . . . , zt−1).

Next put

w = (w0, w1, . . . , wt−1) = (E2(z0), E2(z1), . . . , E2(zt−1))

and let

x ′ = (x′0, x
′
1, . . . , x

′
t−1) = (w0 − w1, w1 − w2, . . . , wt−2 − wt−1, wt−1 − w0 − 1).

Now x ′ ∈ S (as defined in Construction 3.1), and hence suppose

x ′ = Tr(xq)

for some xq ∈ X (where 0 ≤ r < t). We now put F12(y) = q.
Next put

g ′ = (g′0, g
′
1, . . . , g

′
t−1) = (E1(z0), E1(z1), . . . , E1(zt−1))

and let

g = (g0, g1, . . . , gt−1) = Tr(g
′).

Finally, put

F11(y) =
t−1∑
i=0

gi(c
v/n)i

and

F2(y) = tE2(zr)− r.

Theorem 3.6. If B and (F11, F12, F2) are defined as in Algorithm 3.5, then the
pair ((F11, F12), F2) is a decoder for B; i.e., if y is a c-ary tv-tuple, then y occurs at
position F2(y) in cycle bF11(y),F12(y).
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Proof. Suppose y (z0, z1, . . . , zt−1), F11, F12, and F2 are as in the algorithm. We
need to show that y occurs at position F2(y) in cycle bF11(y),F12(y).

First observe that

F11(y) =
t−1∑
i=0

gi(c
v/n)i

and

xF12(y) = (x0, x1, . . . , xt−1) ∈ X.

Now, by definition,

bF11(y),F12(y) = I(T0(ag0),Tx0
(ag1), . . . ,Tx0+x1+···+xt−2

(agt−1
))

= I(T0(ag′r ),Tx0
(ag′

r+1
), . . . ,Tx0+x1+···+xt−2

(ag′
r−1

))

(since g = Tr(g
′))

= I(T0(aE1(zr)),Tx0(aE1(zr+1)), . . . ,Tx0+x1+···+xt−2(aE1(zr−1)))

(by the definition of g ′)

= I(T0(aE1(zr)),Tx′r (aE1(zr+1)),Tx′r+x
′
r+1

(aE1(zr+2)), . . . ,

Tx′r+x
′
r+1

+···+x′
r−2

(aE1(zr−1)))

(since x ′ = Tr(xq))

= I(T0(aE1(zr)),Twr−wr+1
(aE1(zr+1)),Twr−wr+2

(aE1(zr+2)), . . . ,

Twr−wt−1
(aE1(zt−1)),Twr−w0−1(aE1(z0)), . . . ,Twr−wr−1−1(aE1(zr−1)))

(by the definition of x ′)

= I(T0(aE1(zr)),TE2(zr)−E2(zr+1)(aE1(zr+1)),TE2(zr)−E2(zr+2)(aE1(zr+2)), . . . ,

TE2(zr)−E2(zt−1)(aE1(zt−1)),TE2(zr)−E2(z0)−1(aE1(z0)), . . . ,

TE2(zr)−E2(zr−1)−1(aE1(zr−1)))

(by the definition of w).

Now since zi occurs at position E2(zi) in aE1(xi) (0 ≤ i < t), we have the following:
• zr occurs in T0(aE1(zr)) at position E2(zr),
• zr+1 occurs in TE2(zr)−E2(zr+1)(aE1(zr+1)) at position E2(zr),
• zr+2 occurs in TE2(zr)−E2(zr+2)(aE1(zr+2)) at position E2(zr),
• zt−1 occurs in TE2(zr)−E2(zt−1)(aE1(zt−1)) at position E2(zr),
• z0 occurs in TE2(zr)−E2(z0)−1(aE1(z0)) at position E2(zr)− 1, and
• zr−1 occurs in TE2(zr)−E2(zr−1)−1(aE1(zr−1)) at position E2(zr)− 1.

Hence y occurs in bF11(y),F12(y) at position tE2(zr) − r = F2(y), and the result
follows.

3.4. New parameter sets. We conclude our discussion of this method for con-
structing Perfect Factors by showing how it can be used to construct Perfect Factors
with parameters for which the existence question was previously unresolved.

As has already been mentioned, in [7] the necessary conditions of Lemma 1.4
have been shown to be sufficient for the existence of a Perfect Factor when v < 5.
Construction 3.1 does not help with any of the unresolved parameter sets for v = 5,
and so we examine the case v = 6.

Now, by Theorem 7.1 of [6], Perfect Factors exist for all triples (n, c, 6) satisfying
the conditions of Lemma 1.4, with the possible exceptions of the following:
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• n = 10, c = 10d (d ≥ 1),
• n = 12, c = 6d (d ≥ 1),
• n = 15, c = 15d (d ≥ 1),
• n = 20, c = 10d (d ≥ 1),
• n = 30, c = 30d (d ≥ 1), and
• n = 60, c = 30d (d ≥ 1).

Next observe that, by Theorem 26 of [7], the following Perfect Factors exist:
• (6, 6d, 3)-PFs, d ≥ 1,
• (10, 10d, 3)-PFs, d ≥ 1, and
• (30, 30d, 3)-PFs, d ≥ 1.

Applying Construction 3.1 to all of these Perfect Factors (in each case with t = 2),
we obtain Perfect Factors for precisely the parameter sets in the second, fourth, and
sixth cases listed above.

This means that the only unresolved cases for v = 6 are as follows:
• n = 10, c = 10d (d ≥ 1),
• n = 15, c = 15d (d ≥ 1), and
• n = 30, c = 30d (d ≥ 1).

4. Summary and conclusions. Using recursive methods of construction, we
have made further progress toward proving the conjecture of [6], namely, that Perfect
Factors exist for all parameter sets satisfying the necessary conditions of Lemma 1.4.
All the construction methods in this paper, both for de Bruijn sequences and for
Perfect Factors, admit simple methods of decoding, making their use in practical
applications advantageous.

Finally, it is interesting to observe that when put together with the de Bruijn
sequence construction methods in [8] and [11] (special case of Lemma 5.1) there exists
a series of construction methods for building one de Bruijn sequence out of another.
If it turns out that some or all of these construction methods have “complexity-
preserving properties” (cf. the Lempel construction [5]), then there may exist the
means to make further progress with the long-standing problem of discovering for
which linear complexities there exist de Bruijn sequences (see, for example, [1]).

Acknowledgment. The author would like to thank an anonymous referee for
invaluable comments regarding Construction 2.1 which have both improved and short-
ened the paper.
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Abstract. The hull [Assmus, Jr. and Key, Discrete Math., 83 (1990), pp. 161–187], [Assmus,
Jr. and Key, Designs and Their Codes, Cambridge University Press, 1992, p. 43] of a linear code is
defined to be its intersection with its dual. We give here the number of distinct q-ary linear codes
which have a hull of given dimension.

We will prove that, asymptotically, the proportion of q-ary codes whose hull has dimension l is a
positive constant that depends only on l and q and consequently that the average dimension of the
hull is asymptotically a positive constant depending only on q.
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1. Introduction. We will consider linear codes over a finite field GF (q). A
[q;n, k] code will be a linear code of length n and dimension k over GF (q).

We will first study in section 2 the properties of the Gaussian binomial coefficients.
The coefficient

[
n
k

]
is the number of [q;n, k] codes. The key result of this section is

the inversion formula given in Corollary 2.8.
The hull [1] of a linear code is defined to be its intersection with its dual. In

section 4 we express the number An,k,l of [q;n, k] codes whose hull has dimension l in
terms of the number of weakly self-dual codes of given parameters, which is given in
section 3 (Theorem 3.2, due to Pless [6]). Using the inversion formula of section 2, we
obtain an explicit expression of An,k,l (Theorem 4.5). We then obtain an asymptotic
equivalent of An,k,l for fixed l when n and k go to infinity (Theorem 4.18), and we
prove that under the same conditions, the ratio An,k,l/

[
n
k

]
is equivalent to a constant,

depending on q (Theorem 4.19). Finally, we give the average dimension of the hull of
a linear code, which is asymptotically equal to

∑
i≥1 1/(qi + 1).

Most of the results above will be restricted to the case n ≥ 2k. However, since
the hull of a code is equal to the hull of its dual, this assumption can be made without
losing any generality.

2. Gaussian binomial coefficients. Most of the results presented here can be
found in [4] and [8].

Definition 2.1. Let n and k be two integers. The q-ary Gaussian binomial
coefficient

[
n
k

]
is defined by[

n

k

]
=

(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
(1)

whenever n ≥ k > 0 with
[
n
0

]
= 1 and

[
n
k

]
= 0 otherwise.

Note that the Gaussian coefficients are connected to the usual binomial coefficients
by limq→1

[
n
k

]
=
(
n
k

)
. The coefficient

[
n
k

]
is the number of subspaces of dimension k
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of a vector space of dimension n over GF (q). More generally, we have the following
proposition.

Proposition 2.2. Let U be a vector space over GF (q) of dimension n and let
V be a subspace of U of dimension l. The number of subspaces C of U of dimension
k containing V , that is, V ⊂ C ⊂ U , is equal to

[
n−l
k−l
]
.

Proof. See, for instance, [5, Thm. 4, p. 698].
We have the following identities.
Proposition 2.3. Let n ≥ k ≥ i be positive integers.[

n

k

]
=

[
n

n− k

]
,(2a) [

n

k

]
=

[
n

i

][
n− i
n− k

]/[
k

i

]
,(2b) [

n

k

]
=

qn − 1

qn−k − 1

[
n− 1

k

]
,(2c) [

n

k

]
=
qn−k+1 − 1

qk − 1

[
n

k − 1

]
,(2d) [

n

k

]
=

[
n− 1

k

]
+ qn−k

[
n− 1

k − 1

]
.(2e)

2.1. Asymptotic behavior. For all i > 0, let [i] = (q−1)(q2−1) . . . (qi−1) and
[0] = 1. Using the fact that n(n+ 1)/2−k(k+ 1)/2− (n−k)(n−k+ 1)/2 = k(n−k),
we can rewrite (1) as [

n

k

]
=

[n]

[k][n− k]
= qk(n−k)

gq,n
gq,kgq,n−k

,(3)

where the sequence (gq,n)n≥0 is defined for all q > 1 by

gq,n =
n∏
i=1

(
1− 1

qi

)
.(4)

This sequence is obviously decreasing and positive; we will see that it goes exponen-
tially quickly to its limit. We will first need the following result.

Proposition 2.4 (see [3, Chap. II, p. 106]).

∏
i≥0

(1 + tiu) =
∑
n≥0

t(
n
2)un

(1− t)(1− t2) . . . (1− tn)
.(5)

Proposition 2.5. The sequence (gq,n)n≥0 is strictly decreasing for q > 1. We
will denote by gq,∞ its limit when n goes to infinity. We have

gq,∞
gq,n

=
∑
i≥0

1

qni
(−1)i

(q − 1)(q2 − 1) . . . (qi − 1)
.(6)

Proof. By definition (4) of gq,n,

gq,∞
gq,n

=
∏

i≥n+1

(
1− 1

qi

)
=
∏
i≥0

(
1− 1

qn+1qi

)
.
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We then write (5) with t = 1/q and u = −1/qn+1, and we get (6).

Corollary 2.6. For all integers n ≥ 0,

1− 1

(q − 1)qn
≤ gq,∞

gq,n
≤ 1.(7)

Proof. We can rewrite (6) as
∑
i≥0(−1)iGi, where G−1

i = (q − 1) . . . (qi − 1)qni.
The sequence Gi is strictly positive and decreasing for q > 1, and thus, from a classical
property of alternate series, we have inequalities (7).

2.2. An inversion formula. A classical inversion formula given, for instance,
in [3, p. 143] says that in any commutative ring with identity if for all n ≥ 0, un =∑n
k=0

(
n
k

)
vk, then for all n ≥ 0 we have vn =

∑n
k=0

(
n
k

)
(−1)n−kuk. A similar identity

holds for Gaussian binomial coefficients. To obtain this formula we will first examine
how the two bases (xn)n≥0 and (pn(x))n≥0, where pn(x) = (x−1)(x−q) . . . (x−qn−1),
of the vector space of univariate polynomials are related.

Proposition 2.7. For all integers n ≥ 0, let pn(x) = (x−1)(x−q) . . . (x−qn−1).
We have

1. xn =
∑n
k=0

[
n
k

]
pk(x),

2. pn(x) =
∑n
k=0

[
n
k

]
(−1)n−kq(

n−k
2 )xk.

Proof. See [4] and [8].

Corollary 2.8 (inversion formula). Let (ui)i≥0 and (vi)i≥0 be two sequences.
For all k ≥ 0,(

∀l, 0 ≤ l ≤ k, vl =

l∑
i=0

[
l

i

]
ui

)
⇔
(
∀l, 0 ≤ l ≤ k, ul =

l∑
i=0

[
l

i

]
(−1)l−iq(

l−i
2 )vi

)
.(8)

Proof (see [3, pp. 118–119, 143]). We can express vl =
∑l
i=0

[
l
i

]
ui as U = PV ,

where U = (u0, u1, . . . ), V = (v0, v1, . . . ), and P is an infinite triangular matrix of
general term

[
l
i

]
. The inverse P−1 of P is given for ui = pi(x) and vi = xi by

Proposition 2.7, and its general term is
[
l
i

]
(−1)l−iq(

l−i
2 ). And thus from V = P−1U

we obtain ul =
∑l
i=0

[
l
i

]
(−1)l−iq(

l−i
2 )vi.

3. Weakly self-dual codes.

Definition 3.1. A code C is said to be weakly self dual (w.s.d.) if C ⊂ C⊥.

We will denote by σn,k the number of w.s.d. [q;n, k] codes. We have [9, 6, 7].

Theorem 3.2. Let n be a positive integer. The number of w.s.d. [q;n, k] codes
is equal to

1. if n is odd and k ≤ (n− 1)/2

σn,k =
k∏
i=1

qn−2i+1 − 1

qi − 1
,

2. if n and q are even and k ≤ n/2

σn,k =
qn−k − 1

qn − 1

k∏
i=1

qn−2i+2 − 1

qi − 1
,
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3. if ((n ≡ 0 mod 4 and q odd) or (n ≡ 2 mod 4 and q ≡ 1 mod 4)) and k ≤ n/2

σn,k =
qn/2−k + 1

qn/2 + 1

k∏
i=1

qn−2i+2 − 1

qi − 1
,

4. if n ≡ 2 mod 4, q ≡ 3 mod 4, and k ≤ n/2− 1

σn,k =
qn/2−k − 1

qn/2 − 1

k∏
i=1

qn−2i+2 − 1

qi − 1
,

5. else (k too large) σn,k = 0.
Proposition 3.3. Let m = bn/2c. For all k ≤ m, we have

σn,k = sn,k
qk(n−k)

qk(k+1)/2

gq2,m
gq2,m−k gq,k

,

where

sn,k =


1 if n is odd,
qn − qk
qn − 1

if n and q are even,

qn/2 + εqk

qn/2 + ε
if n is even and q is odd

with ε = −1 if n ≡ 2 mod 4 and q ≡ 3 mod 4 and ε = 1 otherwise.
Proof. If n is odd, we have n = 2m+ 1, and from Theorem 3.2

σn,k =
k∏
i=1

qn+1−2i − 1

qi − 1
=
qnk+k−2

∑k

i=1
i

qk(k+1)/2

k∏
i=1

1− 1/q2m+2−2i

1− 1/qi

=
qk(n−k)

qk(k+1)/2

gq2,m
gq2,m−k gq,k

.(9)

If n is even, we have n = 2m. From Theorem 3.2, we find that

σn,k =
sn,k
qk

k∏
i=1

qn−2i+2 − 1

qi − 1
=
sn,k
qk

σn+1,k,

and writing (9) for σn+1,k, we get

σn,k =
sn,k
qk

qk(n+1−k)

qk(k+1)/2

gq2,m
gq2,m−k gq,k

= sn,k
qk(n−k)

qk(k+1)/2

gq2,m
gq2,m−k gq,k

.

Proposition 3.4. For all k ≤ n/2,

1− 1

qn/2−k
≤ sn,k ≤ 1 +

1

qn/2−k
.

Proof. If k ≤ n/2, we have the following inequalities:

1− 1

qn/2−k
≤ qn/2 − qk

qn/2 − 1
≤ qn − qk

qn − 1
≤ 1 ≤ qn/2 + qk

qn/2 + 1
≤ 1 +

1

qn/2−k
,

which proves the result.
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4. Hull of a linear code.
Definition 4.1. The hull of a linear code is defined to be the intersection of the

code with its dual.
We will denote by H(C) = C ∩ C⊥ the hull of a code C.
Lemma 4.2. Let V be a w.s.d. [q;n, l] code. The number of [q;n, k] codes C such

that V ⊂ H(C) is equal to
[
n−2l
k−l
]
.

Proof. Let C be a [q;n, k] code. We have V ⊂ H(C) = C ∩ C⊥ if and only
if V ⊂ C ⊂ V ⊥, and from Proposition 2.2 the number of such codes is equal
to
[
n−2l
k−l
]
.

Lemma 4.3. Let C be a [q;n, k] code and let H(C) be its hull, the number of

w.s.d. [q;n, l] codes V such that V ⊂ H(C) is equal to
[
dimH(C)

l

]
.

Proof. The hull H(C) of C is w.s.d.; so are any of its subspaces. The number of

subspaces of dimension l of H(C) is
[
dimH(C)

l

]
, and thus we get the result.

Proposition 4.4. For all i, 0 ≤ i ≤ k, let An,k,i denote the number of [q;n, k]
codes whose hull has dimension i. We have, for all l, 0 ≤ l ≤ k,[

n− 2l

k − l

]
σn,l =

k∑
i=l

[
i

l

]
An,k,i.(10)

Proof. Let C be a [q;n, k] code. From Lemma 4.3, H(C) contains
[
dimH(C)

l

]
different w.s.d. [q;n, l] codes. From Lemma 4.2 any [q;n, l] w.s.d. code is contained
in the hull of

[
n−2l
k−l
]

different [q;n, k] codes. Finally, the number of w.s.d. [q;n, l] codes
is σn,l, and we get

σn,l =

 ∑
C⊂GF (q)n

dimC=k

[
dimH(C)

l

][n− 2l

k − l

]−1

,

which leads to the result since An,k,i is the number of [q;n, k] codes whose hull has
dimension i and

[
i
l

]
= 0 when i < l.

Theorem 4.5. Let n be a positive integer and let σn,i denote for all i the number
of w.s.d. [q;n, i] codes. For all k ≤ n/2 and all l ≤ k, the number of [q;n, k] codes
whose hull has dimension l is equal to

An,k,l =
k∑
i=l

[
n− 2i

k − i

][
i

l

]
(−1)i−lq(

i−l
2 )σn,i.(11)

Proof. For all l, 0 ≤ l ≤ k, let[
k

l

]
Vn,k,l =

[
n− 2k + 2l

l

]
σn,k−l and

[
k

l

]
Un,k,l = An,k,k−l.(12)

We write (10) with k − l instead of l, and we get for all l ≤ k[
k

l

]
Vn,k,l =

[
n− 2k + 2l

l

]
σn,k−l =

k∑
i=k−l

[
i

k − l

]
An,k,i =

l∑
j=0

[
k − j
k − l

][
k

j

]
Un,k,j ,

where j = k − i in the last summation, and thus for all l ≤ k, using (2b),

Vn,k,l =
l∑

j=0

[
k−j
k−l
][
k
j

][
k
l

] Un,k,j =
l∑

j=0

[
l

j

]
Un,k,j .(13)
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We now apply the inversion formula of Corollary 2.8 to (13), and we have for all l ≤ k

An,k,k−l[
k
l

] = Un,k,l =
l∑

j=0

[
l

j

]
(−1)l−jq(

l−j
2 )Vn,k,j

=
k∑

i=k−l

[
l

k − i

]
(−1)l−k+iq(

l−k+i
2 )

[
n−2i
k−i
]
σn,i[

k
i

] ,(14)

where i = k− j in the last summation. If we then replace k− l by l in (14) we obtain
for all l ≤ k

An,k,l =
k∑
i=l

[
n− 2i

k − i

][k−l
k−i
][
k
l

][
k
i

] (−1)i−lq(
i−l
2 )σn,i =

k∑
i=l

[
n− 2i

k − i

][
i

l

]
(−1)i−lq(

i−l
2 )σn,i.

The result above will be practically useful only when k − l is small. When the
number of terms in the summation (11) gets large, the formula becomes intractable.
Furthermore, it gives no precise idea of the asymptotic behavior of An,k,l when n and
k get large.

4.1. Asymptotic behavior. For all l, 0 ≤ l ≤ k, let

bn,k,l =

[
n−2k+2l

l

]
σn,k−lq

k(k+1)/2[
n
k

][
k
l

] and an,k,l =
An,k,k−lq

k(k+1)/2[
n
k

][
k
l

] .

Proposition 4.6. Let m = bn/2c. For all k ≤ m and for all l, 0 ≤ l ≤ k, we
have

bn,k,l = ql(l+1)/2 gq2,m gq,n−2k+2l gq,n−k
gq2,m−k+l gq,n−2k+l gq,n

sn,k−l.

Proof. From Proposition 3.3, we have

σn,k−l =
q(k−l)(n−k+l)

q(k−l)(k−l+1)/2

gq2,m
gq2,m−k+l gq,k−l

sn,k−l.

From (3) we have [
n− 2k + 2l

l

]
= ql(n−2k+l) gq,n−2k+2l

gq,l gq,n−2k+l

and [
n

k

][
k

l

]
= qk(n−k)+l(k−l)

gq,n gq,k
gq,k gq,n−k gq,l gq,k−l

,

and thus, using k(k + 1)/2− l(l + 1)/2 = (k − l)(k − l + 1)/2 + l(k − l),[
n−2k+2l

l

]
σn,k−l[

n
k

][
k
l

] =
ql(l+1)/2

qk(k+1)/2

gq2,m gq,n−2k+2l gq,n−k
gq2,m−k+l gq,n−2k+l gq,n

sn,k−l.

Proposition 4.7. For all l, 0 ≤ l ≤ k, we have

l∑
i=0

[
l

i

]
an,k,i = bn,k,l.(15)
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Proof. We have an,k,l = Un,k,lq
k(k+1)/2/

[
n
k

]
and bn,k,l = Vn,k,lq

k(k+1)/2/
[
n
k

]
, where

Un,k,l and Vn,k,l are defined by (12). Then (13) will give[
n
k

]
bn,k,l

qk(k+1)/2
=

l∑
i=0

[
l

i

] [n
k

]
an,k,i

qk(k+1)/2
.

Lemma 4.8. Let m = bn/2c. For all i ≤ m,

gq2,mgq,n−i
gq2,m−igq,n

≤ 1.

Proof. By the definition of the sequences gq,n and gq2,n, we have

gq2,mgq,n−i
gq2,m−igq,n

=

∏m
j=m−i+1 1− 1/q2j∏n
j=n−i+1 1− 1/qj

=
i∏

j=1

1− 1/q2m−2j+2

1− 1/qn−j+1
.

For all j, 1 ≤ j ≤ i, and whatever is the parity of n, we have 1 − 1/q2m−2j+2 ≤
1− 1/qn−j+1, which gives us the result.

Lemma 4.9. For all integers 0 ≤ u ≤ v and i ≥ 0, we have

gq,u+i

gq,u
≤ gq,v+i

gq,v
.

Proof. Since u ≤ v, we have 1−1/qu+j ≤ 1−1/qv+j for all j, 1 ≤ j ≤ i, and thus

gq,u+i

gq,u
=

i∏
j=1

(
1− 1

qu+j

)
≤

i∏
j=1

(
1− 1

qv+j

)
=
gq,v+i
gq,v

.

Lemma 4.10. Let m = bn/2c. For all i ≤ m,

gq2,∞ gq,n−2i

gq2,m−i gq,∞
≥ 1.

Proof. We have, by definition,

gq2,∞ gq,n−2i

gq2,m−i gq,∞
=

∏
j>m−i(1− 1/q2j)∏
j>n−2i(1− 1/qj)

=
∏
j>0

1− 1/q2m−2i+2j

1− 1/qn−2i+j
.

For all j > 0 and whatever is the parity of n, we have 1 − 1/q2m−2i+2j ≥
1− 1/qn−2i+j .

Proposition 4.11. Let δn,k,l = ql(l+1)/2 − bn,k,l. For all l, 0 ≤ l ≤ k, we have

−q
l(l−1)/2

qn/2−k
≤ δn,k,l ≤

q

q − 1

ql(l−1)/2

qn/2−k
.

Proof. Let m = bn/2c. We have

bn,k,l = ql(l+1)/2 gq2,m gq,n−2k+2l gq,n−k
gq2,m−k+l gq,n−2k+l gq,n

sn,k−l
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using Lemma 4.8 (with i = k − l), Lemma 4.9 (with u = n − 2k + l, v = n − k, and
i = l), Lemma 4.10 (with i = k − l), and the fact that gq,n and gq2,n are decreasing.
We then obtain

gq,∞
gq,n−2k+l

sn,k−l ≤
bn,k,l

ql(l+1)/2
≤ sn,k−l.

From Corollary 2.6 and Proposition 3.4, we get

L =

(
1− 1

(q − 1)qn−2k+l

)(
1− 1

qn/2−k+l

)
≤ bn,k,l
ql(l+1)/2

≤ 1 +
1

qn/2−k+l
.

Let’s consider the left-hand term L of this inequality

L ≥ 1− 1

(q − 1)qn−2k+l
− 1

qn/2−k+l

≥ 1− 1

(q − 1)qn/2−k+l
− 1

qn/2−k+l
= 1− q

(q − 1)qn/2−k+l
,

and finally, we have

1− q

(q − 1)qn/2−k+l
≤ bn,k,l
ql(l+1)/2

≤ 1 +
1

qn/2−k+l
,

which concludes the proof.
Proposition 4.12. Let (ul)l≥0 be the sequence solution of

∑l
i=0

[
l
i

]
ui = ql(l+1)/2

and let γn,k,l = ul − an,k,l. For all l, 0 ≤ l ≤ k, we have
∑l
i=0

[
l
i

]
γn,k,i = δn,k,l.

This proposition states that equation (15) can be cut into two pieces. We have
for all l, 0 ≤ l ≤ k,{

an,k,l = ul − γn,k,l
bn,k,l = ql(l+1)/2 − δn,k,l

and

{ ∑l
i=0

[
l
i

]
ui = ql(l+1)/2∑l

i=0

[
l
i

]
γn,k,i = δn,k,l

.

Using these equations, we will first find a closed expression for ul (Corollary 4.15) and
second see how γn,k,l and ul compare (Corollary 4.17).

4.1.1. First-order term. We now wish to solve the equation
∑l
i=0

[
l
i

]
ui =

ql(l+1)/2. By use of the inversion formula (8) we get

ul =
l∑
i=0

[
l

i

]
(−1)l−iq(

i+1
2 )+(l−i2 ).(16)

Lemma 4.13. For all l ≥ 0, we have

wl =
l∑
i=0

[
l

i

]
(−1)l−iq(

i+1
2 )+(l−i+1

2 ) =

{
0 if l is odd,
ul if l is even.

(17)

Proof. From
(
l−i+1

2

)
=
(
l−i
2

)
+ l − i and (16) we get

wl =
l∑
i=0

[
l

i

]
(−1)l−iq(

i+1
2 )+(l−i+1

2 ) = ul +
l−1∑
i=0

[
l

i

]
(−1)l−iq(

i+1
2 )+(l−i2 )(ql−i − 1),
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and from (2c) we have
[
l
i

]
(ql−i − 1) =

[
l−1
i

]
(ql − 1). Thus

wl = ul + (ql − 1)

l−1∑
i=0

[
l − 1

i

]
(−1)l−iq(

i+1
2 )+(l−i2 ) = ul − (ql − 1)wl−1.

Now wl = 0 when l is odd because the terms for i and l− i in the sum are the opposite
of each other. And when l is even, l−1 is odd and wl = ul− (ql−1)wl−1 = ul.

Proposition 4.14. Let ul be the sequence defined by

l∑
i=0

[
l

i

]
ui = ql(l+1)/2.

We have for all l ≥ 0

ul =
∏

0≤i≤l
i even

qi
∏

0≤i≤l
i odd

(qi − 1)

or, equivalently, u0 = 1, and for all l > 0

ul =

{
ul−1q

l if l is even,
ul−1(ql − 1) if l is odd.

Proof. We will prove the result by induction. Clearly u0 = 1. From (16) and (2e),
we have

ul =

l∑
i=0

([
l − 1

i− 1

]
ql−i +

[
l − 1

i

])
(−1)l−iq(

i+1
2 )+(l−i2 )

=

l∑
i=1

[
l − 1

i− 1

]
(−1)l−iql−iq(

i+1
2 )+(l−i2 ) +

l−1∑
i=0

[
l − 1

i

]
(−1)l−iq(

i+1
2 )+(l−i2 )

= ql
l−1∑
i=0

[
l − 1

i

]
(−1)l−i−1q(

i+2
2 )−(i+1)+(l−i−1

2 )

︸ ︷︷ ︸
=ul−1

−
l−1∑
i=0

[
l − 1

i

]
(−1)l−i−1q(

i+1
2 )+(l−i2 )

︸ ︷︷ ︸
=wl−1

.

Thus we have ul = qlul−1−wl−1, where wl is defined by (17). Lemma 4.13 then gives
ul = qlul−1 if l is even and ul = (ql − 1)ul−1 if l is odd.

Corollary 4.15. For all l ≥ 0, we have

ul = ql(l+1)/2 gq,l
gq2,bl/2c

.

Proof. From Proposition 4.14, we have

ul = ql(l+1)/2
∏

0≤i≤l
i odd

(
1− 1

qi

)
= ql(l+1)/2

∏
0≤i≤l

(
1− 1

qi

) ∏
0≤i≤bl/2c

(
1− 1

q2i

)−1

,

which means exactly ul = ql(l+1)/2gq,l/gq2,bl/2c.



ON THE DIMENSION OF THE HULL 291

4.1.2. Second-order term.
Proposition 4.16. For all l, 0 ≤ l ≤ k, we have

|γn,k,l| ≤ (l + 1)
q

q − 1

ql(l−1)/2

gq,bl/2cqn/2−k
.

Proof. The inversion formula gives

γn,k,l =
l∑
i=0

[
l

i

]
(−1)l−iq(

l−i
2 )δn,k,i,

|γn,k,l| ≤
l∑
i=0

[
l

i

]
q(

l−i
2 )|δn,k,i| ≤

q

(q − 1)qn/2−k

l∑
i=0

[
l

i

]
q(

l−i
2 )+(i2),

and since
(
l−i
2

)
+
(
i
2

)
=
(
l
2

)
− i(l − i), we have

|γn,k,l| ≤
q

q − 1

q(
l
2)

qn/2−k

l∑
i=0

[
l

i

]
1

qi(l−i)
=

q

q − 1

q(
l
2)

qn/2−k

l∑
i=0

gq,l
gq,i gq,l−i

.

Finally, we have gq,l ≤ gq,i and gq,l ≤ gq,l−i. Thus gq,l/(gq,igq,l−i) ≤ min(1/gq,i, 1/
gq,l−i) ≤ 1/gq,bl/2c and

|γn,k,l| ≤
q

q − 1

q(
l
2)

qn/2−k
l + 1

gq,bl/2c
.

Corollary 4.17. There exists a constant K depending only on q such that for
all l, 0 ≤ l ≤ k,

|γn,k,l|
ul

≤ K k

qn/2−k+l
.

Proof. From Proposition 4.16 and Corollary 4.15, we can easily find such a con-
stant.

4.2. Dimension of the hull.
Theorem 4.18. Let n be a positive integer. For all k ≤ n/2 and all l ≤ k, the

number of [q;n, k] codes whose hull has dimension l is equal to

An,k,l =

[
n

k

]
1

ql(l+1)/2

gq,k
gq2,b(k−l)/2cgq,l

(
1 +O

(
k

qn/2−l

))
.

Proof. By definition, we have An,k,k−lq
k(k+1)/2 =

[
n
k

][
k
l

]
an,k,l. We have an,k,k−l =

uk−l + γn,k,k−l, and thus from Corollary 4.17 we get

An,k,lq
k(k+1)/2 =

[
n

k

][
k

l

]
uk−l

(
1 +O

(
k

qn/2−l

))
.

Finally, from Corollary 4.15 and (3) we obtain the result.
This result gives an accurate estimate as long as l is not close to n/2. This will

always be the case if n−2k is large. If n−2k is small and l is close to k, then formula
(11) of Theorem 4.5 will apply.
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The fraction An,k,l/
[
n
k

]
represents the proportion of [q;n, k] codes whose hull has

a given dimension l. The next theorem states that this ratio is independent of n and
k when these numbers grow.

Theorem 4.19. Let An,k,l denote the number of [q;n, k] codes whose hull has
dimension l. For all l, the proportion An,k,l/

[
n
k

]
of such codes is convergent when n

and k go to infinity. We will denote by Rl this limit. We have for all l ≥ 0,

Rl =
R0

gq,lql(l+1)/2
=

R0

(q − 1)(q2 − 1) . . . (ql − 1)
,where R0 =

gq,∞
gq2,∞

.

Proof. It is immediate from the application of Theorem 4.18.
Corollary 4.20. The average dimension of the hull of a q-ary linear code is

asymptotically equal to ∑
l≥1

lRl =
∑
i≥1

1

qi + 1
.

Proof. Applying (5) with t = 1/q and u = tz, we obtain

∏
i≥0

(
1 +

z

qi+1

)
=
∑
l≥0

zl

(q − 1)(q2 − 1) . . . (ql − 1)
,

from which we obtain the series

R(z) =
∑
l≥0

Rlz
l = R0

∏
i≥1

(
1 +

z

qi

)
.

(Note that when z = 1 we have

R(1) =
∑
l≥0

Rl = R0

∏
i≥1

(
1 +

1

qi

)
= R0

∏
i≥1(1− 1/q2i)∏
i≥1(1− 1/qi)

= R0
gq2,∞
gq,∞

= 1,

which was predictable since the sum of the ratios Rl for all l must be one.) The
average dimension of the hull can be obtained by differentiation of the series R(z),

dR(z)

dz
=
∑
l≥1

lRlz
l−1 =

∑
i≥1

1

qi
R(z)

1 + z/qi
= R(z)

∑
i≥1

1

qi + z
,

and thus, for z = 1, ∑
l≥1

lRl =
∑
i≥1

1

qi + 1
.

5. Conclusion. We proved that the expected dimension of the hull of a random
[q;n, k] code is a constant, given by Corollary 4.20, when n and k go to infinity.
Furthermore, this constant is accurate even for relatively small values of n and k. For
instance, in the binary case with n = 40 and k = 20 the average dimension of the hull
computed by the asymptotic formula has a relative difference of 10−6 with the exact
value computed by (11). This figure drops to 10−15 when n = 2k = 100.

A basis of H(C) = C ∩ C⊥ can be obtained by computing the null space of the
matrix whose columns are a basis of C followed by a basis of C⊥ (see [11, p. 199]).
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Thus, computing the hull of an [n, k] linear code is equivalent to a Gaussian elimination
on an n× n matrix.

The weight distribution of the hull is an invariant in the sense that it will not vary
when the support of the code is permuted. This invariant will be, in general, easy to
compute, first because the hull will have a small dimension and second because a basis
of the hull is easy to obtain. Furthermore, this invariant has a good chance, at least for
small values of q, to be different for two nonequivalent codes. This fact is used in [10]
to obtain an algorithm for finding the permutation between two equivalent random
binary linear codes, which is efficient even for codes of length larger than 1000. This
algorithm needs an invariant that must be computed many times for many different
codes and would not have been tractable with the usual invariants (minimum distance,
weight distribution . . . ).
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A MIN–MAX THEOREM FOR BISUBMODULAR POLYHEDRA∗
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Abstract. For a family F ⊆ 3E closed with respect to the reduced union and intersection
and for a bisubmodular function f : F → R with (∅, ∅) ∈ F and f(∅, ∅) = 0, the bisubmodular
polyhedron associated with (F , f) is given by

P∗(f) = {x |x ∈ RE ∀(X,Y ) ∈ F : x(X,Y ) ≤ f(X,Y )},

where x(X,Y ) =
∑
e∈X x(e) −

∑
e∈Y x(e). We show a min–max relation that characterizes the

distance between P∗(f) and a given point x0 with respect to the l1 norm: for any vector x0 ∈ RE ,

min

{∑
e∈E
|x(e)− x0(e)|

∣∣∣∣∣ x ∈ P∗(f)

}
= max{x0(X,Y )− f(X,Y ) | (X,Y ) ∈ F},

where if f is integer valued and x0 is integral, then the minimum is attained by an integral x ∈ P∗(f).
This is in a sense equivalent to but is in a nicer symmetric form than a min–max theorem of
Cunningham and Green-Krótki [Combinatorica, 11 (1991), pp. 219–230] shown to be associated with
b-matching degree-sequence polyhedra and generalizes the well-known min–max theorem concerning
a vector reduction of polymatroids and submodular systems. We also give an application of the
theorem to a separable convex optimization problem on bisubmodular polyhedra.

Key words. bisubmodular functions, bisubmodular polyhedra, min–max theorem, submodular
functions

AMS subject classifications. 52B40, 90C27, 52A41

PII. S0895480194264344

1. Introduction. Bisubmodular functions have recently been investigated as a
generalization of ordinary submodular functions (see [2], [7], [12], [14], [15], and [16]).
A characterization of b-matching degree-sequence polyhedra is nicely given by means
of bisubmodular functions in [8].

A bisubmodular function is a generalization of an ordinary submodular function,
and some of the results on submodular functions can naturally be generalized to those
on bisubmodular functions. In this paper we show a fundamental min–max theorem
for bisubmodular polyhedra associated with bisubmodular functions with respect to
the l1 norm. The form of this min–max theorem is not straightforwardly anticipated
from those of ordinary submodular functions. The theorem is in a sense equivalent to
but is in a nicer symmetric form than a min–max theorem given by Cunningham and
Green-Krótki [8] associated with b-matching degree-sequence polyhedra and general-
izes the well-known min–max theorem concerning a vector reduction of polymatroids
and submodular systems [11], [12].

In section 2 we give some definitions and preliminaries, which generalize those for
polymatroids and submodular systems. We show a min–max theorem for bisubmodu-
lar polyhedra in section 3. Section 4 furnishes some greedy-type monotone algorithms
for solving the minimization problem associated with the min–max theorem. In sec-
tion 5 we also show an application of the min–max theorem to a separable convex
optimization problem over a bisubmodular polyhedron (cf. [3], [4]).
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2. Definitions and preliminaries. For a finite nonempty set E define

3E = {(X,Y ) |X,Y ⊆ E,X ∩ Y = ∅}.(1)

Note that each element (X,Y ) ∈ 3E can be made to correspond one-to-one to its
characteristic vector χ(X,Y ) ∈ {0,±1}E , where

χ(X,Y )(e) =

 1 if e ∈ X,
−1 if e ∈ Y ,

0 otherwise
(2)

for each e ∈ E. We call an element of 3E a signed subset of E. For any (Xi, Yi) ∈ 3E

(i = 1, 2) we write (X1, Y1) v (X2, Y2) if X1 ⊆ X2 and Y1 ⊆ Y2. Also, we write
(X1, Y1) < (X2, Y2) if (X1, Y1) v (X2, Y2) and (X1, Y1) 6= (X2, Y2). The binary
relation v is a partial order on 3E .

We consider two binary operations—t (reduced union) and u (intersection)—on
3E , defined as follows. For any (Xi, Yi) ∈ 3E (i = 1, 2),

(X1, Y1) t (X2, Y2) = ((X1 ∪X2)− (Y1 ∪ Y2), (Y1 ∪ Y2)− (X1 ∪X2)),(3)

(X1, Y1) u (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2).(4)

Let F be a family of signed subsets of E that is closed with respect to the reduced
union t and the intersection u. We call such a family F a {t,u}-closed family (or
a signed ring family). A function f : F → R is a bisubmodular function if for each
(Xi, Yi) ∈ F (i = 1, 2) we have

f(X1, Y1) + f(X2, Y2) ≥ f((X1, Y1) t (X2, Y2)) + f((X1, Y1) u (X2, Y2)).(5)

In the following we assume that (∅, ∅) ∈ F and f(∅, ∅) = 0. Then the pair (F , f) is
called a bisubmodular system on E (see [2]). When F = 3E , a bisubmodular system
is called a polypseudomatroid [7], [12] (also see [5], [6], [9], [10], [14], [15], and [16] for
related concepts).

It should be noted that the argument throughout this paper is valid when R is
any totally ordered additive group such as the sets of reals, rationals, and integers.

The bisubmodular polyhedron P∗(f) associated with the bisubmodular system
(F , f) on E is given by

P∗(f) = {x |x ∈ RE ∀(X,Y ) ∈ F : x(X,Y ) ≤ f(X,Y )}(6)

(see [6]), where for any X ⊆ E x(X) =
∑
e∈X x(e), x(∅) = 0, and for any (X,Y ) ∈ 3E ,

x(X,Y ) = x(X)− x(Y ).(7)

It should be noted that we always have P∗(f) 6= ∅ (cf. [12]).
For any x ∈ P∗(f) and any e ∈ E, if we have

∀α > 0 : x+ αχe /∈ P∗(f),(8)

we say that x is positively saturated at e, where χe is a unit vector in {0, 1}E defined
as χe(e) = 1 and χe(e

′) = 0 for e′ ∈ E − {e}. Similarly, we say that x is negatively
saturated at e if

∀α > 0 : x− αχe /∈ P∗(f).(9)
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Denote by sat(+)(x) (or sat(−)(x)) the set of elements of E at which x is positively
(or negatively) saturated. Note that we may have sat(+)(x) ∩ sat(−)(x) 6= ∅. We
call sat(+) and sat(−) the signed saturation functions, which generalize the saturation
function for polymatroids and submodular systems (see [12]).

For any e ∈ E − sat(+)(x) define

ĉ(x,+e) = max{α |α ∈ R, x+ αχe ∈ P∗(f)}.(10)

Also, for any e ∈ E − sat(−)(x) define

ĉ(x,−e) = max{α |α ∈ R, x− αχe ∈ P∗(f)}.(11)

Note that the maximum in (10) or (11) may be +∞. We call ĉ(x,±e) the signed
saturation capacities.

Lemma 2.1. Suppose x ∈ P∗(f). For any e ∈ E − sat(+)(x),

ĉ(x,+e) = min{f(X,Y )− x(X,Y ) | e ∈ X, (X,Y ) ∈ F}.(12)

Also, for any e ∈ E − sat(−)(x),

ĉ(x,−e) = min{f(X,Y )− x(X,Y ) | e ∈ Y, (X,Y ) ∈ F}.(13)

Here the minimum over the empty set should be regarded as +∞.
Proof. The proof is easy.
It may be noted that if we define ĉ(x,±e) = 0 for e ∈ sat(±)(x), then (12) and

(13) hold for any e ∈ E (similar comments may apply to signed exchange capacities
(22)∼(25) given later).

For any x ∈ P∗(f) let F(x) be the collection of tight signed sets for x in P∗(f);
i.e.,

F(x) = {(X,Y ) |x(X,Y ) = f(X,Y )}.(14)

We can easily show that F(x) is closed with respect to t and u (see [13], [6] for the
case when F = 3E). Note that we have e ∈ sat(+)(x) (or e ∈ sat(−)(x)) if and only
if there exists some (X,Y ) ∈ F(x) such that e ∈ X (or e ∈ Y ). Therefore, for any
e ∈ sat(+)(x) define

dep(x,+e) = u{(X,Y ) | e ∈ X, (X,Y ) ∈ F(x)},(15)

and for any e ∈ sat(−)(x) define

dep(x,−e) = u{(X,Y ) | e ∈ Y, (X,Y ) ∈ F(x)}.(16)

We call dep the signed dependence function, which generalizes the dependence function
for polymatroids and submodular systems (see [12]).

For any signed subset W = (X,Y ) of E we define

W+ = X, W− = Y.(17)

We can easily see that for any e ∈ sat(+)(x),

dep(x,+e)+ = {e′ | e′ ∈ E, ∃α > 0 : x+ α(χe − χe′) ∈ P∗(f)},(18)
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dep(x,+e)− = {e′ | e′ ∈ E, ∃α > 0 : x+ α(χe + χe′) ∈ P∗(f)}.(19)

Similarly, for any e ∈ sat(−)(x),

dep(x,−e)+ = {e′ | e′ ∈ E, ∃α > 0 : x+ α(−χe − χe′) ∈ P∗(f)},(20)

dep(x,−e)− = {e′ | e′ ∈ E, ∃α > 0 : x+ α(−χe + χe′) ∈ P∗(f)}.(21)

For any (Xi, Yi) ∈ 3E (i = 1, 2) we say that (X1, Y1) is compliant with (X2, Y2) if
X1 ∩ Y2 = ∅ and Y1 ∩X2 = ∅.

Suppose e ∈ sat(+)(x). Then, for any (X,Y ) ∈ F(x) with e /∈ Y , (X,Y ) must
be compliant with dep(x,+e) due to the minimality of dep(x,+e) since (dep(x,+e)t
(X,Y )) u dep(x,+e) ∈ F(x). Similarly, for any (X,Y ) ∈ F(x) with e /∈ X, (X,Y ) is
compliant with dep(x,−e) if it is defined.

Also define the following:
(i) for any e′ ∈ dep(x,+e)+ with e′ 6= e,

c̃(x,+e,−e′) = max{α |α ∈ R, x+ α(χe − χe′) ∈ P∗(f)},(22)

(ii) for any e′ ∈ dep(x,+e)−,

c̃(x,+e,+e′) = max{α |α ∈ R, x+ α(χe + χe′) ∈ P∗(f)},(23)

(iii) for any e′ ∈ dep(x,−e)− with e′ 6= e,

c̃(x,−e,+e′) = max{α |α ∈ R, x+ α(−χe + χe′) ∈ P∗(f)},(24)

(iv) for any e′ ∈ dep(x,−e)+,

c̃(x,−e,−e′) = max{α |α ∈ R, x+ α(−χe − χe′) ∈ P∗(f)},(25)

where the values of the right-hand sides are positive and may be +∞. We call
c̃(x,±e,±e′) the signed exchange capacities.

Lemma 2.2. For any x ∈ P∗(f) we have the following:
(i) for any e′ ∈ dep(x,+e)+ with e′ 6= e,

c̃(x,+e,−e′) = min{f(X,Y )− x(X,Y ) | (X,Y ) ∈ F ,(26)

(e ∈ X, e′ /∈ X ∪ Y ) or (e /∈ X ∪ Y, e′ ∈ Y )},

(ii) for any e′ ∈ dep(x,+e)−,

c̃(x,+e,+e′) = min{f(X,Y )− x(X,Y ) | (X,Y ) ∈ F ,(27)

(e ∈ X, e′ /∈ X ∪ Y ) or (e /∈ X ∪ Y, e′ ∈ Y )},

(iii) for any e′ ∈ dep(x,−e)− with e′ 6= e,

c̃(x,−e,+e′) = min{f(X,Y )− x(X,Y ) | (X,Y ) ∈ F ,(28)

(e ∈ Y, e′ /∈ X ∪ Y ) or (e /∈ X ∪ Y, e′ ∈ X)},

(iv) for any e′ ∈ dep(x,−e)+,

c̃(x,−e,−e′) = min{f(X,Y )− x(X,Y ) | (X,Y ) ∈ F ,(29)

(e ∈ Y, e′ /∈ X ∪ Y ) or (e /∈ X ∪ Y, e′ ∈ X)},
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where the minimum over the empty set should be regarded as +∞.
Proof. We show (i) only (the proofs of (ii)∼(iv) are similar).
Note that for yα ≡ x+α(χe−χe′) and (X,Y ) ∈ F the value f(X,Y )− yα(X,Y )

decreases as α increases if and only if (1) e ∈ X and e′ /∈ X or (2) e /∈ Y and e′ ∈ Y .
Moreover, for any (X,Y ) ∈ F such that e ∈ X and e′ ∈ Y we have

f(X,Y )− x(X,Y ) = f(X,Y )− x(X,Y ) + f(dep(x,+e))− x(dep(x,+e))(30)

≥ f((X,Y ) t dep(x,+e))− x((X,Y ) t dep(x,+e))

+f((X,Y ) u dep(x,+e))− x((X,Y ) u dep(x,+e)),

where e ∈ ((X,Y )tdep(x,+e))+, e′ /∈ ((X,Y )tdep(x,+e))+∪((X,Y )tdep(x,+e))−,
e ∈ ((X,Y )udep(x,+e))+, and e′ /∈ ((X,Y )udep(x,+e))+ ∪ ((X,Y )udep(x,+e))−.
We see from (30) that the value of its left-hand side is at least twice the minimum
value of (26). Hence, the maximum value of α in (22) is equal to the minimum value
of f(X,Y )−x(X,Y ) for (X,Y ) ∈ F such that (1) e ∈ X, e′ /∈ X∪Y or (2) e /∈ X∪Y ,
e′ ∈ Y .

Remark 2.1. Consider (i) in Lemma 2.2. For any e ∈ sat(+)(x) and e′ ∈
dep(x,+e)+ with e 6= e′ put

α = c̃(x,+e,−e′),(31)

y = x+ α(χe − χe′),(32)

where we assume α < +∞. We have e ∈ sat(+)(y) since dep(x,+e) ∈ F(y). Also,
there exists a signed set (X,Y ) ∈ F(y) such that (1) e ∈ X, e′ /∈ X ∪ Y or (2)
e /∈ X ∪ Y , e′ ∈ Y . In case (1),

dep(x,+e) u (X,Y ) < dep(x,+e)(33)

and in case (2),

dep(x,+e) u (dep(x,+e) t (X,Y )) < dep(x,+e).(34)

Therefore, by the minimality of dep(y,+e) we have

dep(y,+e) < dep(x,+e),(35)

e′ /∈ dep(y,+e)+;(36)

i.e., after the full exchanging of (32) dep(x,+e) strictly decreases with respect to
the partial order v and e′ is removed from dep(x,+e). We can show similar facts
concerning the full exchangings in (ii)∼(iv) in Lemma 2.2.

For a bisubmodular system (F , f) on E and a signed set (X̂, Ŷ ) ∈ F define

F (X̂,Ŷ ) ⊆ F and f (X̂,Ŷ ) : F (X̂,Ŷ ) → R by

F (X̂,Ŷ ) = {(X,Y ) | (X,Y ) ∈ F , (X,Y ) v (X̂, Ŷ )},(37)

f (X̂,Ŷ )(X,Y ) = f(X,Y ) ((X,Y ) ∈ F (X̂,Ŷ )).(38)
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We call (F (X̂,Ŷ ), f (X̂,Ŷ )), F (X̂,Ŷ ), and f (X̂,Ŷ ) the restrictions of (F , f), F , and f to
(X̂, Ŷ ), respectively.

Any (S, T ) ∈ 3E with S ∪T = E is called an orthant. For a bisubmodular system
(F , f) on E, if we have an orthant (S, T ) in F , the base polyhedron in the orthant
(S, T ) is defined by

B(S,T )(f) = {x |x ∈ RE , x ∈ P∗(f), x(S, T ) = f(S, T )}.(39)

The polyhedron B(S,T )(f) can also be expressed as

(40)

B(S,T )(f) = {x |x ∈ RE ∀(X,Y ) ∈ F (S,T ) : x(X,Y ) ≤ f(X,Y ), x(S, T ) = f(S, T )}

(see [12]).

3. A min–max theorem. Consider a bisubmodular system (F , f) on E. We
show the following min–max theorem for bisubmodular polyhedra with respect to the
l1 norm.

Theorem 3.1. For any vector x0 ∈ RE,

min

{∑
e∈E
|x(e)− x0(e)|

∣∣∣∣∣ x ∈ P∗(f)

}
= max{x0(X,Y )− f(X,Y ) | (X,Y ) ∈ F}.

(41)
Moreover, if f is integer valued and x0 is integral, then there exists an integral x ∈
P∗(f) that attains the minimum in the left-hand side of (41).

Proof. For any x ∈ P∗(f) and any (X,Y ) ∈ F we have∑
e∈E
|x(e)− x0(e)| ≥

∑
e∈X
|x(e)− x0(e)|+

∑
e∈Y
|x(e)− x0(e)|(42)

≥ x0(X)− x(X) + x(Y )− x0(Y )

≥ x0(X,Y )− f(X,Y ).

We show that (42) holds with equalities for some x ∈ P∗(f) and (X,Y ) ∈ F , which
will complete the proof of the former part of the theorem.

Let x̂ be a vector in P∗(f) that attains the minimum in the left-hand side of (41).
Define

A+ = {e | e ∈ E, x̂(e) < x0(e)},(43)

A− = {e | e ∈ E, x̂(e) > x0(e)},(44)

A0 = {e | e ∈ E, x̂(e) = x0(e)}.(45)

Then it follows from the optimality of x̂ that

A+ ⊆ sat(+)(x̂), A− ⊆ sat(−)(x̂),(46)

and we have

dep(x̂,+e)+ ⊆ A+ ∪A0 (e ∈ A+),(47)
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dep(x̂,+e)− ⊆ A− ∪A0 (e ∈ A+),(48)

dep(x̂,−e)− ⊆ A− ∪A0 (e ∈ A−),(49)

dep(x̂,−e)+ ⊆ A+ ∪A0 (e ∈ A−).(50)

From (43)∼(50), defining

(X̂, Ŷ ) = (t{dep(x̂,+e) | e ∈ A+}) t (t{dep(x̂,−e) | e ∈ A−}),(51)

we have

(X̂, Ŷ ) w (A+, A−),(52)

(X̂, Ŷ ) ∈ F(x̂)(53)

since F(x̂) is {t,u}-closed. Consequently,∑
e∈E
|x̂(e)− x0(e)| = x0(X̂)− x̂(X̂) + x̂(Ŷ )− x0(Ŷ )(54)

= x0(X̂, Ŷ )− f(X̂, Ŷ ).

This completes the proof of the former part of the theorem.
For the latter part of the theorem concerning the integrality property, note that

if f is integer valued and x0 is integral, then the bisubmodular polyhedron P∗(f) is
integral (cf. [7], [13], [6], [12]), so that the above argument is also valid if we consider
R as the set Z of integers.

It should be noted that the left-hand side of (41) is equal to the distance between
P∗(f) and x0 with respect to the l1 norm.

From the proof of Theorem 3.1 we also have the following theorem.
Theorem 3.2. A vector x̂ ∈ P∗(f) attains the minimum of the left-hand side

of (41) if and only if x̂ satisfies (46)∼(50), where A+, A−, and A0 are, respectively,
defined by (43)∼(45).

Proof. A proof of the “only if ” part is included in that of Theorem 3.1. Moreover,
following the proof of Theorem 3.1 from (51) until (54), we actually have shown the
“if ” part of the present theorem.

Remark 3.1. We can easily see that the condition of (46)∼(50) is equivalent to
the existence of a signed set (X,Y ) ∈ F(x̂) such that

x̂(e) ≤ x0(e) (e ∈ X),(55)

x̂(e) ≥ x0(e) (e ∈ Y ),(56)

x̂(e) = x0(e) (e ∈ E − (X ∪ Y )).(57)

We also have the following theorem.
Theorem 3.3. Let x̂ be any minimizer of the left-hand side of (41) and (X̂, Ŷ )

be any maximizer of the right-hand side of (41). Then for A+ and A− defined by (43)
and (44), respectively, we have (52) and (53).

Proof. For x = x̂ and (X,Y ) = (X̂, Ŷ ) (42) holds with equalities, which implies
(52) and (53).
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Corollary 3.4. Let x̂ and (X̂, Ŷ ) be those appearing in Theorem 3.3. Suppose
(X̂, Ŷ ) 6= (∅, ∅). Then we have

x̂(X̂,Ŷ ) ∈ B(X̂,Ŷ )(f
(X̂,Ŷ )),(58)

where x̂(X̂,Ŷ ) is the restriction of vector x̂ to X̂ ∪ Ŷ , f (X̂,Ŷ ) is the restriction of f to

(X̂, Ŷ ), and B(X̂,Ŷ )(f
(X̂,Ŷ )) is the base polyhedron of (F (X̂,Ŷ ), f (X̂,Ŷ )) in the orthant

(X̂, Ŷ ).
Proof. The present corollary easily follows from Theorem 3.3 (recall expressions

(39) and (40) for the base polyhedron in an orthant).
Theorem 3.3 and Corollary 3.4 will be used in the following sections.
Using Theorem 3.1, we can show a theorem of Cunningham and Green-Krótki [8]

given below. (Here we generalize it to the case when possibly F 6= 3E . Also note that
the integrality property is not explicitly stated in [8].)

Theorem 3.5 (Cunningham and Green-Krótki [8]). Let x0 be a vector in RE.
If there is a vector x ∈ P∗(f) such that x ≤ x0, then

(59)

max{x(E) |x ≤ x0, x ∈ P∗(f)} = min{f(X,Y ) + x0(Y ) + x0(E −X) | (X,Y ) ∈ F}.

Moreover, if f is integer valued and x0 is integral, then the maximum in the left-hand
side of (59) is attained by an integral x.

The following lemma is essential in regard to the relationship between Theorem 3.1
and the theorem of Cunningham and Green-Krótki.

Lemma 3.6. Let x0 be a vector in RE and suppose that there is a vector x ∈ P∗(f)
such that x ≤ x0. Then we have

min{x0(E)−x(E) |x ≤ x0, x ∈ P∗(f)} = min

{∑
e∈E
|x0(e)− x(e)|

∣∣∣∣∣x ∈ P∗(f)

}
,(60)

and any vector x̂ that attains the minimum of the left-hand side of (60) also attains
the minimum of the right-hand side of (60). Moreover, if f is integer valued and x0

is integral, then there exists an integral such x̂.
Proof. Let x̂ be a minimizer of the left-hand side of (60). Then we can easily see

that (46)∼(50) hold. It follows from Theorem 3.2 that x̂ also attains the minimum of
the right-hand side of (60) and that both sides of (60) have the same value. Since the
above argument is also valid if we consider it within the set Z of integers, the latter
integrality part of the present lemma follows.

It should be noted that in the above proof of the integrality property in Lemma
3.6 we have implicitly used the fact that if f is integer valued, x0 is integral, and there
exists a vector x ∈ P∗(f) such that x ≤ x0, then there exists an integral such vector
x. This fact can be shown by the integrality property of P∗(f) and an algorithm
proposed in section 4 (unfortunately, this integrality property was not proved in [8]).

Now Theorem 3.5 can be shown as follows. Note that (59) is equivalent to the
following:

(61)

min{x0(E)− x(E) |x ≤ x0, x ∈ P∗(f)} = max{x0(X,Y )− f(X,Y ) | (X,Y ) ∈ F}.

We see from Lemma 3.6 and Theorem 3.1 that (61) together with its integrality
property holds.



302 SATORU FUJISHIGE

Consequently, Theorem 3.1 generalizes the well-known min–max relation arising
from a vector reduction of polymatroids and submodular systems [11], [12].

Conversely, Theorem 3.1 can also be shown by using Theorem 3.5. For a subset
T of E define the partial order ≤T among vectors in RE by x≤T y if and only if
x(e) ≤ y(e) (e ∈ E − T ) and x(e) ≥ y(e) (e ∈ T ). Then reflected versions of
Theorem 3.5 and Lemma 3.6 are, respectively, given as follows. Let T be a subset of
E and x0 be a vector in RE .

Theorem 3.7. If there is a vector x ∈ P∗(f) such that x≤T x0, then

max{x(E − T, T ) |x≤T x0, x ∈ P∗(f)}(62)

= min{f(X,Y )− x0(X,Y ) + x0(E − T, T ) | (X,Y ) ∈ F}.

Moreover, if f and x0 are integral, then the maximum in the left-hand side of (62) is
attained by an integral x.

Lemma 3.8. If there is a vector x ∈ P∗(f) such that x≤T x0, then

min{x0(E − T, T )− x(E − T, T ) |x≤T x0, x ∈ P∗(f)}(63)

= min

{∑
e∈E
|x0(e)− x(e)|

∣∣∣∣∣ x ∈ P∗(f)

}
,

and any vector x̂ that attains the minimum of the left-hand side of (63) also attains
the minimum of the right-hand side of (63). Moreover, if f and x0 are integral, then
there exists an integral such x̂.

We prove Theorem 3.1 by using Theorem 3.7 and Lemma 3.8 as follows. Let x1

be a vector that attains the minimum of the left-hand side of (41). Put T = {e | e ∈
E, x1(e) > x0(e)}. Then the assumptions of Lemma 3.8 and Theorem 3.7 hold for
this T . Note that relation (62) can be rewritten as

min{x0(E − T, T )− x(E − T, T ) |x≤T x0, x ∈ P∗(f)}(64)

= max{x0(X,Y )− f(X,Y ) | (X,Y ) ∈ F}.

Therefore, from Lemma 3.8 we have Theorem 3.1.
Furthermore, we show the following min–max relation, which is closely related to

Theorems 3.1 and 3.5.
Theorem 3.9. For any vector x0 ∈ RE,

(65)

min

{∑
e∈E

max{0, x(e)− x0(e)}
∣∣∣∣∣ x ∈ P∗(f)

}
= max{x0(∅, Y )− f(∅, Y ) | (∅, Y ) ∈ F}.

Moreover, if f and x0 are integral, then there exists an integral x in P∗(f) that attains
the minimum of the left-hand side of (65).

Proof. For any x ∈ P∗(f) and (∅, Y ) ∈ F ,∑
e∈E

max{0, x(e)− x0(e)} ≥ x(Y )− x0(Y ) = x0(∅, Y )− x(∅, Y )(66)

≥ x0(∅, Y )− f(∅, Y ).

On the other hand, let x̂ be a vector that attains the minimum of the left-hand
side of (65). Then for A+, A−, and A0 defined by (43)∼(45) we have

A− ⊆ sat(−)(x̂)(67)
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and

dep(x̂,−e)− ⊆ A− ∪A0 (e ∈ A−),(68)

dep(x̂,−e)+ = ∅ (e ∈ A−)(69)

due to the optimality of x̂. Since dep(x̂,−e) (e ∈ A−) are compliant with each other,
we have from (68) and (69) that

(∅, A−) v (∅, Ŷ ) ≡ t{dep(x̂,−e) | e ∈ A−} v (∅, A0 ∪A−).(70)

It follows from (70) that

x̂(∅, Ŷ ) = f(∅, Ŷ ),(71)

x̂(e) ≤ x0(e) (e ∈ E − Ŷ ).(72)

Hence, (66) with x = x̂ and Y = Ŷ holds with equality and we thus have (65).
Moreover, the integrality property holds since when f and x0 are integral, the above
argument is valid if we restrict R to the set Z of integers.

We can also have a reflected version of Theorem 3.9.

4. Algorithms. Given any vector x0 ∈ RE , consider the following problem that
appeared in the left-hand side of (41):

(P ) Minimize
∑
e∈E
|x(e)− x0(e)|

subject to x ∈ P∗(f).
(73)

We propose an algorithm for solving Problem (P ) under the assumption that we can
easily calculate signed saturation capacities ĉ(x,±e) and signed exchange capacities
c̃(x,±e,±e′). When F = 3E , an extreme point of P∗(f) as an initial vector x in Step
0 is obtained by the greedy algorithm (see [6], [7], [10], [12], [13], [14]). We can also
easily find an initial vector x in P∗(f) for a general {t,u}-closed family F (see [1]).

An Algorithm for Problem (P ).
Step 0: Find an initial vector x in P∗(f).
Step 1: For each e ∈ E such that x(e) < x0(e) do the following (1-1)∼(1-3):
(1-1) If x(e) < x0(e) and e /∈ sat(+)(x), then put

α̂← min{x0(e)− x(e), ĉ(x,+e)},(74)

x← x+ α̂χe.(75)

(1-2) While x(e) < x0(e) and there exists an element e′ ∈ dep(x,+e)− − {e} with
x(e′) < x0(e′), choose one such e′ and put

β̂ ← min{x0(e)− x(e), x0(e′)− x(e′), c̃(x,+e,+e′)},(76)

x← x+ β̂(χe + χe′).(77)

(1-3) While x(e) < x0(e) and there exists an element e′ ∈ dep(x,+e)+ with x(e′) >
x0(e′), choose one such e′ and put

β̂ ← min{x0(e)− x(e), x(e′)− x0(e′), c̃(x,+e,−e′)},(78)

x← x+ β̂(χe − χe′).(79)
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Step 2: For each e ∈ E such that x(e) > x0(e) do the following (2-1) and (2-2):
(2-1) If x(e) > x0(e) and e /∈ sat(−)(x), then put

α̂← min{x(e)− x0(e), ĉ(x,−e)},(80)

x← x− α̂χe.(81)

(2-2) While x(e) > x0(e) and there exists an element e′ ∈ dep(x,−e)+ − {e} with
x(e′) > x0(e′), choose one such e′ and put

β̂ ← min{x(e)− x0(e), x(e′)− x0(e′), c̃(x,−e,−e′)},(82)

x← x+ β̂(−χe − χe′).(83)

(End)
The above algorithm terminates after calculating signed saturation capacities

O(|E|) times and signed exchange capacities O(|E|2) times because of Remark 2.1.
Let us examine the above algorithm to see its validity.
Suppose {e | e ∈ E, x(e) < x0(e)} = {e1, e2, . . . , el} and that Steps (1-1)∼(1-3)

are carried out in the order of e1, e2, . . . , el. For element e1, after finishing Step (1-1)
we have x(e1) = x0(e1) or x(e1) < x0(e1) and e1 ∈ sat(+)(x). In the latter case,
dep(x,+e1) is defined and we move on to Step (1-2). After finishing Step (1-2) we
have x(e1) = x0(e1) or

x(e′) ≥ x0(e′) (e′ ∈ dep(x,+e1)−),(84)

since performing (76) and (77) for e′ yields (1) x(e1) = x0(e1), (2) x(e′) = x0(e′),
or (3) dep(x,+e1) becomes strictly smaller than the previous one with respect to v
and e′ is removed from the previous dep(x,+e1) due to Remark 2.1. Similarly, after
finishing Step (1-3) we have x(e1) = x0(e1) or

x(e′) ≤ x0(e′) (e′ ∈ dep(x,+e1)+).(85)

For each k ∈ {1, 2, . . . , l} denote by xk the x obtained after Step (1-3) for element
ek. We show that for each k ∈ {1, 2, . . . , l}, if xk(ek) < x0(ek), then dep(xk,+ek) =
dep(xl,+ek). Suppose that we are to carry out Step (1-1) for element ek for some
k ∈ {2, . . . , l}. We assume that dep(xi,+ei) = dep(xk−1,+ei) for each i ∈ {1, 2, . . . ,
k − 1} with xi(ei) < x0(ei) and that, defining

(Xk−1, Yk−1) = t{dep(xi,+ei) | i ∈ {1, 2, . . . , k − 1}, xi(ei) < x0(ei)},(86)

where the reduced union over the empty set should be regarded as (∅, ∅), we have

xk−1(e) ≤ x0(e) (e ∈ Xk−1),(87)

xk−1(e) ≥ x0(e) (e ∈ Yk−1).(88)

Note that this assumption is valid for k = 2 (see (84) and (85)). In Step (1-1) for
element ek, if ek ∈ Xk−1, then for the current x we have ek ∈ sat(+)(x) and we do
nothing in Step (1-1). In Step (1-2), suppose x(ek) < x0(ek). Note that ek /∈ Yk−1

by the assumption. If ek ∈ Xk−1, then dep(x,+ek) v (Xk−1, Yk−1), so that x is not
changed in Step (1-2) due to (88). Also, if ek /∈ Xk−1, i.e., ek /∈ Xk−1 ∪ Yk−1, then
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it follows from the minimality of the signed dependence function that dep(x,+ek) is
compliant with (Xk−1, Yk−1); i.e.,

dep(x,+ek)− ∩Xk−1 = ∅, dep(x,+ek)+ ∩ Yk−1 = ∅.(89)

Therefore, for each e′′ ∈ Xk−1 ∪ Yk−1 the value x(e′′) is not changed by Steps (1-2)
and (1-3) for ek. Hence, we have dep(xi,+ei) = dep(xk,+ei) for i ∈ {1, 2, . . . , k} with
xi(ei) < x0(ei). After finishing Steps (1-1)∼(1-3) for ek, if xk(ek) < x0(ek), then we
have

xk(e′) ≥ x0(e′) (e′ ∈ dep(xk,+ek)−),(90)

xk(e′) ≤ x0(e′) (e′ ∈ dep(xk,+ek)+).(91)

Hence, (87) and (88) hold with k − 1 replaced by k.
After finishing Step 1 we have (Xl, Yl) ∈ F(x) for the current x and

x(e) ≤ x0(e) (e ∈ Xl),(92)

x(e) ≥ x0(e) (e ∈ E −Xl).(93)

Now suppose we have moved on to Step 2. Suppose {e | e ∈ E, x(e) > x0(e)} =
{el+1, el+2, . . . , em} and that we treat these elements in the order of el+1, el+2, . . . , em.
Denote by xk the x obtained after Step (2-2) for element ek for k ∈ {l+1, l+2, . . . ,m}.
In Step (2-1) for element el+1, if x(el+1) > x0(el+1) and el+1 /∈ sat(−)(x), then
el+1 /∈ Xl ∪ Yl because of (92) and (93) and since sat(−)(x) ⊇ Yl. After finishing Step
(2-1) for el+1, if x(el+1) > x0(el+1), then we have dep(x,−el+1)− ∩ Xl = ∅ due to
the minimality of dep. (Due to this fact we do not carry out “Step (2-3)” similar
to Step (1-3).) Therefore, if we carry out (82) and (83), we also have e′ /∈ Xl ∪ Yl.
Consequently, the values of x(e) (e ∈ Xl∪Yl) are not changed and if x(el+1) > x0(el+1)
after Step (2-2), we have dep(xl+1,−el+1) compliant with (Xl, Yl) such that

x(e′) ≤ x0(e′) (e′ ∈ dep(xl+1,−el+1)+),(94)

x(e′) ≥ x0(e′) (e′ ∈ dep(xl+1,−el+1)−).(95)

Put

Xl+1 ∪ Yl+1 = (Xl, Yl) t dep(xl+1,−el+1).(96)

By repeating almost the same argument for Step 1 we can show that after Step 2,
putting

(Xm, Ym) = (Xl, Yl) t (t{dep(x,−ei) | i ∈ {l + 1, . . . ,m}, x(ei) > x0(ei)})(97)

for the finally obtained x, we have

(Xm, Xm) ∈ F(x),(98)

x(e) ≤ x0(e) (e ∈ Xm),(99)

x(e) ≥ x0(e) (e ∈ Ym),(100)

x(e) = x0(e) (e ∈ E − (Xm ∪ Ym)).(101)
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It follows from (98)∼(101) that the finally obtained x satisfies the optimality condition
given in Theorem 3.2 (see Remark 3.1 below Theorem 3.2).

Hence, we have the following theorem.
Theorem 4.1. The vector x obtained when the algorithm terminates is an opti-

mal solution of Problem (P ).
It should be noted that by performing the algorithm each component x(e) with

x(e) < x0(e) is monotonically increased and each component x(e) with x(e) > x0(e)
is monotonically decreased. Therefore, if there is any x ∈ P∗(f) such that x ≤ x0,
then, starting from such an x, the algorithm finds an optimal x ∈ P∗(f) such that
x ≤ x0. Also, note that when f is integer valued and x0 is integral, starting from an
integral x ∈ P∗(f), we reach an integral optimal solution by the algorithm.

Let us also consider the following problem associated with the min–max relation
in Theorem 3.9:

(P ′) Minimize
∑
e∈E

max{0, x(e)− x0(e)}

subject to x ∈ P∗(f).
(102)

An algorithm for Problem (P ′) is now given similarly as the above algorithm for
Problem (P ).

An Algorithm for Problem (P ′).
Step 0′: Find an initial vector x in P∗(f).
Step 1′: For each e ∈ E such that x(e) > x0(x) do the following (1-1)′∼(1-3)′:
(1-1)′ If x(e) > x0(e) and e /∈ sat(−)(x), then put

α̂← min{x(e)− x0(e), ĉ(x,−e)},(103)

x← x− α̂χe.(104)

(1-2)′ While x(e) > x0(e) and there exists an element e′ ∈ dep(x,−e)+ − {e}, choose
one such e′ and put

β̂ ← min{x(e)− x0(e), c̃(x,−e,−e′)},(105)

x← x+ β̂(−χe − χe′).(106)

(1-3)′ While x(e) > x0(e) and there exists an element e′ ∈ dep(x,−e)− − {e} with
x(e′) < x0(e), choose one such e′ and put

β̂ ← min{x(e)− x0(e), x0(e′)− x(e′), c̃(−e,+e′)},(107)

x← x+ β̂(−χe + χe′).(108)

(End)
We omit the proof of the validity of this algorithm. (The proof is similar to that

for the algorithm for Problem (P ).)
When f and x0 are integral, starting from an integral initial vector x in P∗(f), we

reach an integral optimal solution of Problem (P ′). If there exists a vector x ∈ P∗(f)
such that x ≤ x0, then the above algorithm finds such a vector (an integral such
vector when f and x0 are integral, starting from an integral initial vector in P∗(f)).

5. A separable convex optimization problem. We show an application of
the results obtained in sections 3 and 4 to a separable convex optimization problem
over a bisubmodular polyhedron.
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Given a bisubmodular system (F , f) on E and a convex function we : R→ R for
each e ∈ E, consider the following optimization problem:

(P̂ ) Minimize
∑
e∈E

we(x(e))

subject to x ∈ P∗(f).
(109)

In [3] the problem of (109) where R is the set Z of integers is considered and an
incrementally greedy algorithm is given (also see [4]). Recall that the argument in
this paper is valid for any totally ordered additive group R.

The following theorem relates optimal solutions of (P̂ ) to optimal solutions of (P )
in (73).

Theorem 5.1. Suppose that there is a global minimizer x0 of
∑
e∈E we(x(e))

over RE. Then there exists an optimal solution of Problem (P̂ ) that is also an optimal
solution of Problem (P ) with this x0.

Proof. Because of the existence of x0 and the convexity of we (e ∈ E) there
exists an optimal solution x∗ of Problem (P̂ ). Then by starting from x = x∗ the
algorithm presented in section 4 with the present x0 gives us an optimal solution of
Problem (P ) that is also optimal for Problem (P̂ ), since the augmentations and the
exchangings performed in the algorithm do not increase the value of the objective
function of Problem (P̂ ).

It follows from Theorem 5.1 and Corollary 3.4 that if a global minimizer x0 of
the objective function of (P̂ ) is given and (X̂, Ŷ ) given by (51) using this x0 is not
equal to (∅, ∅), then the restriction of an optimal solution of (P̂ ) to (X̂, Ŷ ) lies in the
base polyhedron in the orthant given in Corollary 3.4. Note that if (X̂, Ŷ ) = (∅, ∅),
i.e., x̂ = x0, then we are finished. Therefore, an optimal solution of Problem (P̂ ) can
be found by the decomposition algorithm developed in [12, section 8.2].

We can remove the assumption that there is a global minimizer of the objective
function of (P̂ ) over RE as follows. Define x0 ∈ (R ∪ {+∞})E by

x0(e) =

 a minimizer of we(·) in R if any exists,
+∞ if we(·) is strictly monotone decreasing,
−∞ if we(·) is strictly monotone increasing

(110)

for each e ∈ E. With this x0 carry out the algorithm in section 4. We can see that
during the execution of the algorithm if any parameter α̂ or β̂ becomes +∞, Problem
(P̂ ) does not have an optimal solution and that if the algorithm terminates with a
finite x = x̂, then Problem (P̂ ) has an optimal solution. In the latter case, the proof of
Theorem 5.1 is valid for x0 defined by (110) and we can show that if (X̂, Ŷ ) 6= (∅, ∅),
the restriction of an optimal solution of Problem (P̂ ) to (X̂, Ŷ ) lies in B(X̂,Ŷ )(f

(X̂,Ŷ ))

of Corollary 3.4, where (X̂, Ŷ ) is defined by (51) using x̂ obtained as above.

Acknowledgments. The present research was carried out while the author was
at Forschungsinstitut für Diskrete Mathematik, Universität Bonn, Germany. The
author is very grateful to Kazutoshi Ando, Bill Cunningham, and Jim Geelan for
their useful comments on an earlier version of this paper.

REFERENCES

[1] K. Ando and S. Fujishige, On structures of bisubmodular polyhedra, Math. Programming, 74
(1996), pp. 293–317.



308 SATORU FUJISHIGE

[2] K. Ando, S. Fujishige, and T. Naitoh, Proper Bisubmodular Systems and Bidirected Flows,
Discussion Paper Series No. 532, Institute of Socio-Economic Planning, University of
Tsukuba, Japan, 1993.

[3] K. Ando, S. Fujishige, and T. Naitoh, A greedy algorithm for minimizing a separable convex
function over an integral bisubmodular polyhedron, J. Oper. Res. Soc. Japan, 37 (1994),
pp. 188–196.

[4] K. Ando, S. Fujishige, and T. Naitoh, A greedy algorithm for minimizing a separable convex
function over a finite jump system, J. Oper. Res. Soc. Japan, 38 (1995), pp. 362–375.

[5] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Programming, 38 (1987),
pp. 147–159.

[6] A. Bouchet and W. H. Cunningham, Delta-matroids, jump systems and bisubmodular poly-
hedra, SIAM J. Discrete Math., 8 (1995), pp. 17–32.

[7] R. Chandrasekaran and S. N. Kabadi, Pseudomatroids, Discrete Math., 71 (1988), pp. 205–
217.
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Abstract. There is a polynomial algorithm which finds a decomposition of any given 4-regular
graph into two triangle-free 2-factors or shows that such a decomposition does not exist.
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Introduction. A 2-factor of a graph G is a subgraph F of G such that any
vertex of G is of degree 2 in F . Hell et al. [5] proved that given a set L of natural
numbers, recognizing whether a graph G admits a 2-factor F such that no cycle of
F is of length from L is NP-hard unless L ⊆ {3, 4}. On the other hand, an elegant
criterion for deciding if a graph possesses an (unrestricted) 2-factor (i.e., L = {∅})
was given by Tutte [8], and there is a polynomial algorithm to find such a 2-factor (or
to determine that none exist) [3]. Hartvigsen [4] proved that the problem of whether
a graph G admits a triangle-free 2-factor (L = {3}) can also be solved in polynomial
time.

In this paper we study a modification of this problem. How difficult is it to rec-
ognize whether a 4-regular graph can be decomposed into two triangle-free 2-factors?
For a long time it had been thought that the general graph decomposition problem
of whether a graph H can be written as an edge-disjoint union of copies of a graph
G was difficult. This was confirmed when Dolinski and Tarsi [2] proved that unless
G is of the form tK2 ∪ nP3, the decomposition problem is NP-complete. In view
of their result it is not surprising that there is interest in restricted decomposition
problems. The main result of this paper says that there is a polynomial algorithm for
finding a decomposition of any given 4-regular graph into two triangle-free 2-factors
(or showing that none exists). In fact, to be able to proceed with the induction, we
prove a slightly stronger result.

It would be nice to know the complexity of recognizing 2n-regular graphs which
admit a decomposition into two triangle-free n-factors and the complexity of recog-
nizing 2n-regular graphs which admit a decomposition into n triangle-free 2-factors.
We believe that the following is true.

Conjecture. The two decision problems are NP-complete for all n ≥ 3.

We point out that using a different approach Koudier and Sabidussi recently
published [6] an elegant sufficient condition for a 4-regular graph G to have a de-
composition into two triangle-free 2-factors. They showed that G possesses such a
decomposition if G has at most two essential cut vertices (a cut vertex is essential if
it lies on a triangle). We do not see how to prove the result of Koudier and Sabidussi
using methods of this paper. On the other hand, it seems to us that a decision pro-
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cedure, which would determine for all 4-regular graphs whether they have a required
decomposition, is not within the methods of [6].

Preliminaries. Except for concepts and notation introduced here we use stan-
dard graph-theoretical terminology. A graph G is said to be even (odd) if G has an
even (odd) number of edges. We will say that a graph G belongs to class G(4, 2) if all
vertices of G are either of degree 4 or of degree 2. Let v be a cut vertex of an even
graph G ∈ G(4, 2). Then d(v) = 4 and the graph G− v has two components. We will
say that v is an even (odd) cut vertex if the parity of the number of edges of both
components is even (odd). It turns out that instead of the language of decomposi-
tions it is more convenient to use that of coloring edges. A coloring C of the edges of
G ∈ G(4, 2) with two colors will be called proper if

(i) each vertex of G is adjacent to the same number of edges in each color,
(ii) both monochromatic components of C are triangle free.
If G admits a proper coloring C we will also say that G admits a triangle-free

splitting. Clearly, a triangle-free splitting of a 4-regular graph is a decomposition of
G into two triangle-free 2-factors. Further, it makes sense to ask whether a graph
G ∈ G(4, 2) has a triangle-free splitting only if G is even. For an edge e of G we
denote by et the number of triangles of G containing e. Since G ∈ G(4, 2), et ≤ 3 for
any edge e. Let edges x, y, and z form a triangle T . Then we say that T is of type
(xt, yt, zt).

Now we state several auxiliary results. We start with a parity lemma.
Lemma 1. Let G ∈ G(4, 2) and C be a coloring of the edges of G by two colors

such that each vertex of G of degree 4 is incident with two edges of each color. Let N
be the number of vertices v of G of degree 2 such that both edges incident with v get
the same color in C. Then the parity of N is the same as the parity of the size of G.

Proof. Since each vertex of G of degree 4 is incident with two edges in each color,
the maximum degree of both monochromatic subgraphs in C is 2. Therefore, each
component in both monochromatic subgraphs is either a cycle or a path. Further, a
vertex v is a terminal vertex of such a monochromatic path if and only if v is of degree
2 in G and the two edges of G incident with v are of distinct colors in C. Since any
path has two terminal vertices there is in G an even number of vertices v of degree
2 with edges incident to v being of distinct colors. Clearly, the parity of the size of
G equals the parity of the number of vertices of G of degree 2, which yields that the
parity of N equals the parity of the size of G.

As an immediate consequence of Lemma 1 we get the following lemma.
Lemma 2. Let a graph G ∈ G(4, 2) admit a triangle-free splitting and let a vertex

v of G be a cut vertex of G. If S is an odd component of G − v then in any proper
coloring C of G both edges incident with v and having the other endpoint in S must
be colored with the same color.

Proof. Consider the odd subgraph H of G formed by the edges of S and two
edges incident with v having the other end vertex in S. Let C be a proper coloring of
G. Then all the vertices of H of degree 2, except v, have the two edges incident with
them colored by different colors. The rest of the proof follows from Lemma 1.

By a three-triangle graph, or simply a TT graph, we mean a graph consisting of
three triangles with a common edge; see Fig. 1.

Our final lemma will play a crucial role in proving the main result of the paper.
First, we introduce one more notion. Let T = {v, w, z} be a triangle of G, d(v) = 4,
and let x, y be the other vertices of G adjacent to v. Then by the splitting of v with
respect to T we understand the graph G′ = (G − v) ∪ {v′w, v′z, v′′x, v′′y}, where v′
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Fig. 1.
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and v′′ are two new vertices. For the sake of simplicity we view G′ as a graph having
the same edge set as G.

Lemma 3. Let G ∈ G(4, 2) be an even, connected graph with the following prop-
erty: (A) if T is either a triangle of G of type (1, 1, 1) or an induced TT subgraph of
G then one of the vertices of T is a cut vertex of G and the other vertices of T are
incident in G only with edges of T . Then G admits a triangle-free splitting.

Proof. We prove the statement by induction with respect to the number of trian-
gles in G. If there is no triangle in G, then one can get the desired coloring by taking
an Eulerian trail of G and alternately coloring its edges. So suppose that there are
triangles in G. We will distinguish among five cases. In each of them we construct a
graph G′ ∈ G(4, 2) with fewer triangles than G so that each component of G′ satis-
fies the assumptions of the statement. By the induction hypothesis there is a proper
coloring C ′ of G′ and we extend (modify) C ′ to a proper coloring C of G.

Case 1. There are vertices x′, y′, z′, w′ in G so that the subgraph induced by
them is K4. The other neighbors of these vertices are x, y, z, w, respectively; see
Fig. 2. To get the graph G′ we remove a cycle K of length 4 on the vertices x′, y′, z′,
and v′. Clearly, for any choice of such a cycle K one cannot create a new induced
TT subgraph, and all possible new triangles of type (1,1,1) (this can happen when
some of the vertices x, y, z, v are identical) satisfy (A). A choice of K could lead to
a disconnected graph G′ with possibly odd components to which we cannot apply
the induction hypothesis. This could happen only when H = G–{x′, y′, z′, v′} is a
disconnected graph. However, then H has exactly two components. We choose K in
such a way that the remaining two edges of K4 make G′ a connected graph. Clearly,
G′ has a smaller number of triangles than G and by the induction hypothesis there is
a proper coloring C ′ of G′. There are now two possibilities for coloring the edges of
the cycle K alternatively by two colors and one of them, in some cases either of them,
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gives the extension of C ′ to a proper coloring of G. Indeed, one must be careful only
in the case when some of vertices x, y, z, v coincide and some additional conditions
are met by C ′. First suppose that, say x ≡ y, the edge x′y′ is in K, and the edges
xx′, yy′ get the same color in C ′. In order not to get a monochromatic triangle start
coloring K from the edge x′y′ and assign to x′y′ the color not assigned to xx′. We
note that if also z ≡ v then the edges zz′, vv′ must have the same color as xx′ and
yy′. Alternating the coloring of the edges of K guarantees that z′v′ gets the same
color as x′y′ and no monochromatic triangle is created. By the same token one can
deal with the cases when three or all four vertices of x, y, z, v coincide.

Case 2. There is in G a triangle T = {x, y, z} of type (2,2,2) and G has no K4.
Suppose first that one of the vertices u, v, w (see Fig. 3(a)), say u, is not an odd cut
vertex. Then to construct G′ we first, if u is of degree 4, split at u with respect to
the triangle {u, x, y} and then split at x and y with respect to the triangle T ; see Fig.
3(b). Clearly, G′ satisfies condition (A) and by the induction hypothesis there is a
proper coloring of G′. The same coloring (we view G′ as having the same edge set
as G) provides a proper coloring of G. Indeed, the vertices x, y, u are incident with
an equal number of edges in both colors as the vertices x′, x′′, y′, y′′,u′, u′′ have that
property. Further, by Lemma 2, the edges zx′, zy′ are of the same color. This means
the edges zv, zw are of the other color and hence the triangles {v, x, z} and {w, y, z}
are not monochromatic. The triangle {u, x, y} cannot be monochromatic because the
edges ux, uy are of different colors. To finish the proof of this case we suppose that
all vertices u, v, w are odd cut vertices. To get the graph G′ we first split at w with
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respect to triangle {w, y, z}, obtaining a graph with two components. Then as before
we split at x and y with respect to the triangle T . Finally, we add to vertices w′, w′′

a loop and then subdivide both loops by four new vertices. Clearly, both components
are even and satisfy the assumptions of the statement. We can choose proper colorings
of C ′, C ′′ of the two components of G′ in such a way that the edges of G incident to w′

have different colors from the edges incident to w′′ (by Lemma 2 the edges incident to
w′ (to w′′) have the same color). Now it is a routine matter to check that a coloring
of G given by the restriction of C ′ and C ′′ to the edges of G is a proper coloring, since
the edges xz, yz, and uy are of the same color and the edges vz, wz, and xy are of
the other color. This implies that no triangle on the vertex set from {x, y, z, u, v, w}
is monochromatic.

Case 3. There is in G a triangle T = {x, y, z} of type (1,2,2); see Fig. 4. This case
is simpler then the previous one, and we will use an argument very similar to that of
the first part of Case 3. To construct G′ we split at the vertices x and y with respect
to T . By the induction hypothesis there is a proper coloring C ′ of G′. As before, C ′

also provides a proper coloring of G (again we view G′ as having the same edge set
as G).

Case 4. There is in G a triangle T={x, y, z} of type (1,1,2) as in Fig. 5(a). The
edges depicted by broken lines may or may not be in G.

We assume that edges uv, vw, uz, zw are not in G, for otherwise there would be a
triangle of type (1,2,2). Suppose first that both vertices v and z are odd cut vertices.
In this case the broken edges incident with v and z are in G. Then we construct three
even connected graphs H1, H2, H3 as in Fig. 5(b), a, b being new vertices. Any of
them satisfies the assumptions of the statement and has fewer triangles than G. By
induction we may take such proper colorings of these graphs where the edge xy has in
all three of them the same color. The union of the three colorings provides a proper
coloring of G, where the edges ux, yw get the color of the edge xy. Thus we may now
assume that z is not an odd cut vertex of G. To get G′ first, if z is of degree 4, we
split at z with respect to T and then modify the obtained graph (possibly having two
even components) as in Fig. 5(c). A proper coloring of G can be obtained from any
proper coloring of G′ by giving the edge vy the color of the edge va and giving the
edge zy the color of zb.

Case 5. There is in G a subgraph T which is either a triangle of type (1,1,1) or
an induced TT subgraph of G, satisfying (A), and a vertex x of T is a cut vertex
of G. To obtain G′ we subdivide the two edges of T incident with x by two new
vertices y, z. Since G′ has fewer triangles than G and G′ satisfies the assumptions of
the statement there is a proper coloring C ′ of G′. To obtain a proper coloring C of
G we color the edges of G which do not belong to T by the same color as in C ′, the
edges of T incident with x get the color used in C ′ for edges xy, zy (by Lemma 2 the
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two edges have in C ′ the same color), and the other edges (edge) of T are colored in
an obvious way to get a proper coloring.

The main result. The following statement constitutes the main result of this
paper.

Theorem 1. The decision problem “Given G ∈ G(4, 2), does G have a triangle-
free splitting?” can be solved in polynomial time.

Proof. To prove the statement we show that the decision problem can be reduced
to a special case of the general f -factor problem; for a detailed discussion of the matter
see [7]. For the sake of completeness we recall that the general f -factor problem asks
whether there exists a subgraph of a graph G = (V,E), say F = (V,E′), E′ ⊂ E, such
that dF (v) ∈ Bv, where Bv is a subset of the set {1, . . . , dG(v)} for all v ∈ V . This
problem is NP-complete. However, Cornuéjols [1] showed that if in each Bv all the
gaps (if any) have length 1 then the problem can be solved in polynomial time (a set
Bv is said to have a gap of length p if there is an integer k ∈ Bv so that k+1+p ∈ Bv
but no number between these two is in Bv).

If there is no triangle of type (1,1,1) and no induced TT subgraph inG we are done
using Lemma 3. So suppose that T = {T1, . . . , Tn}, n > 0, is the set of all triangles of
G of type (1,1,1) and of all induced TT subgraphs of G. Denote by G(T ) the graph
obtained from G by removing all the edges of the subgraphs from T ; if Ti ∈ T is
an induced TT subgraph then we also remove from G the two vertices of Ti which
are of degree 4 in Ti. Let O1, . . . , Os and E1, . . . , Er be odd and even components
of G(T ), respectively. A component comprising a single vertex is considered an even
component. We construct a bipartite graph B with bipartition (T ′, E ∪ O), where
the vertices of T ′ = {t1, . . . , tn} represent the subgraphs from T and the vertices
of E ∪ O={o1, . . . , os} ∪ {e1, . . . , er} represent the components of G(T ). Further,
tioj(tiej) is an edge of B if an edge of the subgraph Ti is incident with a vertex of Oj
(a vertex of Ej). Clearly, d(ti) ≤ 3 for i = 1, . . . , n. Now we prove the following.

(*) The graph G has a triangle-free splitting if and only if there is a subgraph F
of B such that dF (ti) = 1 for i = 1, . . . , n, dF (oj) is odd for j = 1, . . . , s, and dF (ej)
is even for j = 1, . . . , r.

First we prove the necessity of the condition. Let C be a proper coloring of G.
Each subgraph Ti ∈ T has three vertices of degree 2 in Ti. Exactly one of them has
both edges incident with the vertex colored with the same color. We call this vertex
the monochromatic vertex of Ti. We define a subgraph F of B by letting an edge tioj
(tiej) belong to F if the monochromatic vertex of Ti is in the component Oj (Ej).
Since each subgraph Ti has exactly one monochromatic vertex, dF (ti) = 1. Further, if
v ∈ Oj (v ∈ Ej) is a monochromatic vertex of Ti then v must be of degree 4 in G and
the two edges incident to v which are not in Ti must be of the same color. Thus the
coloring C restricted to a component K of G(T ) provides a coloring of K such that
each vertex v of degree 2 in K has both edges incident with it of the same color if and
only if v is a monochromatic vertex of a subgraph from T . By Lemma 1 the parity
of the number of such vertices coincides with the parity of the size of the component.
Hence the parity of the degree of the vertex k in F , where k is the vertex representing
the component K, is the same as the parity of the size of K. This finishes the proof
of this part of the statement.

Suppose now that F is a subgraph of B as in (*). We show how to construct a
proper coloring of G. If tioj (tiej) is an edge of F then we choose a vertex of Ti which
is in Oj (Ej) to be a monochromatic vertex of the subgraph Ti. Now we take G and
split at each vertex of Ti which is of degree 2 in Ti and is not its monochromatic vertex.
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Denote the obtained graph as G∗. Components of G∗ can be matched in a natural way
with the components of G(T ). In fact, if D is a component of G(T ) then the match
of D in G∗ is a component D∗, where D∗ comprises all the edges of D and the edges
of those subgraphs from T which have their monochromatic vertex in D. The size of
D∗ is even since the parity of the number of subgraphs from T which are “attached”
to D to form D∗ equals the parity of the size of D. Clearly, each component of G∗

satisfies the assumptions of Lemma 3, and therefore each component of G∗ has a
proper coloring. A coloring C of the edges of G which is the union of proper colorings
of components of G∗ is a proper coloring. Indeed, if a vertex v was split during the
procedure of constructing G∗ then both new vertices v1 and v2 are of degree 2 and
the edges incident with vi, i = 1, 2, are of different colors. Thus, in G, v is incident
with two edges of each color. We note that a vertex v which is the monochromatic
vertex of Ti is really incident with the edges of Ti of the same color since v is an odd
cut vertex in the component of G∗ containing the edges of Ti; cf. Lemma 2.

It is obvious that the reductions from the graph G to the graph G(T ) and from
G(T ) to the graph B are polynomial. From the mentioned result of Cornuéjols it also
follows that the decision problem of whether B possesses a required subgraph F de-
scribed in the condition (*) can be solved in polynomial time. Thus our decomposition
problem is polynomial.

Remark. Clearly, the proof of Lemma 3 provides a polynomial algorithm for
finding a proper coloring of the components of the graph G∗. Thus, following the
proof of Theorem 1, together with the polynomial algorithm for the special case of
the general f -factor problem, one can easily obtain a polynomial algorithm for the
decomposition problem.

Finally, we show how to construct even graphs from G(4, 2) which do not have a
triangle-free splitting. We will make use of the following theorem. Here, the bipartite
graph B and the set T of subgraphs of G are the same as in the proof of Theorem 1.

Theorem 2. Let G ∈ G(4, 2) admit a triangle-free splitting. Then the number of
odd components of B is at most the cardinality of T .

Proof. By the condition (*), B has a subgraph F such that each vertex of B
representing a subgraph of T is of degree 1 in F and each vertex of B representing an
odd connectivity component of B(T ) is of degree at least 1. Thus the number of odd
components of B(T ) is at most the cardinality of T .

Theorem 2 provides a hint toward constructing some even graphs G ∈ G(4, 2)
which do not have a triangle-free splitting. Let H be a graph having a triangle T
of type (1,1,1) such that all vertices of T are odd cut vertices. By Lemma 2, in any
proper coloring of H all edges of T must have the same color, which is a contradiction.
Thus, H does not admit a triangle-free splitting. Suppose now that u, v are vertices
of H of degree 2. Consider an even graph H ′ consisting of a triangle T ′ = {x, y, z},
where x, y are of degree 2 and z is an odd cut vertex. Construct a new graph H ′′

by identifying vertices x and u, obtaining a new vertex of degree 4, and possibly also
identifying y and v. H ′′ does not admit a proper coloring since this coloring restricted
to the edges of H would have to be a proper coloring of H. Thus, in this way, we can
construct an infinite class of graphs not admitting a triangle-free splitting.
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BÉLA BOLLOBÁS† AND GRAHAM BRIGHTWELL‡

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 2, pp. 318–335, May 1997 012

Abstract. The random graph order Pn,p is defined by taking a random graph Gn,p on vertex set
[n], treating an edge ij with i ≺ j in [n] as a relation i < j, and taking the transitive closure. A post
in a partial order is an element comparable with all others. We investigate the occurrence of posts in

random graph orders, showing in particular that Pn,p almost surely has posts if np−1e−π
2/3p →∞,

but almost surely does not if this quantity tends to 0. If there are many posts, the partial order
decomposes as a linear sum of smaller orders, and we use this decomposition to show that many
parameters of a random graph order—for instance, the height, the logarithm of the number of
linear extensions, and the number of incomparable pairs—behave as normal random variables. For
instance, for the height Hn,p, we prove that, for p in an appropriate range, there are functions
αH(p) = e(1 + o(1))p and βH(p) such that (Hn,p − αH(p)n)/

√
nβH(p)

d−→N(0, 1).

Key words. partial order, random graph, random partial order
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1. Introduction. The random graph order Pn,p is defined by taking a random
graph Gn,p ∈ G(n, p) with vertex set [n] = {1, 2, . . . , n}, interpreting an edge between
vertices i and j with i ≺ j as a relation i < j, and taking the transitive closure of
the relation <. Thus i < j in Pn,p if there is an increasing sequence i = i1 ≺ i2 ≺
· · · ≺ ik = j of vertices such that ilil+1 is an edge of Gn,p for each l. (Note that here,
as throughout, we reserve the symbol ≺ to denote the underlying linear order on the
integers and use < for the random graph order.) In general, p will be a function of n,
and we set q = q(n) = 1− p throughout.

The infinite random graph orders PN,p and PZ,p are defined in exactly the same
way, starting with the vertex set N or Z in the standard order ≺. Observe that Pn,p
is distributed as the restriction of PN,p or PZ,p to the subset [n]: we shall identify
Pn,p with such a restriction whenever convenient. These infinite random orders will
be of use later, but all our results are concerned with finite random graph orders.

Random graph orders have been investigated by Barak and Erdős [5], Albert and
Frieze [1], Alon et al. [2], Newman [21], Simon, Crippa, and Collenberg [23], and in
two earlier papers [11, 12] of the authors. See also the survey article by Brightwell [14].

One feature of the random graph order that has become apparent is that there is
some type of “phase transition” as p = p(n) increases from o(1/ logn) to ω(n)/ logn.
For instance, the width Wn,p of Pn,p, that is, the size of a largest antichain in the
partial order, behaves very differently on either side of this transition. The following
result is taken from Bollobás and Brightwell [11].

Theorem 1.1. (i) If p logn → 0 and pn → ∞, then Wn,p almost surely lies
between 1.455p−1 and 2.428p−1.
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(ii) If p logn→∞, then Wn,p is almost surely

(1 + o(1))

√
2 logn

log(1/q)
.

The proof of Theorem 1.1 in [11] goes some way toward explaining this phe-
nomenon. If p logn→ 0, then there are antichains of size cp−1 at all levels of the par-
tial order, but there are none that are substantially larger. However, if p logn→∞,
then n is larger compared to 1/p, so we become overwhelmingly likely to find the
occasional exceptionally large antichain.

Our aim in this paper is to explore the structure of random graph orders in the
upper range of p and hopefully to shed more light on the phase transition.

Let P1, . . . , Pm be partial orders on disjoint vertex sets X1, . . . , Xm, respectively.
The linear sum P1⊕· · ·⊕Pm is the partial order defined on

⋃m
i=1Xi by setting x < y

if either (a) x ∈ Xi, y ∈ Xj , and i ≺ j or (b) x, y ∈ Xi and x < y in Pi. Less formally,
the linear sum is the partial order obtained by stacking the partial orders on top of
one another in sequence.

We define a post in a partial order to be an element comparable with all others.
Posts in random graph orders were introduced in Alon et al. [2], who showed that, in
the case where p is constant, there are posts, indeed very many of them, in Pn,p.

Suppose that the random graph order Pn,p has posts x1 ≺ x2 ≺ · · · ≺ xm. Then
Pn,p breaks up as the linear sum of m+ 1 (or possibly just m) smaller partial orders.
To be precise, for 1 ≤ j ≤ m−1 let Qj be the partial order induced by Pn,p on the set
(xj , xj+1], let Q0 be the partial order induced on [1, x1], and Qm the order induced on
(xm, n] (which could be empty). Then Pn,p = Q0 ⊕ · · · ⊕Qm. We call the unlabeled
partial orders Qi the factors of Pn,p.

It seems to us to be fundamental to the study of random graph orders to see
whether or not the partial order is the linear sum of smaller factors. Dealing solely
with whether there are posts turns out to be rather simpler, and it seems clear that
the cut-off points for the existence of posts and the break-up into factors will be very
close, possibly even almost surely identical. We don’t address these issues here, but
rather restrict our attention to posts. We prove the following result, extending a
result of Alon et al. [2] as far as possible.

Theorem 1.2. Set Y (n, p) = np−1e−π
2/3p. If Y (n, p) → ∞ as n → ∞, then

there are almost surely posts in Pn,p. If Y (n, p)→ 0, then there are almost surely no
posts in Pn,p. If Y (n, p) converges to a nonzero limit y, then the number of posts in

Pn,p is asymptotically a Poisson random variable with mean 2πyeπ
2/6.

Theorem 1.2 is proved in section 2, along with other related results.
If we are in a regime where there are many posts, we can draw conclusions about

various parameters of random graph orders. Most of the natural parameters of partial
orders fall into one of two types, according to their behavior on linear sums.

A parameter f of partial orders is called maximizing if, whenever P = P1 ⊕ P2,
we have f(P ) = max{f(P1), f(P2)}. Examples of maximizing parameters include the
width and the dimension. For “normal” maximizing parameters f , one would expect
that in a random graph order Pn,p breaking into many factors f(Pn,p) will almost
always be much larger than the value of f for the majority of its factors. Theorem 1.1
is an example of this behavior in the case where f is the width. We shall not explore
maximizing parameters further here.

A parameter f of partial orders is called additive if, whenever P = P1 ⊕ P2, we
have f(P ) = f(P1) + f(P2). Examples of additive parameters are the number of
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elements, the height, the logarithm of the number of linear extensions, the number
of incomparable pairs of elements, and the jump number. Other parameters, such as
the number of covering pairs and the bump number, can be modified slightly so as to
make them additive.

It is essentially the case that in a random graph order with many posts the
various factors are independent. For finite random graph orders, this statement is
slightly complicated by edge effects, so let us turn for a moment to PZ,p. In PZ,p,
x1 is taken to be the first post strictly to the right of 0, and, with probability 1,
the posts and factors form two-way infinite sequences. Let the (labeled) sequence of
factors be . . . Q−1, Q0, Q1, Q2, . . .. It was noted in [2] that the various factors Qi are
independent random variables, identically distributed except that the distribution of
Q0 is distorted by the requirement that it contain 0. See also Theorem 3.1.

A consequence for us is that in a regime where we have many posts any additive
parameter f of a random graph order is distributed as a sum of independent random
variables, so it might be expected to have an asymptotically normal distribution. Of
course, the number of variables being summed is the number of posts (plus one), which
is itself a random variable that is not independent of the summands. In particular,
if f(P ) is proportional to the number of elements of P , then f(Pn) is a constant
random variable. However, we shall show in section 3 that all other nonpathological
additive parameters are asymptotically normally distributed, provided the expected
number of posts is sufficiently large. This idea was first developed in Alon et al. [2],
for constant p, using results from the theory of stopped random walks. Here we are
interested in the case where p tends to 0 slowly, and we must use more elementary
tools—in particular, we use the Berry–Esseen Theorem.

We prove a general result, covering several specific examples. For instance, we
obtain the following theorem for the height Hn,p of Pn,p.

Theorem 1.3. Let Hn,p be the height of the random graph order Pn,p. Suppose
p → 0 and p ≥ (1 + ε)π2/ logn for some ε > 0; then there are functions αH(p) =
e(1 + o(1))p and βH(p) such that (Hn,p − αH(p)n)/

√
nβH(p)

d−→N(0, 1).

One unfortunate feature of our methods is that we do not in general get good
estimates for the mean and variance of our asymptotically normal random variables.
In Theorem 1.3, the estimate for αH(p) requires a separate argument—in fact, this
is taken from a result of Newman [21]—while we have no sensible bounds at all for
βH(p). The development of methods for obtaining bounds on the variance of additive
parameters (especially lower bounds) seems to us to be an area worth further study.

2. Posts. Here we give more detail about the distribution of the set of posts.
The significance of our results is that the appearance of posts marks a change in the
structure of the partial order: if p is small, the partial order is reasonably homoge-
neous, and it makes sense to treat it as one structure, while if p is large enough that
there are many posts, then the random graph order is better viewed as the linear sum
of many rather smaller partial orders. In this latter regime, “local” parameters of the
partial order, such as width and dimension, depend on the exceptional components
of the linear sum and tell us little about the partial order as a whole. We have al-
ready seen one example of this, in that the behavior of the width of the partial order
changes radically as p goes through C/ logn. Theorem 1.2 tells us that this is also
the threshold for the appearance of posts in the partial order—indeed that something
much sharper is true.

The problem we face in dealing with the set of posts is the lack of independence.
For any two vertices x and y in [n], the events that x and y are posts are dependent,
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in fact, positively correlated. If |x− y| is large, this correlation is small, but if, in the
extreme case, |x − y| = 1, then the two events are fairly strongly correlated, as we
shall see. Our approach is to define a slight variant of the notion of a post so that we
do obtain independence in the case where |x− y| is large.

Accordingly, for M ≥ 1, we define an element x in the interval [M + 1, n −M ]
to be an M -post of Pn,p if x is comparable with all the elements x −M,x −M +
1, . . . , x − 1, x + 1, . . . , x + M in Pn,p. Let Ax = Ax(M) be the event that x is an
M -post. Observe that if |x− y| ≥ 2M , then the events Ax and Ay depend on disjoint
sets of edges in the underlying random graph, and so are independent. Indeed Ax is
independent of the set of events {Ay : |x− y| ≥ 2M}.

Note that if Pn,p is identified with the restriction of PZ,p to [n], then we have
that, for x ∈ [M + 1, n−M ], “x a post in PZ,p” implies “x a post in Pn,p” implies “x
an M -post in Pn,p.”

We shall choose M so that, almost surely, all M -posts are posts in Pn,p, or indeed
posts in PZ,p. We shall then prove that in a suitable range of p the number of M -posts
in Pn,p converges in distribution to a Poisson random variable.

Let us first find the probability that x is an M -post for M < x ≤ n −M . For
1 ≤ k ≤M , the probability that the vertex x+ k is comparable with x, given that all
of x+ 1, . . . , x+ k − 1 are comparable with x, is just 1− qk. So the probability that
x is comparable with all of x+ 1, . . . , x+M is

M∏
i=1

(
1− qi

)
≡ ηM (p).

The event that x is comparable with all of x − 1, . . . , x −M is independent of this,
and also has probability ηM (p), so we have

Pr(Ax) ≡ Pr(x is an M -post) = ηM (p)2.

As M → ∞, ηM (p) tends to a limit η(p), which is thus the square root of the prob-
ability that x is a post in the infinite random graph order PZ,p, as noted in Alon et
al. [2].

The function η(p) =
∏∞
i=1

(
1− qi

)
is better known as the reciprocal of the gener-

ating function for the partition function. As such, it has been studied extensively, and
the following very precise estimate was found by Hardy and Ramanujan [18] in the
course of their work on the asymptotic behavior of the partition function. The first
estimate is quoted (essentially) from Hall [17, equation 4.2.11]. The second follows
readily upon using the estimate log(1/q) = p+ 1

2p
2 +O(p3).

Lemma 2.1. As p→ 0,

log η(p) =
−π2

6 log(1/q)
− 1

2
log log(1/q) +

1

2
log(2π) + o(1).

Thus

η(p)2 = (1 + o(1))2πeπ
2/6e−π

2/3pp−1.

Curiously, the functions ηM (p) and η(p) appear in several other places in the
theory of random orders; see Brightwell [13] and our earlier paper [11]. The next
estimate is taken from [11, Lemma 11].
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Lemma 2.2. Suppose 0 < p = 1− q < 1 and v is a positive integer with qv ≤ 1/2.
Then we have

qv+1

log(1/q)
≤ log ηv(p)− log η(p) ≤

qv + 1
2q

2v

log(1/q)
.

We now prove two useful results, which combine to show that the number of posts
is almost certainly not too different from the number of M -posts in Pn,p.

Lemma 2.3. Suppose 1 ≤M ≤ n/2.
(i) The expected number of M -posts in Pn,p that are not posts of PZ,p is at most

2nηM (p)2qM/p. In particular, for M ≥ r logn/p ≥ r logn/ log(1/q), the expected
number of M -posts that are not posts is at most 2n1−r.

(ii) The expected number of posts of Pn,p in the set {1, 2, . . . ,M, n−M+1, . . . , n}
is at most 2Mηn−M (p).

Proof. (i) Fix a vertex x ∈ [M + 1, n − M ], and, for j ≥ M , let Bj be the
event that, in PZ,p, x is comparable with all of x −M, . . . , x − 1, x + 1, . . . , x + j,
but incomparable with x+ j + 1. The probability of Bj is ηM (p)ηj(p)q

j ≤ ηM (p)2qj .
Hence the probability that x is an M -post, but is incomparable with x + j + 1 for
some j ≥M , is at most

∞∑
j=M

ηM (p)2qj = ηM (p)2qM/p.

Similarly, the probability that x is an M -post incomparable with x− j − 1 for some
j ≥M is also at most ηM (p)2qM/p, so the probability that x is an M -post but not a
post in PZ,p is at most 2ηM (p)qM/p.

Note that ηM (p) ≤ p, so the above probability is certainly at most 2qM . Also, if
M ≥ r logn/ log(1/q), then we have qM ≤ n−r, proving the final assertion of (i).

Part (ii) is straightforward since the probability that an element x ∈ [M ] is
comparable with all the elements x+ 1, x+ 2, . . . , n is at most ηn−M (p), and likewise
for the “top” elements.

We immediately deduce the following, establishing one of the assertions of Theo-
rem 1.2.

Theorem 2.4. Suppose nη(p)2 → 0 as n→∞. Then there are almost surely no
posts in Pn,p. In particular, if

1

p
− 3

π2
(logn+ log log n)→∞

as n→∞, then there are almost surely no posts in Pn,p.
Proof. Since the probability of having no posts is decreasing in p, we may (and

shall) assume that p ≥ n−1/3. Set M = b
√
nc. The expected number of M -posts

in Pn,p is at most z = nηM (p)2, and the expected number of posts of Pn,p among
{1, . . . ,M, n −M + 1, . . . , n} is at most 2Mηn−M (p) ≤ 2

√
z by Lemma 2.3(ii). The

expected number of posts in Pn,p is at most the sum of these two terms. Now we have

z = nηM (p)2 ≤ nη(p)2 exp

(
2qM + q2M

log(1/q)

)
by Lemma 2.2. The term (2qM + q2M )/ log(1/q) tends to 0, and nη(p)2 → 0 by
assumption, so z → 0, implying the first statement.
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For the second statement, we suppose that

1

p
=

3

π2
(logn+ log log n+ ω(n)) ,

where ω(n)→∞ with ω(n) ≤ log log n, and use Lemma 2.1 to obtain that

nη(p)2 = O
(
np−1e−π

2/3p
)

= O (exp (logn+ log log n+O(1)− (logn+ log log n+ ω(n))))

= O(exp(−ω(n))) = o(1),

as required.

Our next aim is to show that the number A(M) = A(M,n, p) of M -posts in Pn,p
converges in distribution to a Poisson random variable with mean (n − 2M)ηM (p)2.
We shall then be able to deduce a similar result for the number of posts in Pn,p.

We use the following result, due, in this form, to Arratia, Goldstein, and Gordon
[3], although it is implicit in earlier work of Chen [15] and Barbour and Eagleson
[6]. Recall that, for random variables X and Y taking values in a set T , the total
variation distance dTV(X,Y ) between X and Y is the maximum, over all subsets S
of T , of |Pr(X ∈ S) − Pr(Y ∈ S)|. Recall also that a sequence (Xn) of real-valued
random variables is said to converge in distribution to a random variable X—we write
Xn

d−→X—if Pr(Xi < x) → Pr(X < x) whenever Pr(X < x) is continuous at x. For
an integer-valued random variable, we have that Xn → X iff dTV(Xn, X) → 0 as
n → ∞. For positive real λ, let Po(λ) denote a Poisson random variable with mean
λ.

Theorem 2.5. Let (Aα)α∈I be a family of Bernoulli random variables. For
α, β ∈ I, set pα = EAα and pαβ = EAαAβ. For α ∈ I, let Cα be a subset of I such
that Aα is independent of {Aβ : β ∈ Cα} and set Bα = I \ Cα. Let

b1 =
∑
α∈I

∑
β∈Bα

pαpβ , b2 =
∑
α∈I

∑
β∈Bα,β 6=α

pαβ .

Let A =
∑
α∈I Aα and λ0 = EA =

∑
α∈I pα. Then

dTV(A,Po(λ0)) ≤ (b1 + b2)
1− e−λ0

λ0
.

Theorem 2.6. Suppose that M ≤ 21/p−3. Let A(M) = A(M,n, p) be the number
of M -posts in Pn,p and let λM = (n− 2M)ηM (p)2. Then

dTV(A(M),Po(λM )) ≤ 17p.

Proof. For x ∈ [M + 1, n − M ], we let Ax be the event that x is an M -post

in Pn,p, so px ≡ Pr(Ax) = ηM (p)2. Then A(M) =
∑n−M
x=M+1Ax and EA(M) =

(n− 2M)ηM (p)2 = λM .

For x ∈ [M+1, n−M ], let Bx = [M+1, n−M ]∩{x−2M,x−2M+1, . . . , x−1, x+
1, . . . , x+2M} and Cx = [M+1, n−M ]\Bx. As mentioned earlier, Ax is independent
of {Ay : y ∈ Cx}. Now let b1 and b2 be as in Theorem 2.5. Note that, by Kleitman’s
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Lemma [19] (see, e.g., [10]), the events Ax are mutually positively correlated, so that
pxpy ≤ pxy for every x and y. Thus we have

b1 ≤ b2 +
n−M∑
x=M+1

p2
x = b2 + (n− 2M)ηM (p)4 = b2 + λMηM (p)2,

so it remains to estimate b2.

Suppose that x and x+ k are vertices with M + 1 ≤ x < x+ k ≤ n−M and that
k ≤ 2M . Set l = bk/2c. We want an upper bound for the probability that x and x+k
are both M -posts. This is certainly at most the probability that x is comparable with
all the elements in {x−M, . . . , x+ l} and x+ k is comparable with all the elements
in {x+ l, . . . , x+k+M}. These two events are independent: the first has probability
ηM (p)ηl(p) and the second has probability ηM (p)ηk−l(p). Set f(k) = ηl(p)ηk−l(p), so
that the probability that x and x+ k are both M -posts is at most ηM (p)2f(k).

Some relatively crude bounds for ηm(p) in the range 1 ≤ m ≤M will suffice. We
have

ηm(p) =
m∏
i=1

(
1− qi

)
≤

m∏
i=1

pi = m!pm.

Hence, for l = bk/2c, we have

f(k) = ηl(p)ηk−l(p) ≤ pkl!(k − l)! ≡ g(k).

Note that g(1) = p (which is indeed the probability that x and x + 1 are both M -
posts, given that x is comparable with the elements below it and x + 1 comparable
with the elements above it). For p(k + 1) ≤ 1, we see that g(k) ≤ g(k − 1)/2, so
f(k) ≤ g(k) ≤ p21−k. For k ≥ b1/pc, we simply note that

f(k) ≤ f(b1/pc − 1) ≤ p23−1/p.

Thus, for x ∈ [M + 1, n−M ], we have

b2 =
n−M∑
x=M+1

∑
y∈Bx

Pr(Ax ∩Ay)

≤ 2(n− 2M)ηM (p)2
2M∑
k=1

f(k)

≤ 2(n− 2M)ηM (p)2

b1/pc−1∑
k=1

f(k) + 2Mp23−1/p


≤ 2(n− 2M)ηM (p)2

(
2p+ 16Mp2−1/p

)
= 4(n− 2M)pηM (p)2

(
1 + 8M2−1/p

)
≤ 8(n− 2M)pηM (p)2 = 8pλM ,

where at the end we used the assumption that M ≤ 21/p−3.
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We can now apply Theorem 2.5 to conclude that the number A(M) of M -posts
in Pn,p satisfies

dTV(A(M),Po(λM )) ≤ (b1 +b2)
1− e−λM

λM
≤ 2b2 + λMηM (p)2

λM
≤ 16p+ηM (p)2 < 17p,

as required.
It is a straightforward matter to convert our result about M -posts into the cor-

responding result for posts. The following result, combined with the estimates in
Lemma 2.1, implies Theorem 1.2.

Theorem 2.7. Suppose that p ≤ 1/2 log logn. Let A be the number of posts in
Pn,p and set λ = nη(p)2. Then, for sufficiently large n,

dTV(A,Po(λ)) ≤ 21p.

Proof. Set M = d2 logn/pe. The upper bound on p then implies that, for n
sufficiently large, M ≤ 21/p−3. Hence, by Theorem 2.6, the number AM of M -posts
satisfies

dTV(AM ,Po(λM )) ≤ 17p.

From Lemma 2.3(i), the probability that any of these M -posts are not posts is
at most 2/n. Also, by Lemma 2.3(ii), the expected number C of posts in the set
{1, . . . ,M, n−M + 1, . . . , n} is at most

2Mηn−M (p) ≤ 2M exp(−1/p).

Our bound on p implies that

e−1/pp−2 ≤ 4(log log n)2(logn)−2.

Hence

C ≤ 5 lognp−14(log log n)2(logn)−2p2 ≤ p

for sufficiently large n.
Therefore, we have

dTV(A,A(M)) ≤ C + 2/n

and also |λM − λ| ≤ C + 2/n, so that

dTV(Po(λM ),Po(λ)) ≤ C + 2/n.

Combining these bounds and using the fact that C + 2/n ≤ 2p for sufficiently
large n, we have the result.

If nη(p)2 → ∞ with p ≤ 1/2 log logn, Theorem 2.7 certainly implies that we
almost surely have posts in Pn,p. Of course, if p is even larger than 1/2 log logn, then
the probability of no posts in Pn,p is even smaller, so we have proved the first assertion
of Theorem 1.2 as well.

The bound of O(p), for the total variation distance between the number of posts
and a Poisson random variable, is the best possible since the events that various
vertices are posts are moderately positively correlated. In the most extreme case, the
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probability that x and x+ 1 are both posts in PZ,p is clearly equal to pη(p)2, so the
probability that x + 1 is a post, conditional on x being a post, is p, which is quite
a high probability in this context. In the range we are concerned with, p is at least
1/ logn, and we shall be interested in getting error probabilities of the form n−k, so
Theorem 2.7 cannot be used for this purpose. We prove the following result, showing
that the number of posts is very unlikely to be very far from its mean. As with many
similar “large deviation” results, the tool used will be a martingale inequality.

Lemma 2.8. Let B be the number of posts of PZ,p in [n] and take any y > 1.
Then

Pr
(
|B − nη(p)2| > 6y3/2p−1

√
n log3/2 n

)
≤ n(1−y)/2.

Proof. Set M = y logn/2p and let A(M) = A(M,n, p) be the number of M -posts

of Pn,p. Also let a = 2y3/2p−1
√
n log3/2 n.

For i = 1, . . . , n, let Hi be the set of pairs of vertices (j, i) with j < i. Consider the
effect on A(M) of adding or removing pairs from Hi to/from the underlying graph.
If |k − i| > M , this cannot affect whether or not k is an M -post, so A(M) will only
be changed by at most 2M + 1.

We are thus in a setting where we may apply the following result, based on a
martingale inequality due to Azuma [4]. See Bollobás [8, 9] or McDiarmid [20] for
further details.

Theorem 2.9. Suppose that H1 ∪ · · · ∪Hm is a partition of [n](2) into m parts.
Let Z(G) be a random variable depending on the random graph Gn,p with vertex set
[n] such that |Z(G) − Z(G′)| ≤ h whenever G and G′ differ only on one of the Hi.
Then, for any real a, we have

Pr(|Z(Gn,p)−EZ(Gn,p)| > a) ≤ 2 exp(−a2/2mh2).

Applying this result with Z = A(M), m = n, h = 2M + 1, and, as above,

a = 2y3/2p−1
√
n log3/2 n, we obtain

Pr (|A(M)−EA(M)| > a) ≤ 2 exp

(
− 4y3p−2n log3 n

2n(y lognp−1 + 1)2

)
≤ n−y.

By Lemma 2.3(i), we have

0 ≤ EA(M)− nη(p)2 = E(A(M)−B) ≤ 2n1−y/2.

Thus the probability thatA(M)−B is as large as a is at most 2n1−y/2a−1 ≤ 1
2n

(1−y)/2.
Combining these facts gives us that

Pr(|B − nη(p)2| > 3a) ≤ n−y +
1

2
n(1−y)/2 ≤ n(1−y)/2,

as required.
A rather stronger version of the above lemma could doubtless be proved for the

case where the expected number of posts is around nα for some α < 1.
Our final result in this section states that, for values of p rather larger than

π2/3 logn, there are almost surely no extraordinarily long gaps without posts. Again,
the bound of O(p) for the total variation distance in Theorem 2.7 is of no use to us,
as we want the probability of no posts to be substantially smaller than p. However,
it is not too hard to use Theorem 2.6 directly.
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Theorem 2.10. Suppose p ≤ 0.005. Let n0 = n0(p) = dη(p)−2e. Take any
integer r with 2 ≤ r ≤ 1

6021/pp2 and set M = d2r logn0/pe and n1 = n0 + 2M . Then
the probability that a given set of rn1 consecutive vertices of Z contains no posts of
PZ,p is at most 21−r.

Proof. The upper bound on r ensures that we have M ≤ 21/p−3, so we can apply
Theorem 2.6 to obtain that, for any range {y+1, y+2, . . . , y+n0}, there is an M -post
in the range with probability at least 1−e−1−17p > 1/2. Now, for any x, we consider
the r distinct ranges Ui = {x + in1 + 1, . . . , x + in1 + n0}, i = 0, . . . , r − 1. Since
there is a gap of size n1 − n0 = 2M between each Ui, the events that the various Ui
contain an M -post are independent, and each have probability at least 1/2. Hence
the probability that there is no M -post in the range X = {x + 1, . . . , x + rn1} is at
most 2−r. One may check that M ≥ (r + logn1)/p. Lemma 2.3 now tells us that,
with probability at least 1− e−r, all M -posts in PX,p are indeed posts in PZ,p, which
implies the result.

It does not seem easy (or particularly interesting) to extend the reasonably accu-
rate bound of Theorem 2.10 to values of r larger than 1

6021/pp2. We content ourselves
with the following cruder argument, which uses an idea first presented in Alon et al.
[2].

Theorem 2.11. Suppose p ≤ 0.005. Let n0 = n0(p) = dη(p)−2e. Take any
integer s ≥ p−1. Then the probability that a given set of 2s2n0 consecutive vertices of
Z contains no posts of PZ,p is at most 3sp−1qs.

Proof. Without loss of generality, the set of 2s2n0 vertices commences at 1.
Consider the sn0 vertices, starting at s and increasing in steps of size 2s. The events
that these various vertices are s-posts are independent and have probability at least
η(p)2. So the probability that none of these vertices is an s-post is at most (1 −
η(p)2)sn0 ≤ 2e−s.

Now the probability that among these vertices there is an s-post that is not a
post is at most sn0ηs(p)

2qsp−1, as in Lemma 2.3. The lower bound on p gives that
ηs(p)

2 is almost equal to 1/n0, so the probability that we fail to find a post is at most

2e−s + 2sqsp−1 ≤ 3sqsp−1,

as desired.
We can use the last two results to prove that the tth moments of the gap between

posts are not too large.
Corollary 2.12. Suppose p < 0.005. Let the random variable Z be the least

x > 0 such that x is a post in PZ,p. For each fixed t ≤ 1000, there is a constant C(t)
such that

EZt ≤ C(t)η(p)−2t.

Proof. Set n0 = dη(p)−2e and n1(r) = n0 + 4r logn0/p, as in Theorem 2.10. Also
set r0 = b 1

6021/pp2c. Now we have

EZt ≤ (4tn1(4t))t +

r0∑
r=4t+1

Pr(Z > (r − 1)n1(r − 1))(rn1(r))t

+
∞∑

s=b√r0/2c
Pr(Z > 2(s− 1)2n0)(2s2n0)t

≤ (4tn1(4t))t +
∞∑

r=4t+1

22−r(rn1(r))t +
∞∑

s=b√r0/2c
3sp−1qs(2s2n0)t,
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where in the last step we used Theorems 2.10 and 2.11 to estimate the probabilities.
One can readily check that each term in the first sum is at most 9/10 of the

previous one, and that, by our condition on p, n1(4t) ≤ 2n0. Also, the second sum
is comfortably bounded above by 1. Therefore, EZt ≤ 10(4tn1(4t))t + 1 ≤ 10(8t)tnt0,
as required.

It follows once more from Kleitman’s Lemma (again, see [10]) that if we condition
on 0 being a post, then the probability that the next s vertices are not posts does not
decrease. Therefore, Corollary 2.12 also applies, for instance, to the random variable
Y , which is the gap between the first and second posts of PZ,p in [n].

3. Normal convergence. In this section, we use the results of the previous
section to show that if p(n) is not too small, then “natural” additive parameters of
the random graph order Pn,p(n) have an asymptotically normal distribution.

For fixed constant p, consider the infinite random graph order PZ,p. It was shown
by Alon et al. [2] (and indeed it follows immediately from, for instance, Theorem 2.10)
that there is, with probability 1, a two-way infinite sequence of posts in PZ,p. Let the
sequence of posts of this partial order in N be X1, X2, . . ., so for instance X1 is the
first post of PZ,p to the right of 0 and the Xi are random variables taking values in
N.

For i ≥ 1, let Qi = Qi(p) be the partial order induced on the interval (Xi, Xi+1].
Also, let Q0 be the (isomorphism class of the) partial order induced on [1, X1]. The
Qi are random variables, taking values in the set Q of finite unlabeled partial orders
with a unique maximum and no other post.

It was noted in [2] that the Qi (i ≥ 0) are mutually independent random variables
and that the Qi with i ≥ 1 are identically distributed. Indeed, we prove the following
result.

Theorem 3.1. Let Q be an unlabeled partial order in Q with m minimal elements,
a covering pairs, b incomparable pairs, ` linear extensions, and s automorphisms. Take
any i ≥ 1 and any event E concerning factors Qj with j < i. Then

Pr(Qi = Q | E) = `pm+aqb/s.

Proof. For each fixed x, let us consider the event B(x) that E occurs with Xi = x
and Qi = Q. We break B(x) up into the following two independent events. Let B1(x)
be the event that (i) x is comparable with every element to its left, (ii) there are
i − 1 elements of [x − 1] comparable to every element of Z to the left of x, and (iii)
supposing these elements to be indeed posts, E occurs. Let B2(x) be the event that
(i) the unlabeled partial order induced on [x + 1, x + |Q|] is equal to Q, (ii) x + |Q|
is comparable with every element to its right, and (iii) x is comparable with every
minimal element in [x + 1, x + |Q|]. These events are independent because B1(x)
depends only on edges of the underlying random graph whose right-hand endpoint is
at most x, whereas B2(x) depends only on edges whose left-hand endpoint is at least
x.

The probability of B2(x) is equal to h(Q, p) ≡
(
`
sp
aqb
)
η(p)pm: `/s counts the

number of order-preserving labelings of Q with the elements of [x+1, x+ |Q|] and paqb

is the probability that the partial order induced on [x+ 1, x+ |Q|] is the labeled copy
of Q. Thus the probability that E occurs and Qi = Q is

∑
x Pr(B1(x))h(Q, p). Also,

the probability that E occurs is the sum over x of the probability that B1(x) occurs
and that x is comparable with every element to its right, which is

∑
x Pr(B1(x))η(p).

Therefore, the probability thatQi = Q, conditioned on E , is h(Q, p)/η(p) = `pa+mqb/s,
as desired.
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Note that Q0 has a different, but related, distribution.

The random order PN,p can be recovered as the linear sum of the Qi (i ≥ 0).
To recover Pn,p, we just need to truncate. Hopefully it is clear what is involved, and
there is no need for us to be too precise. Thus the behavior of Pn,p and PN,p can in
principle be recovered from the distribution of Qi(p) and the related random variable
Q0(p).

Our aim here is not to investigate in any more detail the distributions of the Qi,
but to make use of the fact that additive parameters of the random order, such as
the height, are essentially sums of independent random variables. For instance, the
height of Pn,p is the sum of the heights of the Qi. This idea was developed in [2]
for fixed p—what is new here is that we shall use the Berry–Esseen Theorem, which
provides an estimate for the rate of convergence of a sum of iid random variables to
a normal distribution, together with our estimates for the number of posts, to show
normal convergence also when p→ 0 sufficiently slowly to guarantee enough posts.

From now on, we let f be an additive parameter of partial orders, and let us
suppose that 0 ≤ f(P ) ≤ k|P |s for some fixed k and s ≤ 1000. This is satisfied, for
instance, if f(P ) is the height, the logarithm of the number of linear extensions, or
the number of incomparable pairs of P .

For fixed p and i ≥ 0, set Ni = Ni(p) equal to |Qi(p)| (= Xi+1 − Xi, except
for i = 0) and Fi = Fi(p) equal to f(Qi(p)). Then Fi(p) ≤ kNi(p)

s, and the two-
dimensional random variables (Fi, Ni) are mutually independent and, except for i = 0,
identically distributed. Set

α = α(p) =
EFi(p)

ENi(p)

and

Li = Li(p) = Fi(p)− α(p)Ni(p) (i ≥ 1).

Note that the Li are iid random variables with ELi = 0. We can estimate α. Note first
that ENi(p) = η(p)−2 and that EFi(p) ≤ kENi(p)

s = O(η(p)−2s) by Corollary 2.12
and the remark after. Therefore, α = O(η(p)−2(s−1)).

The idea is that f(PXm,p) is given by

f(Q0 ⊕ · · · ⊕Qm−1) =
m−1∑
i=0

Fi = F0 +
m−1∑
i=1

(Li + αNi) = F0 +
m−1∑
i=1

Li + αXm.

The first term F0 ≤ kNs
0 is almost surely not too large; the second is the sum of

m − 1 iid random variables with mean 0 and so is, for large m, approximately a
normal random variable with mean 0; the third is a fixed constant times the number
of elements in the partial order.

It is a little more complicated to deal with the random order Pn,p rather than
PXm,p, but the principle is the same. The results of the previous section tell us that
if m = bnη(p)2c, then the number of posts of PZ,p in [n] is unlikely to be too different
from m (and so n is unlikely to be very far from Xm). Indeed, fix n, set m = bnη(p)2c,
and let B be the number of posts of PZ,p in [n]. Then, by Lemma 2.8 with y = 3,

the probability that |B − m| is larger than 32p−1
√
n log3/2 n is at most 1/n. Let

Q′B = Q′B(p) be the partial order restricted to (XB , n] and set F ′B = f(Q′B) and N ′B
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equal to n−XB , the order of Q′B . Proceeding as above, we have that

f(Pn,p) = F0 +
B−1∑
i=1

Fi + F ′B

= F0 + F ′B +
B−1∑
i=1

(Li + αNi)

= F0 + F ′B + α(n−N0 −N ′B) +
m∑
i=1

Li −
m∑
i=B

Li.

(We adopt the convention that, for B > m,
∑m
i=B Li ≡ −

∑B−1
i=m+1 Li.) Therefore,

(1) f(Pn,p)− αn−
m∑
i=1

Li = (F0 − αN0) + (F ′B − αN ′B)−
m∑
i=B

Li.

We will show that the right-hand side of (1) is, with very high probability, not
too large. Then we will use the Berry–Esseen Theorem to deduce that f(Pn,p) is close
to a normal random variable with mean α(p)n and variance given by m times the
variance σ(p)2 of Li(p). (In a typical setting, we may have some estimates for α(p),
but are unlikely to have much knowledge of σ(p).)

From now on, we assume that p ≥ (2/3 + ε)π2/ logn, for some ε > 0, so that
the expected gap between posts, η(p)−2, is at most n1/2−ε, for large enough n, by
Lemma 2.1. Applying Theorem 2.10, we see that, with probability at least 1 − 1/n,
there is almost surely no post-free gap in [n] of length as great as K = 3 logn(η(p)−2+
12 log2 n/p). We assume that this is indeed the case. In particular, the “edge terms”
F0 − αN0 and F ′B − αN ′B are both bounded above in absolute value by kKs + αK ≤
2kKs.

We now turn our attention to the term
∑m
i=B Li. As we mentioned earlier, the

probability that |B−m| is at most t ≡ 32p−1
√
n log3/2 n is at least 1−1/n. Consider

the sequence of partial sums Sj = Lm+1 + · · ·+ Lm+j for j = 0, . . . , t. The sequence
(Sj) is a martingale, and the variance of St is tσ(p)2. Hence, by the Doob–Kolmogorov
inequality (see, for instance, [16]),

Pr

(
max
1≤j≤t

|Sj | ≥ d
)
≤ tσ(p)2

d2

for any d > 0. We apply this with d = σ(p)n1/4+δ, for any δ > 0, and obtain that,
with probability at least 1− tn−1/2−2δ = 1−o(1), the maximum of the |Sj | is at most
σ(p)n1/4+δ. If this is the case and m < B ≤ m+ t, then certainly∣∣∣∣∣

m∑
i=B

Li

∣∣∣∣∣ =

∣∣∣∣∣
B−1∑
i=m+1

Li

∣∣∣∣∣ = |SB−m−1| ≤ σ(p)n1/4+δ.

A similar argument works for the case where m− t < B ≤ m, and we conclude that,
almost surely, we have

∑m
i=B Li ≤ σ(p)n1/4+δ = o(σ(p)

√
nη(p)), provided we choose

δ < ε/2.
Now we come to the sum

∑m
i=1 Li. We know very little about the random variables

Li = Li(p), except that they are iid with mean 0 and some finite variance σ(p)2. The
Berry–Esseen Theorem [7] (or see, for instance, [22]), which we now state, nevertheless
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gives us information about the rate of convergence of the sum to a normal random
variable.

Theorem 3.2. Let the random variables X1, . . . , Xm be iid with mean 0 and
variance 1. Suppose that E|X1|3 < ρ. Then

sup
x

∣∣∣∣∣Pr

(
1√
m

m∑
i=1

Xi < x

)
− Φ(x)

∣∣∣∣∣ ≤ 2ρ√
m
.

In particular, if ρ = o(
√
m), then

1√
m

m∑
i=1

Xi
d−→N(0, 1).

As usual, N(0, 1) denotes a normal random variable with mean 0 and variance 1
and Φ(x) denotes its distribution function.

We shall apply the above with Xi, a normalized version of the Li. For this, we
need a bound on E|L1|3, which we obtain, rather crudely, as follows:

E|L1|3 ≤ EL2
1(2kKs) + Pr(L1 > 2kKs)E(|L1|3 | L1 > 2kKs).

As in Corollary 2.12, the second term is negligible, and we obtain that E|L1|3 ≤
3kKsσ(p)2.

Now we let Xi = Li/σ(p), so E|Xi|3 ≤ 3kKs/σ(p), and apply Theorem 3.2 to
obtain that

sup
x

∣∣∣∣∣Pr

(
1√

nη(p)σ(p)

m∑
i=1

Li < x

)
− Φ(x)

∣∣∣∣∣ ≤ 6kKs

σ(p)
√
nη(p)

.

The right-hand side above is o(1) provided Ks = o(σ(p)
√
nη(p)). If this is the

case, then we also have, almost surely, that the terms on the right-hand side of (1) are
all o (

∑m
i=1 Li) since this sum is almost surely of order σ(p)

√
nη(p). The condition on

Ks is equivalent to the requirements that

logs nη(p)−(2s+1) = o(σ(p)
√
n)

and

log3 np−s = o(σ(p)
√
nη(p)).

Thus we have the following result.
Theorem 3.3. Suppose f is an additive parameter of partial orders satisfying

f(P ) ≤ k|P |s for some k and s ≤ 1000. Take a function p = p(n) satisfying (2/3 +
ε)π2/ logn ≤ p(n) ≤ 0.005 for some ε > 0. Let α(p) = Ef(Q1)/E|Q1| and σ(p)2

be the variance of L1(p) = f(Q1) − α(p)|Q1|. Suppose that η(p)−(2s+1)σ(p)−1 =
o(
√
n log−s n) and η(p)−1p−sσ(p)−1 = o(

√
n log−3s n). Then

f(Pn,p)− α(p)n√
nη(p)σ(p)

d−→N(0, 1).

In particular, if s = 1 and σ(p) ≥ n−ε for every ε > 0, then the condition
p(n) ≥ (1 + ε)π2/ logn suffices; i.e., we have normal convergence whenever there are
at least n2/3+ε posts in the random graph order.
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The above condition on σ(p) is far from demanding. Indeed one would expect
that if the typical factor size η(p)−2 is a power of n, then so is σ(p), so that we
should certainly expect normal convergence with just n1/2+ε posts. We know that
the probability that |Q1| = 1 is just p, so if f(P ) is bounded away from α(p) for P ,
the one-element partial order, we certainly have σ(p) ≥ cp for some c > 0, which is
enough to be able to apply Theorem 3.3.

Although part of the point of this work is to obtain a result as general as The-
orem 3.3, it is also obviously important to see that it can be applied to the various
familiar additive parameters we have mentioned along the way. We start with the
height: this is just a restatement of Theorem 1.3.

Theorem 3.4. Let Hn,p be the height of the random graph order Pn,p. Suppose
p → 0 and p ≥ (1 + ε)π2/ logn for some ε > 0; then there are functions αH(p) =
e(1 + o(1))p and βH(p) such that (Hn,p − αH(p)n)/

√
nβH(p)

d−→N(0, 1).

Proof. Newman [21] proved that in this range (and indeed whenever pn → ∞
and p→ 0) the height of Pn,p is almost surely (1 + o(1))epn; i.e., α(p) = (1 + o(1))ep.
Since the one-element partial order has height 1, we see that σ(p) ≥ p/2. The result
now follows upon applying Theorem 3.3 with s = 1.

The lower bound σ(p) ≥ p/2 translates to a lower bound on βH(p), but we are
convinced this bound is far from the truth. We offer no nontrivial upper bound.
The problem of obtaining tight bounds for βH(p) seems to us to be interesting, but
probably quite difficult.

The case of p constant was dealt with in Albert and Frieze [1] and Alon et al. [2].
Again, we obtain normal convergence, but the function α(p) is unknown; see Albert
and Frieze [1] for estimates.

Theorem 3.5. Let Ln,p be the natural logarithm of the number of linear exten-
sions of the random graph order Pn,p. Suppose p → 0 and p ≥ (1 + ε)π2/ logn for
some ε > 0; then there are functions αL(p) = log(1/p) + O(1) and βL(p) such that
(Ln,p − αL(p)n)/

√
nβL(p)

d−→N(0, 1).

Proof. Note first that the number N(P ) of linear extensions of a partial order P
is bounded above by |P |!, so for any δ > 0 we have logN(P ) = O(|P |1+δ), so we may
apply Theorem 3.3 with s = 1 + δ. The required lower bound on σ(p) again follows
from a consideration of the one-element partial order.

It remains to justify the estimate given for αL(p). As proved in Alon et al. [2],
the expected value of N(Pn,p) is equal to ηn(p)p−n, so Ln,p is almost surely at most
n log(1/p) +O(1/p). Rather crudely, any n-element partial order with height at most
h has at least (n/h)!h ' (n/eh)n linear extensions, so Ln,p is almost surely at least
n log(1/e2p) = n(log(1/p)− 2).

Theorem 3.6. Let In,p be the number of incomparable pairs of elements of
the random graph order Pn,p. Suppose p → 0 and p ≥ (1 + ε)5π2/3 logn for some
ε > 0; then there are functions αI(p) = p−1 log(1/p)(1 + o(1)) and βI(p) satisfying

(π/
√

6)p−1 ≤ βI(p) ≤
(
2p−1 log(1/p)

)3/2
such that (In,p−αI(p)n)/

√
nβI(p)

d−→N(0, 1).

Proof. Here we need to apply Theorem 3.3 with s = 2: the required condition is
satisfied by this slightly larger lower bound on p.

The estimates on αI and βI are derived entirely separately, based on results of
Simon, Crippa, and Collenberg [23]. We merely sketch the proof.

Let the random variable X be the number of elements of PN,p incomparable with
element 1. Then Simon, Crippa, and Collenberg prove that X has mean and variance
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given by

EX =
∞∑
r=1

qr

1− qr , σ2X =
∞∑
r=1

qr

(1− qr)2 .

It is a straightforward exercise to estimate these sums in the case where p → 0.
Estimating the sum by the integral gives

log(1/p)

log(1/q)
≤ EX ≤ log(1/p)

log(1/q)
+
q

p
.

For the variance, for small r, the rth term of the sum is about (rp)−2, and we obtain
that

σ2X =
π2

6p2

(
1 +O(p1/2)

)
.

Ignoring edge effects, the number In,p of incomparable pairs in Pn,p is distributed
as a sum of n dependent random variables distributed as X. We thus obtain that

EIn,p = n
log(1/p)

log(1/q)
(1 + o(1)) = np−1 log(1/p)(1 + o(1)),

giving the desired estimate for αI(p).
To estimate the variance, we need to take a closer look at the dependence among

the random variables. Thus let Xi be the number of elements in the set [i + 1, i +
2p−1 log(1/p)] incomparable with element i. It is easy to see that the distribution of
Xi is very close to that of X, so that Z =

∑n
i=1Xi is a good approximation to In,p.

Now we have

σ2Z =
n∑
i=1

n∑
j=1

(E(XiXj)− (EXi)(EXj)) .

For any i 6= j, Xi and Xj are monotone decreasing functions on the underlying
space of random graphs, so by the FKG inequality (see, for instance, [10]) we have
E(XiXj) ≥ (EXi)(EXj). Therefore,

σ2Z ≥
n∑
i=1

σ2Xi ≈ n
π2

6p2
,

giving the required lower bound on βI(p) =
√

1
nσ

2In,p. For the upper bound, we

note that Xi and Xj are independent whenever |i− j| ≥ 2p−1 log(1/p). Furthermore,

if i and j are close, then we certainly have XiXj ≤
(
2p−1 log(1/p)

)2
, so, extremely

crudely, we get that

σ2Z ≤ n
(
2p−1 log(1/p)

)3
,

as required.
The true value of βI(p) is probably on the order of p−1 rather than p−3/2. One

can probably obtain better estimates, and indeed prove normal convergence for In,p
in a significantly wider range of p, without too much difficulty.
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The next result is closely related, and one can probably obtain bounds for βC(p)
in much the same way. Note, however, that the number of covering pairs (in a certain
set) is not a monotone property of the underlying random graph.

Theorem 3.7. Let Cn,p be the number of covering pairs in the random graph or-
der Pn,p. Suppose p→ 0 and p ≥ (1+ε)5π2/3 logn for some ε > 0; then there are func-
tions αC(p) = log(1/p)(1 + o(1)) and βC(p) such that (Cn,p − αC(p)n)/

√
nβC(p)

d−→
N(0, 1).

Proof. The number of covering pairs is not itself an additive parameter of partial
orders. However, let D(P ) denote the number of covering pairs of P plus the number
of minimal elements. This is still not an additive parameter, but it becomes one if
we impose the condition that all factors in the linear sum have a unique maximal
element. This condition is satisfied in our setting, where all the factors have a post
as top element.

Thus we may apply Theorem 3.3 to D(Pn,p) with s = 2, and the number of
minimal elements is almost surely at most (1 + o(1))p−1—a negligible contribution to
D(Pn,p). We omit the remaining details.

Normal convergence probably holds for all these parameters even when p is much
smaller that 1/ logn, and it may well be possible to prove much stronger versions of
the above theorems by making use of further knowledge of the particular parameters.
In particular, any good bounds on σ(p) for the various parameters of study would
automatically yield an improvement in our results.

We would like to finish by reiterating the qualitative interpretation of our results,
which we feel are more important than any of the quantitative statements we prove.
Essentially we have shown that if p logn→∞ (or even if p logn is sufficiently large),
then the structure of a random graph order is that of the linear sum of many smaller
orders, and so additive parameters such as the height have an asymptotically normal
distribution.
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Abstract. The proof of Wagner’s conjecture by Robertson and Seymour gives a finite
description of any family of graphs which is closed under the minor ordering. This description
is a finite set of minimal graphs not in the family; these graphs are called the obstructions of
the family. Since the intersection and union of two minor closed graph families is again a minor
closed graph family, an interesting question regards computing the obstructions of the new family
given the obstructions for the original two families. It is easy to compute the obstructions of the
intersection, but nontrivial to compute those of the union. In this paper, we show that if the

original families are planar then the planar obstructions of the union are no larger than nO(n2),
where n is the size of the largest obstruction of the original families.

Key words. intertwines, minors, topological embedding

AMS subject classification. 05C10
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1. Introduction. Robertson and Seymour’s proof of Wagner’s conjecture [RSa]
raises some interesting computational questions. An immediate corollary of the
theorem is that for every family of graphs closed under minors (called lower ideals),
the set of minimal graphs outside the family is finite. This set of graphs is called the
obstruction set of the family. Robertson and Seymour also show that for every fixed
graph G there is a polynomial-time algorithm that checks if a graph H contains G as
a minor [RS95]. Therefore, every lower ideal has a polynomial-time membership test.

It would thus seem that the Robertson and Seymour proof should give powerful
techniques for devising graph-theoretic algorithms. However, the nonconstructive
nature of some parts of this work make it, in general, difficult to apply to some
problems. For example, consider the problem of deciding whether a graph is
embeddable in 3-space without a knot. It is easy to see that this class of graphs is
closed under minors and therefore can be recognized in polynomial time. However,
there is no specific polynomial-time algorithm or, in fact, even a recursive algorithm
known for this problem.

Some research has centered on devising constructive proofs of certain aspects of
the Robertson and Seymour work. A general format for such work is to start with
a specific lower ideal or a class of lower ideals and, for these ideals, either compute
their obstruction sets or find an alternate polynomial-time algorithm. Bodendiek and
Wagner [BW89] gave upper bounds on the size of obstruction sets for fixed genus
graphs. In [DR91], Djidjev and Reif gave improved bounds for the same problem.
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In [RST95], Robertson, Seymour, and Thomas found the obstruction set for the
problem of linkless embeddings of graphs in three-dimensional space. Like knotless
embeddings, no algorithm for this problem was previously known.

Fellows and Langston have extensively studied the more general problem of
determining when obstruction sets can be computed. In [FL94], they developed
algorithms that use structural bounds based on knowledge about certain structures
in the obstruction set and more general algorithms that rely on the existence of a
polynomial-time self-reduction. Here the obstruction is constructed incrementally
as needed—it is not possible to know whether the obstruction set has been entirely
computed. These techniques seem widely applicable with few known natural problems
to which they do not apply (knotlessness being one of the few such examples).

In [FL89], Fellows and Langston showed that it is possible to compute obstruction
sets when the following three conditions are satisfied:

1. A bound on the treewidth of the obstructions is known.
2. A membership algorithm for the lower ideal is given.
3. A finite congruence for the lower ideal is known.

Since it is often the case that the first two conditions are satisfied, the difficulty
often lies in constructing the congruence. Moreover, the algorithms generated by this
approach are only known to halt—there is no bound known on their running time.

In this paper we are interested in operations under which lower ideals are closed.
In particular, lower ideals are closed under both finite unions and intersections. In
light of this, a natural problem is that of determining the obstructions of the new
lower ideal in terms of the obstructions of the original ideals. For intersections the
situation is quite easily resolved; the new obstructions are a subset of all the original
obstructions.

For unions, the problem can be reduced to the following. Given two graphs G1

and G2, compute all the minimal graphs under the minor ordering containing both
G1 and G2 as minors. These minimal graphs are called the intertwines of G1 and
G2. Now every obstruction of the union is an intertwine of some pair of obstructions
from the original families. In this paper we are interested in the intertwines of planar
graphs.

A problem closely related to computing intertwines under the minor ordering is
that of computing the topological embedding intertwines of two graphs. That is,
given two graphs G1 and G2, what are the minimal graphs under the topological
embedding relation that contain both G1 and G2 as topological embeddings? An
upper bound on the size of the largest topological embedding intertwine gives an
upper bound on the minor intertwines. The topological embedding intertwines have
a number of properties that make their study simpler.

In 1976, Lovàsz conjectured that the number of topological embedding intertwines
is finite for any pair of graphs. In 1978, Ungar [Ung78] independently also made the
same conjecture and went on to compute the intertwines for a few specific examples.
Robertson and Seymour’s work directly implies that the number of minor intertwines
for any two graphs must be finite. They also proved that the number of topological
embedding intertwines is also finite [RSa].

Until recently, no recursive bounds on the sizes of either minor or topological
embedding intertwines were known, even for very restricted cases. Fellows and
Langston [FL89] described a congruence that can be used for this problem when a
bound is known on the treewidth of the obstructions. This allows, for example, the
intertwines of two planar graphs to be computed by a recursive procedure since the
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treewidth of the intertwines is bounded by a quadratic function of the size of the
underlying obstructions.

Seymour and Thomas [ST91] gave a general bound on the sizes of topological
embedding intertwines using techniques developed in the Robertson–Seymour work.
In general, their bound is an iterated tower of 2’s whose height is an iterated tower
of 2’s of height n with n the size of the two graphs. Moreover, they gave an upper
bound that is doubly exponential in t and n for topological embedding intertwines
having treewidth ≤ t. This, together with other results of Robertson, Seymour, and

Thomas, yields a bound of 2222
poly(n)

for the case of planar graphs.

Recently, Lagergren [La94] improved these bounds to being triply exponential in
n5, where n is the size of the planar graphs. He also gave bounds on the size of
intertwines for trees and graphs of bounded pathwidth.

In this paper we obtain a bound of nO(n2) for the size of the planar intertwines of
two planar graphs of size n. This directly gives a doubly exponential-time algorithm
for finding the planar obstructions of the union of two lower ideals of graphs. Unlike
most of the other results mentioned above, our results do not draw upon the Robertson
and Seymour work, but rather rely on studying properties of the planar embeddings
of intertwines. Recently we also obtained a triply exponential bound on the size of
the planar topological embedding intertwine of planar graphs [GI].

The outline of the paper is as follows. In the next section, we introduce basic
definitions and results about graph minors. In section 3, we give a number of technical
results which will be useful in the main theorem. Section 4 contains the main result.
Finally, in section 5, we present open problems.

2. Preliminaries. We refer the reader to Bondy and Murty [BM76] for back-
ground material on graph theory. In this paper, we will deal only with undirected
simple graphs; that is, we do not allow multiple edges or self-loops. Our results can
easily be extended to nonsimple graphs. For a graph G, V (G) and E(G) will denote
its vertex and edge set, respectively. For a, b ∈ N, we will denote by [a, b] the set
{a, a+ 1, . . . , b}.

We will mainly be concerned with the minor relation on graphs. A graph G is a
minor of a graph H if by performing a sequence of vertex deletions, edge deletions,
and edge contractions on H we obtain a graph isomorphic to G. We will use the
following characterization of the minor relation.

Lemma 2.1. Let G and H be graphs. Then G is a minor of H if and only if there
is an injective function µ : V (G) → {subgraphs of H} such that

1. for every v ∈ V (G), µ(v) is a connected nonnull subgraph of H,
2. for v, w ∈ V (G), if v 6= w then µ(v)

⋂
µ(w) = ∅, and

3. for each e ∈ E(G), e = {v, w}, there is an e′ = {x, y} ∈ E(H) such that
x ∈ µ(v) and y ∈ µ(w).

We will call µ the minor embedding of G into H.

Definition. A family of graphs L is a lower ideal if whenever a graph H ∈ L
and G ≤m H then G ∈ L. The obstruction set O of a lower ideal L is the minimal
set of graphs (with respect to the minor ordering) not in L. Then a graph H 6∈ L if
and only if for some G ∈ O, G ≤m H.

We can characterize Robertson and Seymour’s result on graph minors in terms
of obstruction sets of lower ideals.

Theorem 2.2 (Robertson–Seymour). The obstruction set of every lower ideal is
finite.
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Related to the minor relation is the topological embedding relation on graphs.
Let us call an edge with one endpoint having degree at most 2 a 2-edge. A graph G is
topologically embedded in a graph H, G ≤e H, if by performing a sequence of vertex
deletions, edge deletions, and 2-edge contractions on H we obtain a graph isomorphic
to G. We use the following characterization of this relation.

Lemma 2.3. Let G and H be graphs. Then G is topologically embedded in H if
and only if there is a pair of injective functions (τ, τ ′) such that the following holds.

1. τ : V (G) → V (H). We call τ(V (G)) the terminals of G.
2. τ ′ : E(G) → {simple paths in H}.
3. If e = {x, y} ∈ E(G) then τ ′(e) has endpoints τ(x) and τ(y).
4. For e, e′ ∈ E(G), e 6= e′, τ ′(e) and τ ′(e′) are internally vertex disjoint.

We will call the pair (τ, τ ′) the topological embedding of G into H. Notice that the
function τ is implicit from τ ′; we will often only specify the edge mapping and speak
of a function τ ′ as being a topological embedding of a graph G into a graph H.

Clearly if G ≤e H then G ≤m H. The converse holds in general only if G
is trivalent. The following well-known relationship between minors and topological
embeddings is central to our results; we sketch the proof here.

Lemma 2.4. For every graph G there is a finite family of graphs G1, G2, . . . , Gk,
G ≤m Gi for every i, such that for any graph H, G ≤m H if and only if for some i,
Gi ≤e H. Furthermore, every Gi has the same genus as G and |V (Gi)| ≤ O(|E(G)|).

Proof (sketch). Suppose G and H are graphs such that G ≤m H, and let µ be
the minor embedding of G into H which, for every v ∈ V (G), minimizes the size of
µ(v). Then, for every v ∈ V (G), µ(v) is a tree with leaves at most the degree of
v in G. Furthermore, the number of internal vertices of µ(v) with degree at least
3 is bounded by the number of leaves of µ(v). Let µ′(v) be the tree obtained from
µ(v) by contracting all 2-edges. Then the Gi we are looking for is G such that for
every vertex v we substitute µ′(v) where the leaves of µ′(v) are used to construct the
adjacencies of v. Now each of the Gi’s is obtained by substituting for each vertex v
of H a tree with at most degree of v leaves and no internal degree 2 vertices. Since
the total number of possible trees for each degree is bounded, the result follows. The
genus and size conditions are easy to verify.

We will refer to G1, . . . , Gk in Lemma 2.4 as the expansions of G.

2.1. Unions of lower ideals. Clearly, lower ideals are closed under finite unions
and intersections. Given the obstruction set of two lower ideals, one can ask for the
obstruction set of their intersection or union. For intersection, the situation is
straightforward.

Lemma 2.5. Let L1 and L2 be lower ideals with obstruction sets O1 and O2,
respectively. Then the obstruction set of L1

⋂L2 is the set of minimal graphs in
O1

⋃O2.

The case for union is more complicated.

Definition. For graphs G1 and G2 the intertwine set of G1 and G2, I(G1, G2),
is

{G :G1, G2 ≤m G and for every H ≤m G,H 6= G,

either G1 6≤m H or G2 6≤m H}.

Note that I(G1, G2) can, in general, have many elements; it is not difficult to
construct examples where |I(G1, G2)| ≥ 2O(|E(G1)|+|E(G2)|).
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Lemma 2.6. Let L1 and L2 be lower ideals with obstruction sets O1 and O2,
respectively. Then the obstruction set of L1

⋃L2 is a subset of
⋃{I(G1, G2) : G1 ∈

O1, G2 ∈ O2}.
Proof. Let H be a graph, H 6∈ L1

⋃L2. Then H 6∈ L1 and H 6∈ L2; therefore,
there is a G1 ∈ O1 and a G2 ∈ O2 such that G1, G2 ≤m H. But then, by the
definition of I(G1, G2), there is an H ′ ∈ I(G1, G2) such that H ′ ≤m H.

Notice that if {G1} and {G2} are the obstruction sets of L1 and L2, respectively,
then I(G1, G2) is exactly the obstruction set of L1

⋃L2.
We can similarly define the topological embedding intertwine of two graphs

Ie(G1, G2) as the set of minimal graphs (under topological embedding) which contains
G1 and G2 as topological embeddings. Using Lemma 2.4 we obtain the following.

Lemma 2.7. Let G1 and G2 be graphs and H ∈ I(G1, G2). Then there are graphs
G′

1, G
′
2, expansions of G1 and G2, respectively, such that H ∈ Ie(G′

1, G
′
2).

Let G1, G2, G
′
1, G

′
2, H be as in Lemma 2.7. If (τ1, τ

′
1) is the embedding of

G′
1 in H and (τ2, τ

′
2) is the embedding of G′

2 in H, then the terminals of H are
τ1(V (G′

1))
⋃
τ2(V (G′

2)), that is, the terminals of G′
1 plus the terminals of G′

2. The
nonterminals of H are all vertices which are not terminals.

2.2. Grids and planar graphs. We denote a k × ` grid by Gk,`. We can label
the vertices of Gk,` by ordered pairs G(i, j), where 1 ≤ i ≤ k and 1 ≤ j ≤ `, and by
(i, j) when the grid graph is understood.

It is not difficult to see that every planar graph is a minor of a sufficiently large
grid; however, our bounds rely on making this grid as small as possible. We next
show that for a graph on n nodes an O(n) × O(n) grid suffices. A similar result
is inherent in the work of Robertson and Seymour in which they show that planar
graphs are well quasi-ordered under minors [RS84].

Theorem 2.8. For every planar graph G such that |V (G)| = n, G ≤m G3n,2n.
Proof. Without loss of generality, we can assume that the graph is connected. A

planar graph (with a corresponding planar embedding) can be inductively built by
adding, at each step, either an edge between two vertices on the outside face or an
edge from a vertex on the outside face to a new vertex, where in either case the new
edge is constrained to lie on the outside face of the resulting embedding.

Given a planar embedding, there is a unique closed walk along the outside face
(in, say, the counter clockwise direction) (see Figure 1). Notice that since the graph
is not necessarily two connected, some vertices can be encountered more than once
on this walk. For example, for a tree, this walk corresponds to a listing of the vertices
in a depth-first traversal of the tree.

Let v1, v2, . . . , vk be the closed walk on the outside face of an n node planar
graph with m edges, m ≤ 3n − 6, where some of the vi’s might be the same vertex
and v1 = vk. The induction hypothesis is that there is a minor embedding µ of G
into a grid Gm,2n such that for each i, 1 ≤ i ≤ k, (m, `i) is a vertex of µ(vi) for some
1 ≤ `i ≤ m and `1 < `2 < · · · < `k. Furthermore, for every vertex v of G, µ(v) does
not contain any edge in row m of the grid Gm,2n (i.e., any edge of the form (m, j)).

We consider two cases. First suppose that G′ is formed from G by adding an edge
between two vertices x and y on the outside face of G (see edges e1 and e2 in Figure 1).
Then, for the resulting walk w1, . . . , wk′ on the outside face of G′, there is an r,
1 ≤ r ≤ k′ such that w1, . . . , wr is exactly the same as v1, . . . , vr and wr+1, . . . , wk′ is
exactly the same as vk−k′+r+1, . . . , vk with wr = x and wr+1 = y. Let µ be a minor
embedding of G into an m× 2n grid G′m,2n, as in the induction hypothesis. We define
µ′ to be a minor embedding of G′ into an (m + 1)× 2n grid G′m+1,2n as follows. For
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Walk on original graph (dark lines): v1, v2, v3, v4, v5, v6, v7, v6, v8, v6, v5, v3, v2, v9, v10, v11, v1

After addition of edge e1: v1, v2, v3, v4, v5, v6, v7, v6, v8, v6, v5, v3, v2, v9, v11, v1

After addition of edges e1, e2: v1, v4, v5, v6, v7, v6, v8, v6, v5, v3, v2, v9, v11, v1

After addition of edges e1, e2, e3: v1, v4, v5, v6, v7, v6, v8, v6, v5, v3, v2, v12, v2, v9, v11, v1

Fig. 1. A planar embedding with walks on the original graph (dark lines) and after addition
of some new edges.

vertices u of G′ other than those in w1, . . . , wk′ , µ
′(u) = µ(u). For 1 ≤ i ≤ r − 1,

µ′(wi) consists of µ(vi) plus the edge from (m, `i) to (m + 1, `i). Similarly, for
r + 1 ≤ i ≤ k′, µ′(wi) consists of µ(vk−k′+i) plus the edge from (m, `k−k′+i) to
(m + 1, `k−k′+i). Finally, µ′(wr) consists of µ(vr) plus the edge from (m, `r) to
(m+ 1, `r) plus the path from (m, `r) to (m, `k−k′+r+1 − 1). It is straightforward to
verify that the induction hypothesis is satisfied.

Now suppose that G′ is formed from G by adding an edge from some vertex x
on the outside face of G to a new vertex y (see edge e3 in Figure 1). Let us assume
that x is v1; the case where it is not is similar but more technical. Now the walk
along the outside face of G′ is v1, . . . , vk, vk+1, vk+2, where v1 = vk = vk+2 = x and
vk+1 = y. Let µ be a minor embedding of G into an m × 2n grid G′m,2n, as in the
induction hypothesis. Then we define µ′ to be a minor embedding of G′ into an
(m+1)×(2n+2) grid G′m+1,2n+2. For vertices u of G other than the vi, µ

′(u) = µ(u).
For 1 ≤ i ≤ k and vi 6= x, µ′(vi) consists of µ(vi) plus the edge from (m, `i) to
(m+ 1, `i). Furthermore, µ′(y) consists of the single vertex (m+ 1, 2n− 1) and µ′(x)
consists of the following pieces:

1. µ(x),
2. the edges from (m, j) to (m+ 1, j), where vj = x, and
3. the path from (m, `k) to (m, 2n + 2) and the edge from (m, 2n + 2) to

(m+ 1, 2n+ 2).
Again, it is straightforward to verify that the induction hypothesis is satisfied.

Let G be a planar graph with some fixed embedding on the plane. Let C be a
simple circuit of G. Then the plane with C removed divides into two regions—an
infinite one and a finite one. We call the finite region the disc induced by C and
denote it ∆(C). ∆(C) will not contain C itself.
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3. Technical results.

3.1. Basic structure of intertwine graphs. Let G1 and G2 be graphs where
|E(G1)|+ |E(G2)| = m. Consider a minor intertwine H of G1 and G2 and let G′

1 and
G′

2 be the topological expansions of G1 and G2 given in Lemma 2.7. Throughout this
section assume that G1, G2, G

′
1, G

′
2, and H are all fixed and that for i = 1, 2, (τi, τ

′
i)

is the topological embedding of G′
i in H. We begin by defining a labeling on E(H)

and V (H).

Lemma 3.1. Let e ∈ E(H) such that neither endpoint is a terminal. Then there
is exactly one e′ ∈ E(G′

1)
⋃
E(G′

2) such that e is in the image of e′.
Proof. If there is no edge e′ whose image contains e, then we can delete e from H,

contradicting the minimality of H. Furthermore, clearly there cannot be two edges
of E(G′

1) (respectively, E(G′
2)) whose image contains e since τ ′1 (respectively, τ ′2)

maps edges of G′
1 (G′

2) to internally vertex disjoint paths. Suppose e′1 ∈ E(G′
1) and

e′2 ∈ E(G′
2) both contain e in their image. But then H with e contracted contains

both G1 and G2 as minors, again contradicting the minimality of H.

For e, e′ as in Lemma 3.1, we denote e′ by l(e).

Lemma 3.2. Every nonterminal of H is in the image of exactly one edge of G′
1

and one edge of G′
2.

Proof. Let v be a nonterminal of H. First, v can be in the image of at most one
edge of G′

1 and one edge of G′
2 since the images of edges are internally vertex disjoint

paths. If v is not in the image of an edge of G′
1 or G′

2 we can delete v, thereby
reducing the size of H. If v is in the image of an edge of G′

1 but not G′
2 (or an edge

of G′
2 but not G′

1) then v has degree 2 and we can contract one of the edges through
v, again reducing the size of H.

If v is a nonterminal, let e1 ∈ E(G′
1) and e2 ∈ E(G′

2) such that v is in the image
of e1 and e2, as in Lemma 3.2. Then we write l1(v) = e1 and l2(v) = e2. We note the
following corollary of Lemma 3.1 and Lemma 3.2.

Corollary 3.3. Let v be a nonterminal of H. Then v has degree 4.

3.2. Reroutings. We will frequently wish to show that an intertwine graph
cannot contain certain structures as subgraphs. To do this, we will demonstrate a
method of using the structure to reroute paths from the embedding of one graph along
edges currently used only for the embedding of the other graph. If this rerouting of
paths from the first graph is proper (i.e., does not use an edge used in the original
embedding), we can omit that edge and still contain both graphs as embeddings.
Thus, we get a contradiction to the minimality of the intertwine, so no intertwine can
contain the structure. Formally, we have the following definition.

Definition. Let H be a graph, and let P1, . . . , Pk be simple vertex disjoint
paths in H. Let si and ti be the endpoints of Pi. A rerouting of P1, . . . , Pk is a
sequence of vertex disjoint simple paths of H, R1, . . . , Rk satisfying the following:

1. Ri has endpoints si and ti,
2. every vertex x in Ri lies in Pj for some 1 ≤ j ≤ k,
3. there is at least one edge f ∈ ∪1≤i≤kPi − ∪1≤i≤kRi.

Definition. Let H be a graph containing G as a topological embedding via
map τ . Let P1, . . . , Pk be simple vertex disjoint paths in H. We say that P1, . . . , Pk
are monochromatic for τ if for every 1 ≤ i ≤ k there is an ei ∈ E(G) such that Pi is
a subpath of τ(ei).

The next lemma shows that reroutings are not possible in a topological embedding
intertwine.
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Fig. 2. Regions of this form contain a vertex of H if and only if they contain a terminal vertex.

Lemma 3.4. Let H be a topological embedding intertwine of G1 and G2. Let τ1
and τ2 be the corresponding embeddings, and let P1, . . . , Pk be monochromatic paths
for τ1. Then H does not contain a rerouting of P1, . . . , Pk.

Proof. Let P1, . . . , Pk be monochromatic paths for τ1 with si and ti, the endpoints
of Pi. Let e1, . . . , ek be edges of G1 such that Pi is a subpath of τ1(ei), 1 ≤ i ≤ k.
Suppose R1, . . . , Rk is a rerouting in H of P1, . . . , Pk. Let f ∈ ∪1≤i≤kPi −∪1≤i≤kRi.
We claim that H ′ = H − {f} also contains G1 and G2 as embeddings. This is a
contradiction since H properly contains H ′ as a topological embedding.

Since f ∈ Pi0 ⊆ τ1(ei0) for some i0, l(f) = ei0 ∈ E(G1), so H ′ contains G2 as
an embedding via the same embedding τ2. Let τ be the following embedding of G1

into H. For nodes and edges of G1 other than e1, . . . , ek, τ is the same as τ1. τ(ei) is
τ1(ei) with all subpaths Pi replaced by Ri. (Note that we do not assume the ei’s are
distinct in the definition of monochromatic, so in addition to Pi there may be some
other Pi′ which is replaced by Ri′ .)

To see that τ is an embedding, first note that each Ri and each g ∈ E(G1) shares
no vertex other than si and ti with any of the subpaths we get from τ1(g) by deleting
all Pj with g = ej . This is because each vertex in Ri is in Pj for exactly one j, and
if ej 6= g, Pj is vertex disjoint from τ1(g). Then, since the Ri are vertex disjoint, it
follows that the τ(g)’s are vertex disjoint for g ∈ E(G1). Using a similar argument,
we can also show that the τ(ei)’s are simple.

As an immediate consequence, we obtain the following.
Lemma 3.5. Let H be a topological embedding intertwine of G1 and G2. Let

e ∈ E(H) and l(e) ∈ E(G1), and let x and y be the endpoints of e, with neither a
terminal. Then l2(x) 6= l2(y).

Proof. Assume l2(x) = l2(y) = f ∈ E(G2), and let P be the subpath of τ2(f)
connecting x to y. Then e is a rerouting of P .

3.3. Circuits in planar intertwine graphs. From this point on, we assume
that G1, G2, G

′
1, G

′
2, and H are all planar and that we have fixed some planar drawing

of H. This induces a fixed planar drawing of G′
1 and G′

2. We begin by studying
circuits of H.

Lemma 3.6 (refer to Figure 2). Let e1, e2 ∈ E(G′
1) and f1, f2 ∈ E(G′

2). Suppose
there is an edge e1 of τ ′1(e1), an edge e2 of τ ′1(e2), a subpath P1 of τ ′2(f1), and a
subpath P2 of τ ′2(f2) such that P1, e1, P2, e2 forms a simple cycle C of H. If any vertex
of H is in ∆(C) then there is a terminal of H in ∆(C).

Proof. If f1 = f2, H is not minimal since we can reroute along e1. Suppose v is a
nonterminal in ∆(C) such that no terminal of H is in ∆(C), and suppose l2(v) = g2.
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Fig. 3. Jumps.

Since H is planar and the endpoints of τ ′2(g2) are not in ∆(C), the path τ ′2(g2) must
cross C (at least two times). If g2 6= f1, f2 then by Lemma 3.2 τ ′2(g2) cannot cross C.
If g2 = f1 or g2 = f2 then the path τ ′2(g2) is not simple.

3.4. Jumps. Here we consider edges of G′
i (i = 1, 2) whose images are long

paths in H. For the remainder of this section let e ∈ E(G′
1) and f1, . . . , fk ∈ E(H)

such that
1. each fi has endpoints xi and yi where the xi are on τ ′1(e) (but not necessarily

the yi),
2. x1, x2, . . . , xk occur in that order on τ ′1(e) (i.e., ordered by distance from one

endpoint),
3. the yi’s are all distinct, and
4. if z and z′ are the endpoints of τ ′1(e), then by viewing τ ′1(e) as a directed

path in the plane from z to z′ any edge of H meeting τ ′1(e) is in one of two
orientations, which we will call “up” and “down.” Then all edges fi have the
same orientation with respect to τ ′1(e).

If e ∈ E(G′
1), x is an endpoint of τ ′1(e), and u, v are two other vertices on τ ′1(e)

then we say that relative to x, u is left (respectively, right) of v on τ ′1(e) if x, u, v
(respectively, x, v, u) occur in that order on τ ′1(e).

Definition. A jump on f1, . . . , fk is an interval [j1, j2], 1 ≤ j1 < j2 ≤ k, such
that

1. l1(yj1) = l1(yj2) = g for some g ∈ E(G′
1),

2. the subpath of τ ′1(g) with endpoints yj1 and yj2 contains no other yi,
1 ≤ i ≤ k, and

3. j2 > j1 + 1.
A jump [j1, j2] is maximal if there is no other proper jump [j′1, j

′
2] such that [j1, j2] ⊂

[j′1, j
′
2] (see Figure 3).
With every jump [j1, j2] we associate a disc ∆(j1, j2) bounded by the circuit

which starts at yj1 , follows τ ′1(g) to yj2 , goes to xj2 , follows τ ′1(e) to xj1 , and returns
to yj1 . We make two observations about jumps and their associated discs.
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Fig. 4. When [j1, j2] contains no jump, the path τ ′1(g) starting at w goes through yj1+1,
yj1+2, . . . , yj2 , yj1 in that order. Then r = j1 + 1 satisfies the claim in the proof of Lemma 3.9.

Fact 3.7. Because of planarity, all maximal jumps must be disjoint (except
possibly at their endpoints).

Fact 3.8. For any jump [j1, j2], ∆(j1, j2) contains a terminal of H. If, in
addition, g = l1(yj) = l1(yj1) for j1 < j < j2, then ∆(j1, j2) contains an endpoint of
τ ′1(g).

Lemma 3.9. Suppose that for 1 ≤ i ≤ k, l1(yi) = g for some g ∈ E(G′
1). Then

there is a j, 1 ≤ j ≤ k and ` ≥ k/5 such that yj+1, . . . , yj+` occur in that order on
τ ′1(g).

Proof. Suppose [j1, j2] is a jump on f1, . . . , fk. Since at least one endpoint of
τ ′1(g) occurs in ∆(j1, j2) (Fact 3.8), there are at most two maximal jumps in [1, k].

We first consider the structure of jumps that contain one endpoint of τ ′1(g) and
those that contain two endpoints.

Let [j1, j2] be a jump, 1 ≤ j1 < j2 ≤ k, so that exactly one endpoint w of τ ′1(g)
lies in ∆(j1, j2). Without loss of generality, assume that w, yj2 , yj1 occur in that order
on τ ′1(g).

Claim. There is an r, j1 ≤ r ≤ j2, so that the path τ ′1(g) passes through the
vertices w, yr, yr−1, . . . , yj1 in that order and τ ′1(g) passes through w, yr, yr+1, . . . , yj2
in that order.

Proof. The proof is by induction on j2 − j1. For the base case, j2 − j1 = 2. By
choosing r = j1 + 1 it is straightforward to verify that the claim is satisfied.

For the induction step, we consider two cases. If [j1, j2] does not properly contain
any jump then the path from w passes through yj1+1, . . . , yj2 in that order and we
let r = j1 + 1 (see Figure 4).

Otherwise suppose [j1, j2] contains at least one proper jump. Then, in the interval
[j1, j2], there is a unique maximal jump [j′1, j

′
2]. Here, uniqueness is guaranteed by

Fact 3.8 since w must lie in any such maximal jump. Notice that there are no jumps
in the interval [j′2, j2] since such a jump would necessitate a terminal other than w
in the jump [j1, j2]. Therefore, on τ ′1(g), the vertices w, yj′2 , yj′2+1, . . . , yj2 occur in
that order. Furthermore, j′1 = j1 + 1, since otherwise the only way that τ ′1(g) could
pass through, for example, yj1+1 is if another endpoint of τ ′1(a) lies in [j1, j2] but not
in [j′1, j

′
2], which is a contradiction. By induction there is an r in [j′1, j

′
2] such that

starting at w, the path τ ′1(g) passes through the vertices w, yr, yr−1, . . . , yj′1 in that
order and τ ′1(g) passes through w, yr, yr+1, . . . , yj′2 in that order. Thus, τ ′1(g) passes
through w, yr, . . . , yj′2 , . . . , yj2 in that order. Furthermore, τ ′1(g) starting at yj1+1 and
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going to yj1 can only pass through yi for i > r, since otherwise it would intersect
itself. Thus, τ ′1(a) starting at w passes through yr, yr−1, . . . , yj1+1, yj1 in that order.
This proves the claim.

We now consider a jump [j1, j2] that contains two endpoints. First sup-
pose there are no maximal proper jumps inside [j1, j2]. Let w1 and w2 be the
endpoints and suppose that τ ′1(g) passes through w1, yj1 , yj2 , w2 in that order. If
yr is the first yi on the path from w1 to yj1 , then clearly τ ′1(g) passes through
w1, yr, yr−1, . . . , yj1 , yj2 , yj1−1, . . . , yr+1, w2 in that order.

If the jump [j1, j2] contains maximal proper jumps then no proper maximal
jump in [j1, j2] contains both endpoints. Thus, we can apply the above claim to
maximal jumps inside [j1, j2] to yield an r1, r2, r3, j1 ≤ r1 ≤ r2 ≤ r3 ≤ j2, such that
yr1 , yr1−1, . . . , yj1 , yr1 , yr1+1, . . . , yr2 , yr3 , yr3−1, . . . , yr2 , and yr3 , yr3+1, . . . , yj2 each
occur in that order.

Finally, we consider all yi that are not inside any jump. Then τ ′1(a) must pass
consecutively through these yi. Thus, the interval [1, k] can be partitioned into at
most five subintervals such that the yi’s occur consecutively on τ ′1(a) in each piece.
By choosing the largest subinterval, the result follows.

We can generalize Lemma 3.9 to handle the case of arbitrary labels on the yi.
Lemma 3.10. There is a g ∈ E(G′

1) and 1 ≤ i < j ≤ k such that
1. yi, yi+1, . . . , yj occurs in that order on τ ′1(g),
2. j − i is at least k

O(m2) (where |E(G′
1)| ≤ m), and

3. there are no vertices in ∆(`, `+ 1) for i ≤ ` ≤ j − 1.
Proof. Since |E(G′

1)| ≤ m, there is an ` ≥ k
m and a g ∈ E(G′

1) such that
yi1 , yi2 , . . . , yi` are all vertices on τ ′1(g). By Lemma 3.9, there are j1 < j2 < · · · < j`′ ,
{j1, . . . , j`′} ⊆ {i1, . . . , i`}, such that τ ′1(g) passes through yj1 , . . . , yj`′ in that order

starting at one of the endpoints and `′ ≥ k
5m . We need only show that a sufficiently

large subset of these ji occur in consecutive order. Consider the discs ∆(jr, jr+1) for
1 ≤ r < `′. By Lemma 3.6, at most 2m of these discs contain a vertex of H since
each disc which contains a vertex of H contains a terminal vertex. Then there are r
and s, 1 ≤ r < s < `′, such that s − r ≥ k

5m(2m+1) such that the discs ∆(jr, jr + 1)

and ∆(js, js + 1) both contain terminals but no disc in between these contains a
terminal. Then, by Fact 3.8, there cannot be any jump on [jr+1, js]; therefore,
yjr+1, yjr+2, . . . , yjs must occur in that order along τ ′1(g).

3.5. Intersections in planar drawings. We next look at the types of inter-
sections two paths can make on the plane. In order to avoid overly cumbersome
notation, our presentation in this section is slightly informal—it is not difficult to
formalize these arguments.

For a planar graph G, suppose P1 is any nontrivial path in G, P2 = v1, v2, v3 is a
length 3 path in G, and P1 and P2 have only the vertex v2 in common, where v2 is not
an endpoint of P1. Let w be an endpoint of P1 and consider a fixed planar drawing
of G. Then, relative to w, there are exactly three different types of intersections
between P1 and P2 with respect to the drawing (see Figure 5). We call these three
types of intersections a

∨
-intersection, a +-intersection, and a

∧
-intersection relative

to w. Furthermore, we will call v1 and v3 the ends of the intersections relative to
w, and, more specifically for a

∨
-intersection, we will call v1 the left end and v3 the

right end.
Lemma 3.11. Let e ∈ E(G′

1) and w be an endpoint of τ ′1(e). Suppose a path
W = v1, v2, v3 in H is a

∨
-intersection with τ ′1(e) relative to w and l1(v1) = l1(v3) = f .

Consider the subpath P of τ ′1(f) between v1 and v3. Then, if the disc bounded by the
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Fig. 5. Types of intersections.

circuit P, v3, v2, v1 contains no terminals, there is a path W ′ = w1, u, w2 in H such
that u is on P and W ′ is a

∨
-intersection with P relative to v1. We call W ′ a child

of W (see Figure 6).
Proof. By Lemma 3.5, P is not a single edge. So |P | > 2 and there is a

nonterminal u in the interior of P . Suppose l1(u) = g, where g ∈ E(G′
1). Let

τ ′1(g) = P1, w1, u, w2, P2, where P1 and P2 are subpaths of τ ′1(g). Since by Lemma 3.6
no part of τ ′1(g) can be inside the disc bounded by the circuit P, v3, v2, v1, either
w1, u, w2 or w2, u, w1 is the required

∨
-intersection.

Referring to Lemma 3.11, we define a
∨

-intersection P ′ to be a descendant of
a
∨

-intersection P if there is a sequence of
∨

-intersections P1 = P, P2, . . . , Pk = P ′

such that for 1 < i ≤ k, Pi is a child of Pi−1.

4. Planar intertwines. In this section we prove our following main result.
Theorem 4.1. For planar graphs G1 and G2 and H ∈ I(G1, G2), if |E(G1)| +

|E(G2)| = m ≥ 2 then |E(H)| ≤ mO(m2).
This theorem will follow from Theorem 2.8 and the following lemma.
Lemma 4.2. For planar graphs G1 and G2 and H ∈ Ie(G1, G2), if |E(G1)| +

|E(G2)| = m > 2 and |E(H)| > mO(m2) then G3m,3m ≤m H.
We first give a proof of Theorem 4.1 using Lemma 4.2. The remainder of this

section will then be devoted to a proof of Lemma 4.2.
Proof (Theorem 4.1). Let G1 and G2 be planar graphs and H ∈ I(G1, G2).

Suppose |E(H)| > mO(m2). Then there are G′
1 and G′

2 expansions of G1 and G2,
respectively, such that H ∈ Ie(G′

1, G
′
2). For m̄ = |E(G′

1)| + |E(G′
2)|, m̄ ∈ O(m), so

|E(H)| > m̄O(m̄2). But then by Lemma 4.2, G3m̄,3m̄ ≤m H. Since by Theorem 2.8
G1, G2 ≤m G3m,2n and G3m,2n is a proper minor of G3m̄,3m̄, it follows that H is not a
minor minimal graph containing G1 and G2, which is a contradiction.

To begin the proof of Lemma 4.2, we let G1 and G2 be planar graphs and H be
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Fig. 6. W ′ is a child of W .

as in the statement of the lemma. Let (τ1, τ
′
1) and (τ2, τ

′
2) be, respectively, topological

embeddings of G1 and G2 into H. We begin with an outline of the proof; formal
details follow the outline.

Suppose H is large (where large is defined to mean size at least mΩ(m2)). Then
the image of some edge of G1 is a long path in H. Let v be an endpoint of this
path. Then every nonterminal of this path must have a

∨
-, +-, or

∧
-intersection

relative to v with a subpath of an edge of G2. Suppose there are a large number of∨
-intersections relative to v. Then by applying Lemma 3.10 there is some edge e of

G1 such that τ ′1(e) goes through the consecutive endpoints of a large fraction of the∨
-intersections. Now, by Lemma 3.11, each

∨
-intersection has a child

∨
-intersection

on τ ′1(e). Continuing, we construct a grid.

The only problem occurs if we encounter the same edge of G1 more than once.
In that case if we are, for the most part, using a different part of the image of that
edge then we can continue constructing the grid. Otherwise, we show that the paths
corresponding to the edges of G1 that we have encountered so far can be rerouted,
thus contradicting the minimality of H. The argument for the case where there
are many

∧
-intersections is symmetric. If there is no edge whose image has many∨

-intersections or
∧

-intersections, then the image of some edge has many consecutive
+-intersections. The basic idea is the same in this case with a few different technical
details; these details are outlined after the case of

∨
-intersection is handled.

We are now ready for a formal presentation of the proof. Assume that |E(H)| is

mΩ(m2). Since every nonterminal of H is labeled by some edge of G1, there is an edge
e of G1 such that τ ′1(e) is a path of length mΩ(m2) in H. We begin by considering
the case where there are mΩ(m)

∨
-intersections on τ ′1(e). The case of

∧
-intersections

is similar, and we will not discuss it.
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Fig. 7. A
∨

5,6
-grid.

Definition (refer to Figure 7). Let k, ` ∈ N. A planar graph G is a k× `
∨

-grid,∨
k,`, if the following holds: there are k vertex disjoint simple paths in G, P1, . . . , Pk,

where Pi has endpoints si and ti, so that

1. there are vertices vi,j for (i, j) ∈ [1, k]× [1, `], ui,j , wi,j for (i, j) ∈ [2, k+ 1]×
[1, `] which are all distinct,

2. P1 = s1, Q1,1, v1,1, Q1,2, v1,2, . . . , v1,`, Q1,`+1, t1, where Q1,j are arbitrary dis-
joint paths of G,

3. for 2 ≤ i ≤ k, Pi = si, Qi,1, ui,1, Ui,1, vi,1,Wi,1, wi,1, Qi,2, . . . ,Wi,`+1, ti, where
all Qi,j , Ui,j ,Wi,j are arbitrary disjoint paths of G of length ≥ 1,

4. for (i, j) ∈ [1, k]× [1, `] there is an edge from vi,j to ui+1,j and wi+1,j , and
5. there is no vertex v′ on P1, v

′ between v1,1 and v1,` and distinct from the
v1,j and s1, t1 such that there are two edges from v′ to P2.

Definition. Suppose H is the planar intertwine of two graphs G1 and G2. A∨
-grid in H is monochromatic if for every Pi there is an edge ei ∈ E(G1) such that

Pi is a subpath of τ ′1(ei).
A
∨

-grid is illustrated in Figure 7. The idea behind the proof of Lemma 4.2 is to
inductively find a

∨
3m,3m as a subgraph of H. Since G3m,3m ≤m

∨
3m,3m, the lemma

will follow. If we ever get stuck in building the
∨

-grid, we show that H could not
have been minimal.

Since H contains a monochromatic 1 ×mΩ(m)
∨

-grid, Lemma 4.2 follows from
the following lemma.

Lemma 4.3. Suppose that H contains a monochromatic k×`∨-grid as a subgraph,
k ≤ m. Then H contains a monochromatic (k + 1)× `

O(m2)

∨
-grid as a subgraph.

We now turn our attention to proving the above lemma. For e ∈ E(G1),
suppose u, v are vertices on τ ′1(e). Then we denote the subpath of τ ′1(e) between
u and v by Te(u, v). Suppose we have found a monochromatic k × `

∨
-grid as a

subgraph of H. Let P1, . . . , Pk be the monochromatic paths in the
∨

-grid such
that Pi is in the image of τ ′1(ei) for some ei ∈ E(G1). Consider the vertices
uk+1,1, wk+1,1, uk+1,2, wk+1,2, . . . , uk+1,`, wk+1,`. By Lemma 3.10, there is an f ∈
E(G1) and there are p and q, 1 ≤ p < q ≤ `, such that

1. the vertices uk+1,p, . . . , wk+1,p occur in that order on τ ′1(f),
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2. q − p ≥ `
O(m2) = `′, and

3. there are no vertices of H in the discs bounded by uk+1,j , Tf (uk+1,j , wk+1,j),
wk+1,j , vk,j , p ≤ j ≤ q.

Let sk+1 be the vertex of τ ′1(f) adjacent to uk+1,p such that sk+1, uk+1,p, wk+1,p occur
in that order in τ ′1(f), and similarly let tk+1 be the vertex of τ ′1(f) adjacent to wk+1,q

such that uk+1,q, wk+1,q, tk+1 occur in that order in τ ′1(f).
By Lemma 3.11, for p ≤ r ≤ q, each

∨
-intersection uk+1,r, vk,r, wk+1,r has a child,

say, uk+2,r, vk+1,r, wk+2,r, where uk+2,r is the left endpoint of the child, vk+1,r occurs
on τ ′1(f), and wk+2,r is the right endpoint of the child. If Tf (sk+1, tk+1)

⋂
Tei(si, ti) =

∅ for 1 ≤ i ≤ k then the above construction yields the required
∨

-grid.
Now suppose that Tf (sk+1, tk+1)

⋂
Tei(si, ti) 6= ∅; let Zi be this intersection.

Then Zi is a subpath of τ ′1(ei). Clearly i < k; suppose i > 1. Consider the following
closed circuit C in the

∨
-grid:

Tei(vi,1, ui,1), (ui,1, vi−1,1), Tei−1
(vi−1,1, vi−1,`), (vi−1,`, wi,`),

Tei(wi,`, vi,`), (vi,`, wi+1,`), Tei+1
(wi+1,`, ui+1, 1), (ui+1,1, vi,1).

Planarity ensures that Zi can only intersect C at either vi,1 or vi,`; we can form
the new

∨
-grid by removing the leftmost (or rightmost)

∨
-intersection from each row

of the grid.
Finally suppose that i = 1. Let a1 be the endpoint of τ ′1(e1) closer to s1 than to

t1 and let ak+1 be the endpoint of τ ′1(e1) closer to sk+1 than to tk+1. Consider the
path

v1,1, u2,1, U2,1, v2,1, u3,1, . . . , Uk+1,1, vk+1,1, Te1(v1,1, vk+1,1).

This forms a closed circuit containing both a1 and ak+1. Since exactly one endpoint
of τ ′1(e1) is inside this circuit (since the other is outside), it follows that a1 = ak+1.

Since the remainder of the proof only involves vertices ui,j , vi,j , wi,j such that
p ≤ j ≤ q, we rename these vertices ui,j−p+1, vi,j−p+1, wi,j−p+1. Notice that for
1 ≤ j ≤ `′ (recall that `′ = q−p) the

∨
-intersection uk+1,j , vk,j , wk+1,j is a descendant

of the
∨

-intersection u2,j , v1,j , w2,j . Furthermore, uk+1,j and wk+1,j are on τ ′1(e1).
Without loss of generality, suppose that uk+1,1 ∈ Te1(v1,1, v1,`′). The case where

uk+1,`′ ∈ Te1(v1,1, v1,`′) is symmetric. If, relative to s1, uk+1,k occurs to the right of
v1,`′ , then it is sufficient to ignore the first k

∨
-intersections on each path Tei(si, ti)

that was in our grid. Thus, we obtain our
∨

-grid by taking our original grid
and taking the subgraph induced by ui+1,j , vi,j , wi+1,j , Tei(ui+1,j , ui+1,j+1), where
1 ≤ i ≤ k and k + 1 ≤ j ≤ `′.

Now suppose uk+1,k occurs to the left of v1,`′ . We will show that in this case
H is not minimal. For each

∨
-intersection uk+1,i, vk,i, wk+1,i, 1 ≤ i ≤ k, there is

at least one
∨

-intersection u2,j , v1,j , w2,j (1 ≤ j ≤ `′) such that v1,j occurs between
uk+1,i and wk+1,i. This follows from Lemma 3.11 and the fact that there are no

∨
-

intersections between u2,j , v1,j , w2,j and u2,j+1, v1,j+1, w2,j+1, where 1 ≤ j < `′ (see
the definition of a

∨
-grid). For each

∨
-intersection uk+1,j , vk,j , wk+1,j (1 ≤ j ≤ k),

choose a
∨

-intersection u2,rj , v1,rj , w2,rj such that v1,rj occurs between uk+1,j and
wk+1,j on τ ′1(e1).

We will now define a rerouting of P1, . . . , Pk, called R1, R2, . . . , Rk (see Figure 8).
This will result in a contradiction to Lemma 3.4. The idea is that we can find
k consecutive spirals in the

∨
-grid each spiraling in the same direction. Having

uk+1,k to the left of v1,`′ ensures that each spiral goes through exactly one complete
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Fig. 8. Rerouting on a
∨

-grid. Dark edges indicate the rerouting.

rotation with the ith spiral starting at si and finishing at ti; let us call the ith
spiral Ri. Then along Pi the order of intersection of the spirals (from si to ti) is
Ri, Ri−1, . . . , R1, Rk, Rk−1, . . . , Ri+1, Ri. Since Ri occurs at the beginning and end
of this sequence, it is the required rerouting. A formal presentation of these ideas
follows.

For 2 ≤ i ≤ k + 1 and 1 ≤ j ≤ `′, define the successor of vertex wi,j , S(wi,j), as
follows:

S(wi,j) =

 wi+1,j+1 if i < k + 1 and j < `′,
w2,rj+1

if i = k + 1 and rj < `′,
vi,`′ otherwise.

Furthermore, define the link of wi,j , L(wi,j), as follows:

L(wi,j) =

 Tei(wi,j , vi,j+1), wi+1,j+1, i < k + 1, j < `′,
Te1(wi,j , v1,rj+1

), w2,rj+1
, i = k + 1, rj < `′,

Tei(wi,j , vi,`′) otherwise.
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We will denote s compositions of S by S(s). From the definition of successor and
link, we can immediately conclude the following lemma.

Lemma 4.4. Let 1 ≤ i, i′ ≤ k + 1 and 1 ≤ j, j′ ≤ `′. If wi,j 6= wi′,j′ then
S(wi,j) 6= S(wi′,j′) and L(wi,j) is internally vertex disjoint from L(wi′,j′).

For 1 ≤ i ≤ k and 1 ≤ t ≤ `′ define a path R(i, t) as follows:

R(i, 0) = (vi,1, wi+1,1),
R(i, t+ 1) = R(i, t), L(S(t)(wi,1)),
R(i, k + 1) = R(i, k), TeiS

(k+1)(wi,1).

Now, let Ri = R(i, k + 1)T (vi,l′ , ti).
We show that R1, . . . , Rk satisfy the definition of a rerouting. By construction,

all the vertices of Ri lie in Pj for some j and Ri has endpoints si and ti. Thus, it
remains to show that the Ri are vertex disjoint and that they omit some edge of the
Pj ’s.

Lemma 4.5. For 1 ≤ i ≤ k, let the ith vertex sequence be given by

wi,1, S(wi−1,1), S
(2)(wi−2,1), . . . , S

(j)(wi−j,1), . . . , S(i−2)(w2,1),

S(i−1)(wk+1,1), . . . , S
(k−1)(wi−1,1).

Then the elements of the ith vertex sequence appear in order on Pi starting at si.
Proof. First notice that for any i and 1 ≤ j < j′ ≤ `′ the vertex S(wi,j) is to the

left of S(wi,j′) with respect to s(imod k)+1. We prove the lemma simultaneously for
all i and for prefixes of length t, 1 ≤ t ≤ k + 1, of the vertex sequences.

For t = 1, the claim is obvious. Now, suppose the lemma holds for t = s. Then, by
the induction hypothesis for i′ = i− 1 if i 6= 1 and i′ = k when i = 1, the elements of
the prefix of the i′th vertex sequence appear in order on Pi′ starting at si′ . Therefore,
their successors appear in order on Pi starting at si. But their successors are exactly
the second through (s + 1)st elements of the ith vertex sequence. Furthermore, wr1

is the leftmost w on Pi with respect to si.
From Lemma 4.4 it immediately follows that the Ri are vertex disjoint. Further-

more, by definition every vertex on these paths is a vertex of Tei(si, ti) for some i.
Finally, if g is the edge of τ ′1(e1) with one endpoint v1,1 and the other endpoint to
the right of v1,1 relative to s1, then g is not used in any of the Ri. Thus H is not
minimal and we have proven Lemma 4.3.

Now suppose that there is no edge of either G1 or G2 whose image has mΩ(m)
∨

-
intersections or mΩ(m)

∧
-intersections. The idea is essentially the same as before—we

attempt to construct a large +-grid using Lemma 3.10 and an observation analogous
to Lemma 3.11. If we are successful in creating row after row of this grid we are
done since we have a large grid in the graph. If not, we show that a rerouting is
possible. We present the technical details of this construction that differ from those
of the

∨
-grid’s construction.

Since there are less than mO(m)
∨

-intersections and
∧

-intersections, there must

be some edge of G1 or G2 whose image has at least mΩ(m2) +-intersections. Let e
be an edge of G1 such that τ ′1(e) has path length at least mΩ(m2) of which less than
mO(m) are

∨
-intersections and

∧
-intersections. Then there is a consecutive sequence

of vertices v1, . . . , vr on τ ′1(e) such that each is the middle vertex of a +-intersection
and r is mΩ(m).

Definition (refer to Figure 9). Let k, ` ∈ N. A planar graph G is a k× ` +-grid,
+k,`, if the following holds:
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Fig. 9. A +-grid.

1. There are k vertex disjoint paths P1, . . . , Pk in G such that Pi has endpoints
si and ti.

2. There are vertices vi,j for (i, j) ∈ [1, k + 1] × [1, `] such that
si, vi,1, vi,2, . . . , vi,`, ti occur in that order on Pi.

3. There are ` vertex disjoint paths Q1, . . . , Q` such that v1,j , v2,j , . . . , vk+1,j

occur in that order on Qi.
We will call vk+1,1, . . . , vk+1,` the offsprings of the grid.

The notion of a monochromatic +-grid carries over from a
∨

-grid. That is, for
each Pi there is an edge ei ∈ E(G1) such that Pi is a subpath of τ ′1(ei) and for each
Qi there is a similar fi ∈ E(G2).

The idea is to inductively build G3m,3m, from which the result will follow. This
follows from the following analogue of Lemma 4.3.

Lemma 4.6. Suppose that H contains a monochromatic k × ` +-grid as a
subgraph, k ≥ 0. Then H contains a monochromatic (k + 1) × `

O(m2) +-grid as a

subgraph.
We first notice that by Lemma 3.10 there is some e ∈ E(G1) such that τ ′1(e) passes

consecutively through `
O(m2) of the offsprings of the +-grid. Furthermore, since there

are at most m terminals, we can assume that all the offsprings are nonterminals.
Denote these offsprings by vk+1,j1 , vk+1,j1+1, . . . , vk+1,j2 , where j2−j1 ≥ `

O(m2) . Since

for j1 ≤ j ≤ j2 the path τ ′2(fj) passes through vk+1,j , there is either a
∨

-intersection,
a +-intersection, or a

∧
-intersection at vk+1,j . But there can be at most mO(m)∨

-intersections or
∧

-intersections.
Thus there are j3, j4, j1 ≤ j3 ≤ j4 ≤ j2, such that there is a +-intersection at

vk+1,j for j3 ≤ j ≤ j4. Let vk+2,j be the vertex such that vk+2,j , vk+1,j , vk,j form a +-
intersection centered at vk+1,j . Let ek+1 = e. Let sk+1 be the vertex of τ ′1(e) adjacent
to vk+1,j3 such that sk+1, vk+1,j3 , vk+1,j3+1 occur in that order on τ ′1(e). Similarly,
let tk+1 be the vertex of τ ′1(e) adjacent to vk+1,j4 such that sk+1, vk+1,j4 , tk+2 occur
in that order on τ ′1(e).

If Tek+1(sk+1, tk+1) ∩ Te1(s1, t1) = ∅ we have the required larger grid. Now
suppose that Tek+1(sk+1, tk+1) ∩ Te1(s1, t1) 6= ∅. In this case, we are interested only
in the vertices vi,j , where 1 ≤ i ≤ k + 1 and j3 ≤ j ≤ j4, so we rename these vertices
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Fig. 10. vk+1,1 occurs to the right of v1,k.

vi,j−j3 . Further, let `′ = j4 − j3 ≥ `
O(m2) and assume without loss of generality that

vk+2,1 ∈ Te1(v1,1, v1,`′). Again, if relative to s1, vk+1,k occurs to the right of v1,`′ ,
then we can simply ignore the k paths Q1, . . . , Qk in our grid.

If vk+1,k occurs to the left of v1,`′ , we must handle two further cases, namely,
when vk+1,1 occurs to the right of v1,k and when it occurs to the left of v1,k.

First suppose vk+1,1 occurs to the right of v1,k (see Figure 10). Then, for
1 ≤ i ≤ k, let Ri be the path

Tei(si, v1,k−i+1), v2,k−i+1, v3,k−i+1, . . . , vk+1,k−i+1, Tei(vk+1,k−i+1, ti).

Then it is clear that the Ri are vertex disjoint and that they are a rerouting of the
Pi. Thus H is not minimal.

Now suppose that vk+1,1 occurs to the left of or is the same as v1,k (see Figure 11).
The key to solving this case is to notice that if we reverse the roles of the Pi and Qj

we can apply the previous case. In particular, we can reroute the Qj using the Pi.

More formally, let k′ ≤ k such that vk+1,1 = v1,k′+1. Notice that for 1 ≤ i ≤ k′, Qi

and Qk′+i are both subpaths of the same path τ ′2(fi). Now, for 1 ≤ i ≤ k′ let Si be the
subpath of τ ′2(fi) which starts at a terminal and goes through v1,i, v2,i, . . . , vk′+2−i,i.
Let S′i be the subpath of τ ′2(fi) starting at v2k′+2−i,i, going through v2k′+3−i,i, . . . ,
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Fig. 11. vk+1,1 does not occur to the right of v1,k.

and ending at a terminal. Finally, let Ri be the path

Si, Tek′+2−i
(vk′+2−i,i, v2k′+2−i), S′i.

Then, as before, it is straightforward to verify that the Ri are disjoint and are a
rerouting of the Qj . This contradicts the minimality of H.

We are now finished with the proof of Lemma 4.2.

5. Conclusions and open problems. There is a great amount of work which
remains to be done in this area. There is a vast gap between the upper bounds and
the known lower bounds. The best lower bound for even general graphs is polynomial
(see, e.g., Figure 12), as compared to the upper bound of a tower of 2s for the general
problem as given by Seymour and Thomas [ST91]. Although it is probably not
difficult to obtain slight improvements in the lower bounds, no natural candidates for
the asymptotic complexity of this function present themselves. Further investigation
of intertwine bounds may give insight into the enormous constants found in parts of
the Robertson and Seymour proof.

There are also a number of other natural operations on lower ideals. For example,
consider the following problem suggested by Fellows and Langston. Let F be a lower
ideal and define F + 1 to be

{G : ∃vG\v ∈ F}.
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Fig. 12. An Ω(n3) node planar intertwine of two O(n logn) node graphs. Dark points on the
endpoints of the lines represent distinct elements of a family of O(logn) node graphs which are
independent under the minor ordering. The first intertwined graph consists of the n+ 2 horizontal
lines and their corresponding endpoints. The second consists of the n vertical and n curved lines
and their corresponding endpoints. The intertwine graph includes all of the points of intersection,
so it has nodes from n distinct n× n grids for a total of n3 points.

Then F + 1 is a lower ideal, and it is interesting to compute its obstructions. For
example, for the family of planar graphs F , F+1 is the set of apex graphs. It is possible
to use the techniques of Fellows and Langston outlined in the introduction to compute
these obstructions given those of F . However, once again those techniques yield
obstructions incrementally and do not give a bound on the size of the obstructions.
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Abstract. An assignment of colors to objects induces a natural integer weight on each tree
that has these objects as leaves. This weight is called “parsimony length” in biostatistics and is the
basis of the “maximum parsimony” technique for reconstructing evolutionary trees. Equations for the
average value (over all binary trees) of the parsimony length of both fixed and random colorations are
derived using generating function techniques. This leads to asymptotic results that extend earlier
results confined to just two colors. A potential application to DNA sequence analysis is outlined
briefly.

Key words. binary tree, Fitch’s algorithm, maximum parsimony tree, DNA/RNA sequences,
probability
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1. Introduction. Let B(n), n ≥ 2, denote the set of (unrooted) trees with n
leaves (vertices of degree 1) labeled 1, 2, . . . , n and with all remaining vertices unla-
beled and of degree 3. Such trees, which we will simply call binary trees, are use-
ful representations of evolutionary relationships in taxonomy. In that case, the set
[n] = {1, 2, . . . , n} represents the extant taxa being classified, while the remaining
vertices in the tree represent ancestral taxa. It is often convenient to represent the
(global) ancestral taxon of all these taxa by a root vertex obtained by subdividing
an edge (the “most ancient” edge) of the tree. Let R(n), n > 1, denote the set of
all such edge-rooted binary trees on leaf set [n]. We define R(1) as the singleton set
consisting of an isolated (root) vertex labeled 1. Note for n ≥ 2 the bijection

ψ : B(n) → R(n− 1),

where, if T ∈ B(n), ψ(T ) is the edge-rooted binary tree which results when leaf n and
its incident edge are deleted, as in Figure 1. Edge subdivision also gives a bijection,

ψ′ : {(T, e) : T ∈ B(n), e ∈ E(T )} → R(n),

as in Figure 1. We let

B(n) := |B(n)| and R(n) := |R(n)|
for n ≥ 2 and n ≥ 1, respectively. Since |E(T )| = 2n−3, for each T ∈ B(n), it follows
(from ψ and ψ′) that, for n ≥ 3,

R(n) = (2n− 3)B(n) = (2n− 3)!! = 3× 5× · · · × (2n− 3)

=
(2n− 2)!

2n−1(n− 1)!
,(1)
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Fig. 1. Bijections between rooted and unrooted binary trees.

a result dating back at least as far as 1870 to a paper by Schröder [9]. Thus, by
applying Stirling’s formula to R(n),

R(n)

n!
∼ 1

2
√
π

2nn−3/2.(2)

(A definition of “asymptotic” (∼) appears at the beginning of section 3.)
Let χ be a coloration of [n] by a set C of r ≥ 2 colors. For example, in phylogenetic

analysis each site j in a collection of n aligned DNA/RNA sequences (where r = 2
or 4) gives a coloration χ = χj of [n] for which χj(i) is the actual nucleotide (when
r = 4) or its purine/pyrimidine classification (when r = 2) that occurs at site j in the
ith sequence.

Given a tree T in B(n) or R(n) and a coloration χ of [n] let `(T, χ) be the minimal
number of edges of T that need to be assigned differently colored ends in order to
extend χ to a coloration of all the vertices of T (any such minimizing extension is called
a minimal extension of χ for T ). The number `(T, χ) is called the parsimony length
of χ on T , and it is the basis of the widely used “maximum parsimony” technique
for reconstructing evolutionary trees from aligned genetic sequences. This approach
selects the tree(s) T which minimizes (minimize) the sum of `(T, χj) over all sites j in
the sequences—this sum is the length of T on the sequences. Such a tree—a maximum
parsimony tree—requires the fewest mutations to account for the variations in the
aligned sequences.

The aim of this paper is to develop analytic techniques that would allow the
length of the maximum parsimony tree on the original sequences to be compared
with the average length of all binary trees on either (i) the original sequences or (ii)
randomized versions of the original sequences (i.e., sequences generated randomly with
the same expected frequencies of colors as the original sequences, as in Steel, Lockhart,
and Penny [11]). These two average values are obtained by evaluating, respectively,
certain functions µn and µ′n (which we describe in section 2) at each sequence site and
summing up the resulting values across the sites. An asymptotic formula for µ′n is
described in section 3 and since, as we show, µn and µ′n are asymptotically equivalent,
this provides an asymptotic formula for µn as well. Our results exploit some special
properties of the generating functions which count various classes of leaf labeled trees
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Fig. 2. A rooted tree with sets assigned to vertices by the parsimony operation.

according to their parsimony length. In this sense the exact and asymptotic analyses
complement and extend the approaches of Carter et al. [2] and Butler [1], respectively,
both of which analyzed similar systems of generating functions with just two colors
(although the problems these authors considered were slightly different from ours).

First we describe a convenient technique for computing `(T, χ) known as the (first
pass of) Fitch’s algorithm (Fitch [3], Hartigan [5]). If T ′ ∈ B(n), subdivide any edge
of T ′ to obtain a tree T ∈ R(n). Note that `(T, χ) = `(T ′, χ). Now direct all edges of
T away from the root and recursively assign nonempty subsets of colors to the vertices
of T beginning with the leaves and progressing toward the root, as follows:

(1) leaf i ∈ [n] is assigned the singleton set {χ(i)},
(2) once the descendants of vertex v have both been assigned sets A,B, then

assign vertex v the set A ∗ B, where ∗ is the (nonassociative, binary) “parsimony
operation” defined on 2C − φ,

A ∗B =

{
A ∩B if A ∩B 6= φ,
A ∪B if A ∩B = φ.

The set assigned to the root of T is called the root set. (In the case T ∈ R(1) the
root set is just {χ(1)}.) These concepts are illustrated in Figure 2. A fundamental
property of this procedure is the following.

Lemma 1.1 (Hartigan [5]). `(T, χ) is the number of times an empty intersection
(option 2 in the above description of ∗) is encountered in this assignment of sets of
colors to the vertices of T . Furthermore, the root set is precisely the set of those colors
that occur in at least one minimal extension of χ for T .

We will use both of these properties in section 2.
Notation.
(1) For convenience, we write

x to denote (x1, x2, . . . , xr),

xa to denote the monomial xa1
1 x

a2
2 . . . xarr ,

and

a! to denote a1!a2! . . . ar!.

(2) We also write

[xa]f(x) to denote the coefficient of xa1
1 x

a2
2 . . . xarr in f(x),



362 A. M. HAMEL AND M. A. STEEL

as in Goulden and Jackson [4].
(3) C = {α1, . . . , αr} will denote the set of colors which are assigned to the

elements of the set [n] = {1, . . . , n}. If ai = |χ−1(αi)|, i = 1 . . . r, we say χ is of type
a = (a1, . . . , ar). Thus, ai ≥ 0 and

∑r
i=1 ai = n.

2. Calculations (exact). The aim of this paper is to calculate the two averages
that we now define.

Definition 1 (µn and µ′n). Let µn(a) be the average, over all trees T ∈ B(n), of
the length of a fixed coloration of [n] of type a on T .

For probability distribution φ = (φ1, φ2, . . . , φr), φ1 ≥ 0, φ2 ≥ 0, . . . , φr ≥ 0,∑r
i=1 φi = 1, let µ′n(φ) be the average, over all trees T ∈ B(n), of the expected length

of a random coloration of [n] on T . In this random coloration each element of [n] is
independently assigned color αi with probability φi.

Note that µ′n(φ) is the average, over all trees T ∈ B(n), of

∑
χ

`(T, χ)
n∏
j=1

φχ(j),

and so

µ′n(φ) =
∑
a

(
n

a

)
φa µn(a).(3)

Here and elsewhere a summation over a ranges over all nonnegative r-tuples
a1, . . . , ar with

∑r
i=1 ai = n. Also, note that µn and µ′n are symmetric functions

in a1, . . . , ar and φ1, . . . , φr, respectively. The following generating function forms

the basis for our calculations. For φ 6= A ⊆ C, let TA(x, z) =
∑

a,`
fA(a,`)

a! xaz`,

where fA(a, `) is the number of trees in R(n), n ≥ 1, of parsimony length ` ≥ 0
and root set A for a fixed r-coloration of [n] of type a. By Lemma 1.1, the set
{TA(x, z), ∅ 6= A ⊆ C} satisfies the system of simultaneous quadratic equations
described in Steel [10],

TA(x, z) =∑
(B,C):B∩C=A

1

2
TB(x, z)TC(x, z) +

∑
(B,C): B∩C=∅

B∪C=A

z

2
TB(x, z)TC(x, z) + δA(x),

(4)

where

δA(x) =

{
xi if A = {αi},
0 if |A| > 1.

(5)

For r = 2 this system can be treated by the multivariate Lagrange inversion formula
(Goulden and Jackson [4]) to give an explicit closed-form expression for fA(a, `)—see
Carter et al. [2], Steel [10].

Theorem 2.1 (exact formulae). Let TA(x) := TA(x, 1).
(i)

µn(a) =
a!

R(n)
[xa]

∑
(A,B):A∩B=∅

1

2
TA(x)TB(x)

(
1− 2

r∑
i=1

xi

)− 1
2

.
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(ii)

µ′n(φ) =
n!

R(n)
[xn]

∑
(A,B):A∩B=∅

1

2
TA(φx)TB(φx)(1− 2x)−

1
2 ,

where φx = (φ1x, . . . , φrx).
(iii)

µ′n(φ) = µ′n−1(φ) +
∑
i,A:
αi 6∈A

φi
(n− 1)!

R(n− 1)
[xn−1]TA(φx).

Proof of Theorem 2.1. Let

R(x, z) :=
∑
A6=∅

TA(x, z),(6)

R(x) := R(x, 1).

First observe that, from (4), we have the fundamental identity

R(x, z) =
1

2
R2(x, z) + (z − 1)

∑
(B,C):
B∩C=∅

1

2
TB(x, z)TC(x, z) +

r∑
i=1

xi.(7)

Putting z = 1 in (7), we obtain

R(x) =
1

2
R2(x) +

r∑
i=1

xi,(8)

so that

R(x) = 1−
√√√√1− 2

r∑
i=1

xi .(9)

In particular,

R(φx) = 1−√1− 2x,(10)

and so

[xn]R(φx) =
R(n)

n!
.(11)

Let

Q(x) :=
∂

∂z
R(x, z)|z=1.(12)

Then, from (7),

Q(x) = Q(x)R(x) +
∑

(B,C):
B∩C=∅

1

2
TB(x)TC(x).
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Hence

Q(x) =
∑

(B,C):B∩C=∅

1

2
TB(x)TC(x) · (1−R(x))−1.

Applying (9) gives

Q(x) =
∑

(B,C):B∩C=∅

1

2
TB(x)TC(x)

(
1− 2

r∑
i=1

xi

)− 1
2

.(13)

Now from (12) a![xa]Q(x) is the sum
∑

` `f(a, `), where f(a, `) =
∑

A6=∅ fA(a, `), the
total number of trees T ∈ R(n) of length ` for a coloration χ of [n] of type a. Thus
a!

R(n) [x
a]Q(x) is the average length over all trees in R(n) of the length of χ. However,

each edge rooting of a binary tree leads to an identical parsimony length (i.e., the
position of the root is irrelevant to the length), so this quantity is also the average
length over all trees in B(n) of the length of χ, which in view of (13) establishes part
(i).

(ii) Applying part (i) to (3) we obtain

µ′n(φ) =
∑
a

(
n

a

)
φa

a!

R(n)
[xa]F (x),(14)

where F (x) =
∑

(A,B):A∩B=∅
1
2TA(x)TB(x)(1− 2

∑r
i=1 xi)

− 1
2 .

Rewriting (14), we have

µ′n(φ) =
n!

R(n)

∑
a

φa[xa]F (x) =
n!

R(n)
[xn]F (φx),

as required.
(iii) For any tree T ′ ∈ R(m) with root vertex ρ and subject to a random coloration

of [m] according to φ, let S(T ′) denote the (random variable) root set of T ′ (as defined
in section 1).

Suppose T ∈ B(n) and χ is a coloration of [n]. By the bijection ψ : B(n) →
R(n− 1) and Lemma 1.1 (rooting T on the edge incident with the leaf labeled n), we
have

`(T, χ) = `(ψ(T ), χ′) + δ(T, χ),(15)

where

δ(T, χ) =

{
1 if χ(n) 6∈ S(ψ(T )),
0 otherwise,

and where χ′ is the restriction of χ to [n− 1].
Let µ(T ) denote the expected value of `(T, χ) for a random χ (generated according

to φ). Then from (15) we have

µ(T ) = µ(ψ(T )) + Prob[δ(T, χ) = 1].(16)

Now

Prob[δ(T, χ) = 1] = Prob[χ(n) 6∈ S(ψ(T ))]

=
∑
i,A:
αi 6∈A

φiProb[S(ψ(T )) = A].(17)
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Also, by definition,

µ′n(φ) =
1

B(n)

∑
T∈B(n)

µ(T ),(18)

while

µ′n−1(φ) =
1

B(n− 1)

∑
T ′∈B(n−1)

µ(T ′) =
1

B(n)

∑
T ′∈B(n−1)

(2n− 3)µ(T ′)(19)

=
1

B(n)

∑
T∈B(n)

µ(ψ(T )).

Thus, combining (16)–(19) we have

µ′n(φ) = µ′n−1(φ) +
∑
i,A:
αi 6∈A

φi
1

B(n)

∑
T∈B(n)

Prob[S(ψ(T )) = A].(20)

Now

1

B(n)

∑
T∈B(n)

Prob[S(ψ(T )) = A] =
1

R(n− 1)

∑
T ′∈R(n−1)

Prob[S(T ′) = A].(21)

Also, n![xn]TA(φx) =
∑

a

(
n
a

)
φafA(a), and so

n![xn]TA(φx) =
∑
a

φa
∑
χ:χ has
type a

∑
T∈R(n)
S(T,χ)=A

1

=
∑

T∈R(n)

∑
a

∑
χ:χ has type a

andS(T,χ)=A

φa

=
∑

T∈R(n)

∑
χ:S(T,χ)=A

Prob[χ]

=
∑

T∈R(n)

Prob[S(T, χ) = A].

Thus, the term on the right of (21) is just

(n− 1)!

R(n− 1)
[xn−1]TA(φx),

which, together with (20), establishes part (iii), thereby completing the proof of The-
orem 2.1.

3. Calculations (asymptotic). In this section we obtain asymptotic results
concerning µ′n(φ) and µn(a). Theorem 3.1 below shows that µ′n(φ) and µn(a) are
asymptotically equivalent since they both grow linearly with n, and their difference
(when φ = 1

na) is bounded by a term of order n
1
2 . The theorem also provides a

prescription for calculating, in principle, their asymptotic values by solving a system
of simultaneous quadratic equations involving real numbers. In the case of two colors
this can be done analytically, but generally numerical techniques would seem to be
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required. However, in the case of equifrequency colorations (φi = 1
r ) the resulting

system is considerably simpler, being of dimension r rather than 2r − 1, and we
solve this for r ≤ 4 in Corollary 3.1. A second corollary provides a biology-oriented
application.

We adopt the standard notation f(n) ∼ g(n) if limn→∞
f(n)
g(n) = 1 and

f(n) = O(g(n)) if f(n)
g(n) is bounded as n→∞.

Theorem 3.1 (asymptotic formulae). (i) µ′n(φ) ∼ µ′n, where µ′ = µ′(φ) is given
by

µ′ =
∑

(A,B):A∩B=∅
tAtB

and where the numbers tA = TA(x)|
x= 1

2
φ
, ∅ 6= A ∈ C form the unique nonnegative

solution to the simultaneous system

tA =
∑

(B,C):B∗C=A

1

2
tBtC +

1

2
δA(φ)

with δA given by (5).
(ii) For r = 2 colors,

µ′ =
2

3

(
1−

√
1− 3φ1φ2

)
.

(iii) µn(a) ∼ nµ′(φ) for φ = 1
na. Indeed, |µn(a) − µ′n(φ)| ≤ √n(r − 1)/2 for all

n.
Proof of Theorem 3.1. (i) We first recall a special case of Lemma 1(i) of Meir,

Moon, and Mycielski [6]: suppose F (x) and G(x) are power series in x and that

[xn]F (x) = O(ρ−nn−
3
2 ),

[xn]G(x) ∼ bρ−nn−
1
2 ,

and F (ρ) 6= 0. Then

[xn]F (x)G(x) ∼ F (ρ)[xn]G(x).(22)

Taking G(x) = (1− 2x)−
1
2 we have from (2) that

[xn]G(x) =
R(n+ 1)

n!
= (2n− 1)

R(n)

n!
∼ 1√

π
ρ−nn−

1
2 ,(23)

where ρ = 1
2 . Now take F (x) = TA(φx)TB(φx) for any pair of nonempty sets A,B ⊆ C.

Since for all C ⊆ C, C 6= ∅ the power series TC(φx) has all nonnegative coefficients,
we have

|[xn]F (x)| = |[xn]TA(φx)TB(φx)|

≤ [xn]

∑
C 6=∅

TC(φx)

2
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= [xn]R(φx)2 from (6)

= [xn](2R(φx)− 2x) from (8)

= 2
R(n)

n!
from (11)

∼ 1√
π
ρ−nn−

3
2

for ρ = 1
2 from (2).

Thus [xn]F (x) = O(ρ−nn−
3
2 ), and so, from (23) and the fact that F has nonneg-

ative coefficients (so that F (ρ) 6= 0), we can apply (22) to Theorem 2.1 (ii) to deduce
that

µ′n =
n!

R(n)

∑
(A,B):A∩B=∅

1

2
TA(φx)TB(φx)|

x= 1
2

[xn](1− 2x)−
1
2

∼ n
∑

(A,B):A∩B=∅
TA

(
1

2
φ

)
TB

(
1

2
φ

)
,

as claimed.
The prescribed system for tA := TA( 1

2φ) follows from (4) by putting z = 1 and

x = 1
2φx.

Now tA = TA( 1
2φ) is clearly nonnegative. Thus, applying induction on |A| to the

simultaneous system described in (i) shows that, moreover, tA > 0 for all A. We now
show that there is only one such solution to this system.

Let t = [tA] and t′ = [t′A] be two solutions of the system of simultaneous quadratic
equations described in Theorem 3.1, with tA, t

′
A > 0 for all A. We wish to show that

t = t′. First, note that
∑

A tA =
∑

A t
′
A = 1 since

∑
A tA = 1

2 (
∑

A tA)2 + 1
2 .

Let ε =
∑

A |tA − t′A|. We have

ε =
1

2

∑
A

∣∣∣∣∣∣
∑
B,C:

B∗C=A

tBtC − t′Bt
′
C

∣∣∣∣∣∣
≤ 1

2

∑
A

∑
B,C:

B∗C=A

|tBtC − t′Bt
′
C |

≤ 1

2

∑
A

∑
B,C:

B∗C=A

tB |tC − t′C |+ t′C |tB − t′B |

(since |tBtC − t′Bt
′
C | ≤ |tBtC − tBt

′
C |+ |tBt′C − t′Bt

′
C |)

=
1

2

∑
B,C

tB |tC − t′C |+
∑
B,C

t′C |tB − t′B |

=
1

2
ε

(∑
B

tB +
∑
C

t′C

)
= ε.

It follows that both inequalities in the above derivation must, in fact, be equalities.
In particular, the second inequality becomes an equality only if, for all B,C : B ∗C =
A, tBt

′
C lies between tBtC and t′Bt

′
C . Since t and t′ both have positive coordinates
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we either have

tB ≤ t′B and tC ≤ t′C
or

tB ≥ t′B and tC ≥ t′C whenever B ∗ C = A.

Thus, if we let

∆A : =
∑
B,C:

B∗C=A

(tB − t′B)(tC − t′C)

we have ∆A ≥ 0 with equality precisely if

tB = t′B or tC = t′C for each (B,C) : B ∗ C = A.(24)

Now tA = 1
2

∑
B,C:

B∗C=A
tBtC + 1

2δA(φ) and similarly for t′A, so expanding out ∆A

we obtain

∆A = 2tA − δA(φ) + 2t′A − δA(φ) −
∑
B,C:

B∗C=A

(t′BtC + tBt
′
C),

so ∑
A

∆A = 2
∑
A

tA − 1 + 2
∑
A

t′A − 1−
∑
B,C

(t′BtC + t′Bt
′
C)

= 2−
(∑

B

t′B

)(∑
C

tC

)
−
(∑

B

tB

)(∑
C

t′C

)
= 0.

It follows that ∆A = 0 for all A (since ∆A ≥ 0 for all A and
∑

A ∆A = 0). From (24)
this implies that for any pair B,C we have

tB = t′B or tC = t′C .

In particular, taking B = C we obtain that tB = t′B , and so t = t′, as claimed.
(ii) This result follows from part (iii) of Theorem 3.1, and the analogous result for

µn(a) from Moon and Steel [7]. However, it can also be derived more directly from
Theorem 3.1 (i). We have, for C = {α, β},

µ′ = 2T{α}T{β},(25)

where T{α} = T{α}( 1
2φ), T{β} = T{β}( 1

2φ), and T{α,β} = T{α,β}( 1
2φ) satisfy the system

T{α} =
1

2
T 2
{α} + T{α}T{α,β} +

φ1

2
,

T{β} =
1

2
T 2
{β} + T{β}T{α,β} +

φ2

2
,

T{α,β} =
1

2
T 2
{α,β} + T{α}T{β}.

Butler [1] solved this system, and from his equation (26) we have

T 2
{α} =

1

3
(−2 + 3φ1 + 2

√
P ),

T 2
{β} =

1

3
(1− 3φ1 + 2

√
P ),
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where P = 1− 3φ1φ2, and from this we can obtain µ′ directly from (25).
(iii) We first claim that

|µn(a)− µn(a′)| ≤ 1

2
|a− a′|1,(26)

where | |1 denotes the l1 norm on Rr. Since the components of a and a′ both sum to
n, |a− a′|1 = 2k for some integer k. In this case we can find two colorations χ, χ′ of
[n] of types a, a′, respectively, and such that χ and χ′ agree on all but k elements of
[n].

Now, for any binary tree T , it is easily checked that `(T, χ′) ≤ `(T, χ) + k since
any minimal extension of χ for T produces an extension χ′′ of T by just changing
the colors of the (at most k) leaves of T for which χ and χ′ disagree (and thereby
increasing the number of edges of T with differently colored ends by at most k).
Although χ′′ may not be a minimal extension of χ′ for T , we nevertheless obtain the
claimed inequality. Conversely, `(T, χ) ≤ `(T, χ′) + k, and so

|`(T, χ)− `(T, χ′)| ≤ k,

which, upon averaging over all binary trees, gives

|µn(a)− µn(a′)| ≤ k,

which establishes (26).
Now from (3),

µ′n = E[µn(A)],

the expected value of µn(A), where A = (A1, . . . , Ar) is drawn from a multinomial
distribution with parameters n and φ1, . . . , φr.

Then

|µn(a)− µ′n| = |E[µn(a)− µn(A)]|
≤ E[|µn(a)− µn(A)|]
≤ 1

2
E[|a−A|1] from (26)

=
1

2

r∑
i=1

E[|ai −Ai|].(27)

Now Ai has a binomial distribution with parameters n and φi, and since

E[Ai] = nφi = ai,

we have, applying the convex version of Jensen’s inequality (Rényi [8]),

E[|ai −Ai|] ≤
√
E[(ai −Ai)2]

=
√
V ar[Ai]

=
√
nφi(1− φi),

so that, from (27), |µn(a) − µ′n(φ)| ≤ 1
2

∑r
i=1

√
nφi(1− φi), which, by the concave

version of Jensen’s inequality, is at most
√
n(r − 1)/2.
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Corollary 3.1 (equifrequency colorations). Suppose φi = 1
r for i = 1, . . . , r.

Then

µ′ =
∑

(j,k):j+k≤r; j,k≥1

r!

j!k!(r − j − k)!
tjtk,

where the ti satisfy the system

ti =
∑
(j,k)

1

2
πijktjtk + δi,1

1

2r

for i = 1, . . . , r and where δi,1 = 1 if i = 1 and 0 otherwise and where πijk is
the number of sets of sizes j and k which, under the parsimony operation (*), give a
specific root set of size i for the tree; i.e.,

πijk =


(
i
j

)
if j + k = i,(

r−i
j−i
)(

r−j
k−i
)

if j, k ≥ i,

0 else.

Examples. For r = 2 we have

t1 =
1

2
t21 + t1t2 +

1

4
,

t2 =
1

2
t22 + t21,

which gives t1 = 1√
6
, t2 = 1− 2√

6
, and so from Corollary 3.1 we obtain µ′ = 1

3 , which

agrees with Theorem 3.1 (ii). For r > 2 it seems necessary to solve the system {ti}
by numerical methods. For r = 3 and 4, the equations become

t1 =
1

2
t21 + 2t1t2 + t1t3 + t22 +

1

6
,

t2 = t21 +
1

2
t22 + t2t3,

t3 = 3t1t2 +
1

2
t23

and

t1 =
1

2
t21 + 3t1t2 + 3t22 + 3t1t3 + 3t2t3 + t1t4 +

1

8
,

t2 = t21 +
1

2
t22 + 2t2t3 + t23 + t2t4,

t3 = 3t1t2 +
1

2
t23 + t3t4,

t4 = 4t1t3 + 3t22 +
1

2
t24,

respectively, and we find that t = (0.24855, 0.06755, 0.051705) and µ′ = 0.4714 for
r = 3 and t = (0.17656, 0.0339, 0.01843, 0.01660) and µ′ = 0.5507 for r = 4.

As a second and biologically-oriented application of Theorem 3.1, let us, as in
section 1, regard a collection of n aligned DNA sequences of length c as a collection
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χ1, . . . , χc of r-colorations of [n] (for r = 2 or 4). Let `(T ) denote the length of
T ∈ B(n) for this data; that is,

`(T ) =
c∑

j=1

`(χj , T ),

and let ` be the average value of `(T ) over B(n). We also consider a randomized
version of ` as follows. Let `∗(T ) be the expected length of a given binary tree T on
sequences randomly generated by assigning each of the c sites in sequence i a color αj
with probability φij , as in Steel, Lockhart, and Penny [11]. Let `

∗
denote the average

value of `∗(T ) over B(n). Finally, let P(n) denote the set of partitions of n into at
most r-parts (thus P(n) = {(p1, . . . , pr) : p1 ≥ p2 ≥ · · · ≥ pr ≥ 0,

∑r
i=1 pi = n}).

Corollary 3.2. Asymptotically (as n→∞),
(i)

` ∼ n
∑

p∈P(n):N(p)>0

µ′
(

1

n
p

)
N
(
p
)
,

where N(p) is the number of sites j for which the type of χj, arranged in decreasing
order, gives partition p.

(ii)

`
∗ ∼ cnµ′(φ), where φ =

1

n

n∑
i=1

φi.

Proof of Corollary 3.2.
(i)

` =
1

B(n)

∑
T∈B(n)

`(T )

=
1

B(n)

∑
T∈B(n)

c∑
j=1

`(χj , T )

=
c∑

j=1

1

B(n)

∑
T∈B(n)

`(χj , T )

=
c∑

j=1

µn(a(j)),

where aj is the type of χj . Thus

` =
∑

p∈P(n):N(p)>0

µn(p)N(p),

and the result now follows from parts (i) and (iii) of Theorem 3.1.
(ii)

`
∗

= cE′[µn(A)],(28)
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where E′ denotes expectation at a single site in the probability space described above.
Since Aj is a sum of n independent (but not necessarily identical) 0 − 1 random
variables Dij , with Prob[Dij = 1] = φij , we have that

1

n
A→p φ,(29)

where →p denotes convergence in probability (as n→∞) and

φ =
1

n

n∑
i=1

φi.

Now from (3), (26), and (29) it can be checked that∣∣∣∣ 1nµ′n
(

1

n
A

)
− 1

n
µ′n(φ)

∣∣∣∣→p 0(30)

as n→∞.
Also, by Theorem 3.1, parts (i) and (iii), respectively,∣∣∣∣ 1nµ′n(φ)− µ′(φ)

∣∣∣∣→ 0,

∣∣∣∣µn(A)

n
− 1

n
µ′n

(
1

n
A

)∣∣∣∣→p 0

as n→∞; thus

µn(A)

n
→p µ

′(φ)(31)

as n→∞.
Now, from (28),

`
∗

= cnE′
[
µn(A)

n

]
,

which, together with (31), establishes part (ii).
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Abstract. Sauer [Combinatorics, 1 (1993), pp. 361–377] has conjectured that for any tree T
and any clique K, the class Forb(T , K) of graphs that induces neither T nor K is not vertex Ramsey.
This conjecture is implied by an even stronger conjecture of Gyárfás and independently by Sumner,
that Forb(T , K) is χ-bounded. Until now, for all trees T , if Forb(T , K) was known to not be vertex
Ramsey, then Forb(T , K) was also known to be χ-bounded. In this paper we introduce a new class
of trees, spiders with toes, which includes all trees T such that Forb(T ) is known to be χ-bounded
as well as other trees for which it is not known to be χ-bounded. We show that for every spider with
toes T , Forb(T , K) is not vertex Ramsey.

Key words. Ramsey, chromatic number, hypergraph

AMS subject classification. 05C35

PII. S0895480194264769

Introduction. For a positive integer c, let [c] denote {1, . . . , c}. For a set V and
a positive integer n, let 2[V ] denote the collection of subsets of V and [V ]n denote
the collection of n element subsets of V . A hypergraph is a pair G = (V,E) such
that E ⊂ 2[V ]. The elements of V are called vertices and the elements of E are called
edges. In the case that E ⊂ [V ]2, G is just a graph and we abbreviate {x, y} by xy.
If xy is an edge, we say that x is adjacent to y and write x ∼ y.

A function f : V → [c] is a proper c-coloring of a hypergraph G = (V,E) if no edge
of G is monochromatic; i.e., for all edges e ∈ E, |{f(x): x ∈ e}| > 1. The chromatic
number χ(G) of G is the least positive integer c such that G has a proper c-coloring.
The chromatic number χ(Γ) of a class of hypergraphs Γ is the least positive integer c
such that χ(G) ≤ c for all hypergraphs G ∈ Γ, provided that such an integer exists;
otherwise χ(Γ) = ∞. If χ(Γ) <∞, we say that χ(Γ) is finite. A class of hypergraphs
Γ is χ-bounded if there exists a function f such that for all hypergraphs G ∈ Γ,
χ(G) ≤ f(ω(G)), where ω(G) is the size of the largest complete subgraph of G.

Let G = (V,E) be a graph and let S ⊂ V . The graph induced by S in G is
the graph G[S] = (S,E′), where E′ = {xy ∈ E: x, y ∈ S}. Another graph H is an
induced subgraph of G if there exists S ⊂ V such that H is isomorphic to G[S]. We
call G[S] an induced copy of H in G. Let Forb(H1, . . . , Hn) denote the class of graphs
G such that none of the graphs H1, . . . , Hn are induced subgraphs of G. We denote
G[V − S] by G− S.

This article is motivated by the following conjecture due to Gyárfás [2] and inde-
pendently Sumner [9].

CONJECTURE 1. For every tree T , Forb(T ) is χ-bounded.
Let Kk denote the complete subgraph on k vertices. For our purposes it is con-

venient to reformulate Conjecture 1 as follows: for every tree T and every positive
integer k, χ(Forb(T , Kk)) is finite. Erdös and Hajnal [1] have shown that there are
graphs with arbitrarily large girth and chromatic number. Thus if H contains a cycle,
then χ(Forb(H, K3)) is infinite. It is also not hard to show that for a forest F with
component trees T1, . . . , Tn, χ(Forb(F , Kk)) is finite iff χ(Forb(Ti, Kk)) is finite for
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all i ∈ [n]. Thus if true, the conjecture yields the best possible result. The conjecture
has been shown to hold for certain trees. Gyárfás [3] proved that for all brooms B (the
result of identifying the center of a star and a leaf of a path) Forb(B) is χ-bounded.
A tree formed by identifying one leaf of each path in a collection of paths is called a
spider. Of course, brooms are special cases of spiders. Very recently, Scott [8] proved
that if T is a spider, then Forb(T ) is χ-bounded. Spiders are the only trees T with
radius greater than two such that Forb(T ) is known to be χ-bounded. Gyárfás, Sze-
merédi, and Tuza [4] proved that for any radius two tree T , χ(Forb(T,K3)) is finite.
Kierstead and Penrice [6] later pushed their techniques further to show that for any
radius two tree T , Forb(T ) is χ-bounded.

Recently, working from the direction of the Ramsey theory, Sauer [7] introduced
a weaker version of Conjecture 1. Before presenting Sauer’s conjecture we must in-
troduce some new concepts. A class of graphs Γ is said to be vertex Ramsey if for all
integers c and graphs G ∈ Γ, there exists a graph H = (V,E) ∈ Γ such that for all
functions f : V → [c], there exists an induced monochromatic copy of G in H. Sauer’s
conjecture is the following.

CONJECTURE 2. For every tree T with at least two edges and every positive
integer k ≥ 3, Forb(T,Kk) is not vertex Ramsey.

Note that K2 = P2 and Forb(K2) is the class of graphs with no edges. Thus by
the pigeonhole principle, Forb(G,K2) = Forb(P2, G) is vertex Ramsey for any graph
G. The only tree with less than two edges is P2. Thus the two restrictions in the
conjecture are necessary.

Next we explore the connection between the two conjectures. For graphs G and
H = (V,E), let ΛG(H) be the hypergraph (V,EG) such that e ∈ EG iff H[e] is a
copy of G. Let χG(H) = χ(ΛG(H)). For a class of graphs Γ, let χG(Γ) be the least
upper bound on χG(H) for H ∈ Γ. We say that f is a G-proper coloring of H if f
is a proper coloring of ΛG(H). In other words, H does not contain a monochromatic
induced copy of G. Similarly, H is G-critical if ΛG(H) is critical. We have the
following reformulation.

Proposition 0.1. A class of graphs Γ is not vertex Ramsey iff there exists G ∈ Γ
such that χG(Γ) is finite.

Notice that if G = K2, then χG(H) = χ(H). Also, if G is an induced subgraph
of G′, then for any graph H, χG′(H) ≤ χG(H). Thus using the proposition it is easy
to see that Conjecture 1 implies Conjecture 2.

In this paper we introduce a new class of trees, called spiders with toes, and prove
(Theorem 1) that for all spiders with toes S and all positive integers k, Forb(S,Kk)
is not vertex Ramsey. The class of spiders with toes includes all trees T such that
Forb(T ) is known to be χ-bounded. It also includes the only examples of trees for
which Conjecture 2 is known to hold, but Conjecture 1 is not known to hold. The proof
is of technical interest because it uses the same template technique developed in [4],
[5], and [6] but with much more general templates. The author strongly believes that
some extension of this technique is likely to provide a proof of at least Conjecture 2.

Let Pr denote the path on r vertices and Sd denote the star on d + 1 vertices.
The root of Pr is defined to be one of its two leaves, while the root of Sd is defined to
be its unique nonleaf. The (d, r)-broom Bd,r is formed by identifying a leaf of Pr with
the root of Sd. Thus the longest path from the root of Bd,r has r + 1 vertices. The
remaining leaf of Pn is the root of Bd,r, except that in the case r = 1, the only leaf of
P1 is the root of Bd,1. Note that Bd,1 = Sd and that, except for their roots, Sd+1 is
the same as Bd,2. See Figure 1. A spider is the subdivision of a star or, alternatively,
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Fig. 1.

Fig. 2.

the result of identifying the roots of a collection of disjoint paths. A spider with toes
S is the result of identifying the roots of a collection of disjoint brooms. The root v∗

of S is the new vertex obtained by this identification. See Figure 2. A leg of S is a
component of S − v∗.

Let G = (V,E) be a graph, v ∈ V , and S ⊂ V . The open neighborhood N(v)
of v is the set N(v) = {u ∈ V : v ∼ u}, and the closed neighborhood of v is the set
N [v] = N(v) ∪ {v}. The degree δ(v) of v is |N(v)|, and δ(v, S) denotes |N(v) ∩ S|.
Finally, let R(k, b) denote the Ramsey function such that any graph on R(k, b) vertices
contains a clique of size k or an independent set of size b.

1. The template lemma. In this section we present some preliminary propo-
sitions and lemmas.

Proposition 1.1. If G and H are graphs such that χG(H) = q and G is con-
nected, then for some connected component H ′ of H, χG(H ′) = q.

Proof. Since G is connected, no edge of ΛG(H) can contain vertices from
two distinct components of H. Thus χG(H) = maxχG(H ′) over all components
H ′ of H.
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Lemma 1.1. Let G and H = (V,E) be graphs such that G is connected and
χG(H) = c > ds. If S ⊂ V satisfies both χG(H[S]) ≤ s and χG(H − S) < χG(H),
then there exists v ∈ S such that δ(v, V − S) ≥ d.

Proof. Suppose that for all v ∈ S, δ(v, V − S) < d. By hypothesis, there exists a
G-proper (c − 1)-coloring f of H[V − S]. Also there exists a G-proper s-coloring
g of H[S]. For any x ∈ S, let i(x) be the least nonnegative integer i such that
is+g(x) 6= f(y) for any y ∈ N(x)∩(V −S). Note that i(x) < d, since δ(v, V −S) < d.
Define a coloring h of H by h(x) = i(x)s + g(s) if x ∈ S, and h(x) = f(x) if x 6∈ S.
Then h(v) ≤ ds < c for all v ∈ V .

We shall obtain a contradiction by showing that h is a G-proper coloring of H.
The only possible monochromatic edges of ΛG(H) are edges that contain vertices
from both S and V −S. However, since G is connected, any such edge e contains two
vertices u ∈ V − S and v ∈ S such that u ∼ v. By our choice of i, h(u) 6= h(v), and
thus e is not monochromatic.

Lemma 1.2 (the template lemma). There exists a function q(r, d, k, s, t) such that
for all nontrivial connected graphs G and H = (V,E), for all subsets X ⊂ V , and for
all vertices v ∈ V −X, if

(1) χG(H − (N [v]−X)) < χG(H),

(2) ω(H) < k,

(3) |X| ≤ t,

(4) χG(H[N [u]]) ≤ s, for all u ∈ V, and

(5) χG(H) > q(r, d, k, s, t),

then H −X contains a copy of Bd,i with root v for all 2 ≤ i ≤ r.
Proof. We define q and show that the definition works by induction on r. Since q

will be increasing in r, it suffices to find an induced Bd,r with root v. First consider
the base step r = 2. Let q(2, d, k, s, t) = s(R(k, d) + t). Then, by Lemma 1 with
S := N [v]−X, there exists a vertex v′ ∈ N [v]−X such that δ(v′, V − (N [v]−X)) ≥
R(k, d)+ t. Since |X| ≤ t and ω(H) < k, N(v′)− (N [v]∪X) contains an independent
set L of size d. Clearly, H[L ∪ {v, v′}] ≈ Bd,2.

Next consider the induction step. For 0 ≤ i ≤ r define Mi and Ni inductively by
M0 = {v} = N0,Mi+1 = N(Mi) − (Ni ∪ X), and Ni+1 = Ni ∪Mi+1. Note that if
v′ ∈Mi then there exists a path P ≈ Pi+1 in Ni from v to v′ such that |P ∩Mj | = 1
for all j ≤ i. Let q(r, d, k, s, t) = p(R(k, d) + t), where p = s+

∑
2≤i<r q(i, d, k, s, t).

Case 1. There exists i ∈ {2, 3, . . . , r − 1} such that χG(H[Mi]) > q(r − i +
1, d, k, s, t). Choose the least such i. Let D ⊂Mi be such that χG(H[D]) > q(r− i+
1, d, k, s, t) and H[D] is G-critical. Note that D∩X = ∅. Let v′ be any vertex in Mi−1

that is adjacent to some vertex in D. Since H[D] is G-critical and N(v′) ∩ D 6= ∅,
χG(H[(D ∪ {v′})−N [v′]]) < χG(H[D ∪ {v′}]). By the induction hypothesis with H
replaced by H[D ∪ {v′}] and v replaced by v′, there exists S ⊂ D ∪ {v′} such that
H[S] ≈ Bd,r−i+1 with root v′. By the above remark, there exists an induced path
P ≈ Pi from v to v′ in Ni−1 such that H[P ∪ S] ≈ Bd,r. Since X ∩ (P ∪ S) = ∅, we
are done.

Case 2. For all i ∈ {2, 3, . . . , r − 1}, χG(H[Mi]) ≤ q(r − i + 1, d, k, s, t). Then
χG(H[Nr−1]) ≤ p. Recall that p(R(k, d)+t) = q(r, d, k, s, t). By hypothesis, χG(H[V−
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Nr−1]) < χG(H) and q(r, d, k, s, t) < χG(H). By Lemma 1 with S := Nr−1, there ex-
ists v′ ∈ Nr−1 such that d(v′, V −Nr−1) ≥ R(k, d) + t. Since |X| ≤ t and ω(H) < k,
v′ is adjacent to a set I ⊂ V − (X ∪ Nr−1) of d independent vertices. Clearly,
v′ ∈ Mr−1. So there exists an induced path P ≈ Pr from v to v′ in Nr−1 such that
H[P ∪ I] ≈ Bd,r.

We note for later use that q is increasing in all arguments. We shall also need the
following easy proposition.

Proposition 1.3. Let D be a digraph on n vertices with maximum out degree
at most s. Then χ(D) ≤ 2s+ 1. In particular, D contains an independent set of size
dn/(2s+ 1)e.

2. The main lemma and theorem. In this section we state and prove our
main result.

Theorem 2.1. For every spider with toes S with at least two edges, and every
positive integer k ≥ 3, Forb(S,Kk) is not vertex Ramsey.

Proof. Let S be a spider with toes on r vertices. Let B1, . . . , Bb be the legs of S
and v∗ be the root of S. Let Γk denote Forb(S,Kk). We shall show by induction on
k that there exist a connected G′ ∈ Γk and a number s′ such that χG′(H) ≤ s′ for all
H ∈ Γk. Thus, by Proposition 1, Γk is not vertex Ramsey.

If k = 3 (base step), let G = K2. Since S has at least two edges, G ∈ Γ3.
Also, G is connected, and χG(H) ≤ 1 for all H ∈ Γ2. If k > 3 (induction step),
then by the induction hypothesis there exists G ∈ Γk−1 and a number s such that
G is connected, and χG(G′) ≤ s for all G′ ∈ Γk−1. In either case G ∈ Γk. If
χG(H) ≤ q = q(r, r, k, s, r2R(k, b)) for all H ∈ Γk, then we finish by setting G′ = G
and s′ = q. Otherwise, there exists G′ ∈ Γk such that χG(G′) > q. In this case the
following technical lemma completes the proof.

Lemma 2.3. If G ∈ Γk is connected and χG(H) ≤ s for all H ∈ Γk−1, but there
exists a connected G′ ∈ Γk such that χG(G′) > q = q(r, r, k, s, r2R(k, b)), then there
exists s′ such that χG′(H) ≤ s′ for all H ∈ Γk.

Proof. Fix k. Define d1 < d2 < d3 < d4 < d5 as follows. Let d1 = R(k, r),
d2 = rd1, d3 = b + b2R(k, b), d4 = d3 + d2

3R(k, rd3), and d5 = d3 + d4 + (d3 +
d4)

2R(k, (d3 + d4)rb). For a vertex v ∈ V and a subset W ⊂ V , we say that v is
adjacent, strongly adjacent, and very strongly adjacent to W if v is adjacent to at
least 1, d1, and d2 vertices in W , respectively. Similarly, W ′ ⊂ V is adjacent to W if
some element of W ′ is adjacent to W .

ChooseG′ as in the hypothesis so thatG′ is alsoG-critical. Then by Proposition 2,
G′ is connected. Recursively partition the vertices of H = (V,E) into sets Y1, . . . , Yn,
L as follows. Set Y0 = ∅. Now suppose we have constructed Y1, . . . , Yi. Let Vi =
V − (Y1∪ · · ·∪Yi). If H[Vi] does not induce G′, then set i = n and Vi = L. Otherwise
there exists Zi+1 ⊂ Vi+1 such that H[Zi+1] ≈ G′. Set Ni+1 = {v ∈ Vi: v is strongly
adjacent to Zi+1} and Yi+1 = Zi+1 ∪ Ni+1. Finally, let N = N1 ∪ · · · ∪ Nn and
Z = Z1 ∪ · · · ∪ Zn.

We shall call the Z1’s templates. Note that if i < j, then no vertex in Zj is
strongly adjacent to Zi. Also, it is easy to see, using the fact that G′ is G-critical
and Ramsey’s theorem, that for any vertex v either in Zi or strongly adjacent to Zj ,
there exists an induced Br,1 with root v in {v} ∪ Zj . For v ∈ V , let V SN(v) = {j: v
is very strongly adjacent to Zj}.

CLAIM 0. For all v ∈ V , |V SN(v)| < b.
Proof. Suppose Claim 0 is not true. Let V SN(v) = {j1 > · · · > jb}. We shall

show by induction on h ≤ b that there exist A1, . . . , Ah such that for all i ∈ [h],
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Ai ⊂ Zji , H[Ai ∪ {v}] ≈ S[Bi ∪ {v∗}] with v mapped to v∗, and Ai is not adjacent to
Aj if i 6= j. Thus we will obtain the contradiction H[{v} ∪⋃1≤i≤bAi] ≈ S.

The base step h = 0 is trivial, so consider the induction step h ≥ 1. Let
X = {x ∈ Zjh : x is adjacent to

⋃
1≤i<hAi}. Since no vertex in Zji , i < h is

strongly adjacent to Zjh , |X| < rd1 = d2. Since v is very strongly adjacent to
Zjh , (Zjh − X) ∩ N(v) 6= ∅. If |Bi| = 1, we are done. Otherwise we would like to
apply Lemma 2, with H replaced by H[Zjh ∪ {v}]. Since |X| < d2, (3) holds. Since
G′ is G-critical, χG(H[(Zjh ∪ {v}) − (N [v] − X)]) < χG(G′), so (1) holds. Since
H[N(u)] ∈ Γk−1, χG(H[N(u)]) ≤ s for all u ∈ V . Thus (4) holds. By hypothesis,
χG(G′) > q(r, r, k, s, rd2), so (5) holds. Thus by Lemma 2 we can find Ah ⊂ Zjh −X
such that H[Ah ∪ {v}] ≈ S[Bh ∪ {v}], with v mapped to v∗.

For all v ∈ V , let J(v) = {j: v is adjacent to Zj}.
CLAIM 1. For all v ∈ V , |J(v)| < d3 = b+ b2R(k, b).
Proof. Suppose Claim 1 is not true. For all j ∈ J(v), choose vj ∈ Zj such that

v ∼ vj . By Claim 0, each of the vertices v, and vj with j ∈ J(v) is very strongly
adjacent to less than b templates. Thus there exists J ⊂ J(v) such that |J | = b2R(k, b)
and v is not very strongly adjacent to Zj for all j ∈ J . By Proposition 3, there exists
J ′ ⊂ J such that |J | = R(k, b) and vi is not very strongly adjacent to Zj for all
distinct i, j ∈ J ′. (Define a digraph on J by i → j iff vi is very strongly adjacent to
Zj .) By Ramsey’s theorem and ω(H) < k, there exists J ′′ ⊂ J ′ such that |J ′′| = b
and {vj : j ∈ J ′′} is independent. Let J ′′ = {j1 > · · · > jb}.

We shall show by induction on h ≤ b that there exist A1, . . . , Ah such that for all
i ∈ [h], Ai ⊂ Zji , H[Ai] ≈ S[Bi], vji is the root of H[Ai], Ai is adjacent to neither
Aj nor vjm for all distinct i, j ∈ [h] and h < m ≤ b, and v is not adjacent to Ai for
all i ∈ [h]. Thus we will obtain the contradiction H[{v} ∪⋃1≤i≤d0

Ai] ≈ S.
The base step h = 0 is trivial, so consider the induction step h ≥ 1. Let X =

((N(v) ∩ Zjh) − {vjh}) ∪ {x ∈ Zih : x is adjacent to ({vjh+1
, . . . , vjb} ∪

⋃
1≤i<hAi)}.

Note, using the induction hypothesis and the definition of J ′′, that vjh 6∈ X. We
would like to apply Lemma 2 with H replaced by H[Zjh ] and v replaced by vjh . Since
X ⊂ Zjh and every vertex in X is adjacent to one of less than r vertices, none of
which are very strongly adjacent to Zjh , |X| < rd2. Thus (3) holds. Since G′ is
G-critical, (1) holds. Clearly (2), (4), and (5) hold. Thus by Lemma 2, we can find
Ah ⊂ Zjh −X such that H[Ah] ≈ Bh with root vjh .

For all v ∈ V , let Q(v) = {j: v is adjacent to Nj}.
CLAIM 2. For all v ∈ V , |Q(v)| < d4 = d3 + d2

3R(k, rd3).
Proof. Suppose Claim 2 is not true. By Claim 1 there exists Q ⊂ Q(v) such that

|Q| ≥ d2
3R(k, rd3) and for all j ∈ Q, v is not adjacent to Zj . For all j ∈ Q, choose

wj ∈ Nj such that v ∼ wj . By Claim 1 and Proposition 3, there exists Q′ ⊂ Q such
that |Q′| ≥ R(k, rd3) and wi is not adjacent to any Zj for any two distinct i, j ∈ Q′.
By Ramsey’s theorem there exists Q′′ ⊂ Q′ such that |Q′′| = rd3 and {wj : j ∈ Q′′}
is independent.

We shall show by induction on h ≤ b that there exist j1, . . . , jh ∈ Q′′ and
A1, . . . , Ah such that for all i ∈ [b], Ai ⊂ Zji ∪ {wji}, H[Ai] ≈ Bi, the root of
H[Ai] is wji , and Ai is not adjacent to Aj if i 6= j. Thus we obtain the contradiction
H[{v} ∪⋃1≤i≤bAi] ≈ S.

The base step h = 0 is trivial, so consider the induction step h ≥ 1. Let jh be
any index in Q∗ = Q′′ − {j: Zj is adjacent to Ai for some i < h}. By Claim 1,
|Q∗| ≥ (b− h+ 1)d3 > 0, so jh exists. If Bh is a star, then we can find Ah using the
fact that wjh is strongly adjacent to Zjh . Otherwise, Ah exists, as above, by Lemma
2 with H replaced by H[Zjh ∪ {wjh}], v replaced by wjh , and X replaced by ∅.



CLASSES OF GRAPHS THAT ARE NOT VERTEX RAMSEY 379

For all v ∈ V , let P (v) = {j: v is adjacent to a vertex which is strongly adjacent
to Nj}.

CLAIM 3. For all v ∈ V , |P (v)| < d5 = d3 + d4 + (d3 + d4)
2R(k, (d3 + d4)rb).

Proof. Suppose Claim 3 is not true. By Claims 1 and 2 there exists P ⊂ P (v)
such that |P | ≥ (d3 + d4)

2R(k, (d3 + d4)rb) and for all j ∈ P , v is not adjacent to
any vertex in Yj . For all j ∈ P , choose wj such that both wj ∼ v and wj is strongly
adjacent to Nj . By Claims 1 and 2 and Proposition 3, there exists P ′ ⊂ P such that
|P ′| ≥ R(k, (d3 +d4)rb) and wi is not adjacent to any vertex in Yj for any two distinct
i, j ∈ P ′. By Ramsey’s theorem there exists P ′′ ⊂ P ′ such that |P ′′| = (d3 + d4)rb
and {wj : j ∈ P ′′} is independent.

We shall show by induction on h ≤ b that there exist j1, . . . , jh ∈ P ′′ and
A1, . . . , Ah such that for all i ∈ [b], Ai ⊂ Yji ∪ {wji}, H[Ai] ≈ Bi, wji is the root of
H[Aji ], and Ai is not adjacent to Aj if i 6= j. Thus we obtain the contradiction that
H[{v}∪⋃1≤i≤hAi] ≈ S. The base step h = 0 is trivial, so consider the induction step
h > 0. Let jh be any index in P ∗ = P ′′ − {j: Yj is adjacent to Ai for some i < h}.
By Claims 1 and 2, |Q∗| ≥ (r − h+ 1)(d3 + d4)b > 0, and thus jh exists.

Let B′h be Bh with its root deleted. If B′h is a broom with root v∗∗, let v′ ∈
Njh such that wjh ∼ v′. Then by Lemma 2 with G replaced by G, H replaced by
H[Zjh∪{v′}], v replaced by v′, and X replaced by ∅, there exists A′h ⊂ Zjh∪{v′} such
that H[A′h] ≈ S[B′i] with v′ mapped to v∗∗. Then we finish by setting Ai = A′i∪{wjh}.
Otherwise B′h is an independent set of size less than r. Since wjh is strongly adjacent
to Njh , wjh has at least R(k, r) neighbors in Njh . Thus by Ramsey’s theorem we can
find the desired Ah.

We complete the proof of Lemma 3 by defining a G′-proper coloring f of H, using
s′ = 1 + pd2 + ps(2d5 + 1)d1d4 colors, where p = |G′|. The coloring f will use disjoint
sets of 1, pd2, and ps(2d5 + 1)d1d4 colors on L, Z, and N , respectively. Moreover,
f |Z will be a proper coloring of H[Z] and f |N will be a G-proper coloring of N .

First, for all vertices x ∈ L, let f(x) = 0. Since H[L] does not induce G′, f |L
is G′-proper. Let Zi = {z1

i , . . . , z
p
i } for i = 1, . . . , p. Define m(i, j) by recursion on

i so that m(i, j) is the least positive integer such that if zji ∼ zji′ and i′ < i, then

m(i, j) 6= m(i, j′). Let f(zji ) = (i,m(i, j)). Clearly, f |Z is a proper coloring of Z. By
Claim 1, m(i, j) ≤ d2. Thus f |Z uses at most pd2 colors.

It remains to color N . Let N j
i = {v ∈ Ni: j is the least index such that v ∼ zji }.

Since N j
i ⊂ N(zji ), H[N j

i ] ∈ Γk−1. Thus χG(H[N j
i ]) ≤ s. Let f j be a G-proper

s-coloring of H[N j
i ]. Define an auxiliary digraph Dj = ([n], Ej) by i → i′ iff there

exists w ∈ N j
i such that w is strongly adjacent to Ni′ . By Claim 3, the out degree

of Dj is less than d5. By Proposition 3, there exists a proper (2d5 + 1)-coloring gj of

Dj . For v ∈ N , let f ′(v) = (j, f j(v), gj(i)), where v ∈ N j
i . Then f ′|Ni is a G-proper

coloring that uses at most ps(2d5 + 1) colors. By recursion on i define m(v) to be the
least integer m such that if v ∼ v′, f ′(v) = f ′(v′), v ∈ Ni, v

′ ∈ Ni′ , and i′ < i, then
m(v) 6= m(v′). Finally, let f(v) = (f ′(v),m(v)).

Clearly, f |N is a G-proper coloring. It remains to show that for all v ∈ N , m(v)
is at most d1d4, and thus f uses at most ps(2d5 + 1)d1d4 colors. Suppose v ∈ N j

i .
Let U = {v′ ∈ N : v ∼ v′, f ′(v) = f ′(v′), v′ ∈ Ni′ and i′ < i}. It suffices to show that
|U | < d1d4. Let I = {i′ < i: v′ ∈ N j

i′ for some v′ ∈ U}. By Claim 2, |I| < d4.
Note that for all i ∈ I, v is not strongly adjacent to Ni: otherwise, i is adjacent

to i′ in Dj ; thus gj(i) 6= gj(i
′) and f ′(v) 6= f ′(v′). Thus |U | < d1|I| < d1d4.

The proof of Lemma 3 is an example of the general template method that is
explained more formally in [5] and used in [4] and [6]. The novelty of this application
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is that the form of the templates is never actually determined. Rather we establish
the existence of the graphs G′ that have the properties required of templates.
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Abstract. We present new explicit lower bounds for some Ramsey numbers. All the graphs
are cyclic and are on a prime number of vertices. We give theoretical motivation for searching for
Ramsey graphs of prime order and provide additional computational evidence that primes tend to
be better than composites.
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1. Introduction. A red–blue coloring of the edges of the complete graph Kn

(which we will regard as having vertex set {0, 1, 2, 3, . . . , n−1}) is cyclic if it is invariant
under the rotation i→ i+ 1 (mod n). For integers k, l ≥ 2, define the cyclic Ramsey
number C(k, l) to be the least N so that for all n ≥ N , every cyclic coloring of Kn

contains either a red Kk or a blue Kl. Clearly, C(k, l) ≤ R(k, l). We note, however,
that not every n < C(k, l) is such that there exists a cyclic coloring without a red Kk

or a blue Kl.

Many authors have searched for lower bounds for Ramsey numbers amongst cyclic
graphs, and most of the best known explicit lower bounds come either from cyclic
graphs or from cyclic graphs together with a small number of additional vertices.

In this paper we present cyclic graphs which improve the previously best known
bounds for the classical Ramsey numbers R(4, 12), R(4, 15), R(5, 7), and R(5, 9). All
these graphs are of prime order. We were motivated to search for such graphs by
theoretical considerations, which we present in the final section.

2. New bounds. The graphs were found by implicit enumeration of cyclic 2-
colorings. The program was written in Pascal and run on Sun SPARCstations (2,
10, or 20). We emphasize that the algorithm is straightforward and the hardware
unexceptional even by 1991 standards. The advantage that we had was knowing to
look at graphs of prime order. We suspect that in the past when a complete search
revealed no cyclic Ramsey graphs of order n or n+1 that researchers did not continue
the search over larger orders. We searched for cyclic graphs of order equal to the
smallest prime greater than or equal to the best-known bound. The required CPU
times varied from 25 minutes (for R(5, 7)) to 10 days (for R(4, 15)).

R(5, 7) ≥ 80. This improves on the bound of 76 reported in [4]. In the 79 vertex
graph, the following edge differences are present: 6, 10, 12, 14, 17, 20, 21, 22, 24, 25, 26,
28, 34, 36, 37, 38. There is no such cyclic graph on 83 vertices.
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R(5, 9) ≥ 114. This appears to the be first bound reported [4]. In the 113 vertex
graph, the following edge differences are present: 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 28,
32, 34, 35, 39, 42, 43, 44, 46, 48, 52, 54, 55.

R(4, 12) ≥ 98. This improves on the bound of 97 reported in [4]. In the 97 vertex
graph, the following edge differences are present: 11, 19, 21, 22, 23, 29, 34, 35, 38, 39, 43,
44, 46, 47, 48.

R(4, 15) ≥ 128. This improves on the bound of 123 reported in [4]. In the 127 ver-
tex graph, the following edge differences are present: 14, 27, 28, 29, 38, 39, 41, 43, 44, 45,
47, 49, 51, 52, 58, 60, 62, 63.

We are grateful to the referee for bringing to our attention that subsequent to
our submitting this paper, Piwakowski [2], [3] has improved our bounds for R(4, 12)
to 106 and for R(4, 15) to 134. This immediately suggests searching for cyclic graphs
of order 107 and 137, respectively.

Primes do not always fare better than composites. Besides the trivial case of
3-vertex graphs for R(3, 3), the smallest example occurs for R(4, 5); there is no cyclic
Ramsey graph on 23 vertices, but there is one on 24 vertices.

3. Computational evidence that primes do well. As we shall see, at several
points in the theoretical analysis primes seem to show some advantage over compos-
ites. We checked empirically for advantages of primes over composites with regard to
bounds for R(4, 4), R(5, 5), and R(6, 6). The results are given in Figures 1–3, where
shading denotes that a cyclic Ramsey graph is known to exist, and unshaded areas
indicate that no cyclic Ramsey graph is known. Primes show a slight advantage in
the first two cases and a dramatic advantage in the third case: the largest known
Ramsey graph of composite order has 74 vertices, while every prime number order
through 101 yields a ramsey graph, with the possible exception of 97.

4. The standard probabilistic analysis suggests that primes do better.
The standard probabilistic lower bounds for R(k, l) are obtained as follows: let 0 <
p < 1, randomly 2-color the edges of Kn, red with probability p, and blue with
probability 1 − p. Compute the expected number of red Kks and blue Kls. If this
expectation satisfies∑

|K|=k

Pr(K is a red clique) +
∑
|L|=l

Pr(L is a blue clique) < 1,

then there exists a coloring of Kn with no red Kk and no blue Kl.

In the cyclic case, the existence of one monochromatic subgraph implies the
existence of many since the image of a monochromatic clique under the rotation
i → i + 1 (mod n) is also a monochromatic clique. It is easy to see that in fact the
existence of one monochromatic clique of order k implies the existence of at least n

(n,k)

distinct cliques and, in particular, if n is prime, at least n distinct cliques. Hence, if

(n, k)

n

∑
|K|=k

Pr(K is a red clique) +
(n, l)

n

∑
|L|=l

Pr(L is a blue clique) < 1,

where the expectations are now computed over all random cyclic colorings, then there
exists a cyclic coloring of the edges of Kn without a red Kk or a blue Kl. This
dependence on the greatest common divisors (n, k) and (n, l) suggests that we may
be slightly more successful in finding graphs of prime order.
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However, as we shall see, the computation of the expectation is not sufficient to
obtain any bounds for C(k, l): indeed, we shall see that the expression above grows
at least as fast as n/

√
k for large n.

We shall concentrate on the first part of the sum: fix k, n, and for now set p = 1/2.
We wish to compute ∑

|K|=k

Pr(K is a red clique).

Define the difference of a pair of vertices i and j as min{|i− j|, n− |i− j|}. Note
that if a coloring is cyclic, then all edges with the same difference are the same color.
The differences D(K) of a set K of vertices are the differences between the pairs
comprising K ×K.

If a set K = {x1, x2, . . . , xk} ⊆ {0, 1, 2, . . . , n−1} has exactly i distinct differences,
i.e., |D(K)| = i, then the probability that K is a red clique in a random cyclic coloring
is 2−i. Define Ni,k,n to be the number of k-subsets of {0, 1, 2, . . . , n−1} having exactly
i distinct differences. Then the expected number of red k-cliques in a random cyclic
coloring of Kn is

(k2)∑
i=bk/2c

Ni,k,n2−i.

If k 6 |n then Nj,k,n = 0 for j ≤ k− 2. Since the 2−i part of the summand is largest in
the range i ≤ k − 2, this appears as another slight advantage for prime values of n.

Proposition 4.1. For n prime and k <
√
n/2,

(k2)∑
i=k−2

Ni,k,n2−i = Ω(n2/
√
k).

Proof. Clearly,

(k2)∑
i=k−2

Ni,k,n2−i > 2−(2k−3)
2k−3∑
i=k−1

Ni,k,n.

To bound the latter sum, consider the bn/2c arithmetic progressions mod n of 2k− 2
terms beginning at 0 with common difference d : 0 < d < n/2. Each of these sets
has 2k − 3 distinct differences. From each progression we may remove k − 2 nonzero
elements in

(
2k−3
k−2

)
ways to form a collection of k-subsets. We claim these are all

distinct. It is obvious that those from the same progression are distinct, so it suffices
to show that no two progressions of 2k− 2 terms, starting at 0, can contain the same
k-subset. To see this, we first show that arithmetic progressions of integers with initial
term 0 can’t intersect in too many elements: let

A = {0, a, 2a, . . . , ka}

and

B = {0, b, 2b, . . . , kb}
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be two arithmetic progressions with a < b and (a, b) = 1 (otherwise just divide both
a and b by their greatest common divisor); we will show that

|A ∩B| >
⌊
k

b

⌋
+ 1.

Since (a, b) = 1, if an element x is in their intersection, it is of the form ja and lb,
where b|j and a|l. Thus the elements of A in the intersection are a subset of

0, ba, 2ba, 3ba, . . . , b

⌊
k

b

⌋
a.

Hence there are at most bkb c+ 1 of them.
We now consider arbitrary arithmetic progressions. By translating both progres-

sions, we may assume that

A = {0, a, 2a, 3a, . . . , ka}

and

B = {c, c+ b, c+ 2b, c+ 3b, . . . , c+ kb}.

Now, if c > 0 we can replace A by A\{0}∪{(k+1)a} without decreasing the size of the
intersection. Iterating this process, we see that we can translate until the arithmetic
progressions both start with 0, and we are in the case handled above.

We now show that two arithmetic progressions taken modulo n have the same
property, provided that k is much less than n (clearly it fails to be true if k is close
to n).

Since n is prime, by multiplying both arithmetic progressions by a−1 mod p, and
by rotating, we may assume

A = {0, 1, 2, 3, . . . , k}

and

B = {c, c+ b, c+ 2b, c+ 3b, . . . , c+ kb}.

Now, if we knew that B didn’t wrap around modulo n, then we would be able to
appeal to the statement for arithmetic progressions of integers above: we shall show
that there is a value d mod n so that neither dA mod n nor dB mod n wrap around.
Observe that since the progressions intersect in at least two elements then we have
e, f, g, h so that e = c+ gb and f = c+ hb, where each of e, f, g, h are at most k and
we may assume f > e. Then

f − e = (h− g)b;

if h < g, then we will replace the arithmetic progression B by the reverse arithmetic
progression (with common difference n− b and initial term c+ kb). Thus we are now
in the situation where we have 0 ≤ e < f ≤ k, 0 ≤ g < h ≤ k, and

f − e = (h− g)b.
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If we now let d = h− g, and consider the progressions A′ = dA and B′ = dB, we see
that

A′ = {0, d, 2d, . . . , dk}

and

B′ = {cd, cd+ bd, cd+ 2bd, . . . , cd+ kbd}

(taken modulo n). Now, since d ≤ k and bd = f − e ≤ k (mod n), each of A′ and B′

has a small common difference. Indeed, the difference of A is d ≤ k and the difference
of B is bd ≤ k. Thus, provided that k2 < n

2 , A′ doesn’t wrap around (mod n), and
B′ wraps around at most once. Moreover, if B′ wraps around we can rotate both
arithmetic progressions so that B′ starts at 0 and neither progression wraps around,
reducing us to the cases handled above. Thus we have shown that if the arithmetic
progressions modulo n intersect in many elements then they are the same arithmetic
progression.

Now since n is prime and d < n/2 each subset may be rotated n−1 times to yield
a total of

(bn/2c)n
(

2k − 3

k − 2

)
∼ n222k−3/

√
k

distinct k-subsets. Each of these subsets has at most 2k− 3 distinct differences, since
each is a subset of a progression having 2k − 3 distinct differences. Therefore,

2k−3∑
i=k−1

Ni,k,n = Ω(n222k−3/
√
k),

and the proposition follows.
From the proposition we see that a random cyclic graph has a large expected

number of monochromatic k-cliques, even if the graph is of order k2. Hence, standard
expected value arguments cannot be used to give bounds on R(k, l) that are exponen-
tial in min{k, l}. However, Alon and Orlitsky [1] have shown by more sophisticated
arguments that random cyclic graphs nonetheless give bounds on R(k, k) of order

ec
√
k.
A final advantage of primes may be the following: A natural way to investigate

bounds for Ni,k,n is to “grow” a set K randomly, counting the number of new distinct
differences when a vertex x is added to K. All |K| differences will be distinct only
if x does not satisfy any of a set of equations mod n derived from the vertices in K
(e.g., x can not be the mean of two points in K). When n is prime these equations
are solved over the field Zn and have unique solutions. But when n is composite there
can be multiple solutions, increasing the probability of duplicating a difference (e.g.,
both 3 and 0 are midpoints of 2 and 4, mod 6).
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Abstract. A full Steiner tree T for a given set of points P is defined to be linear if all Steiner
points lie on one path called the trunk of T . A (nonfull) Steiner tree is linear if it is a degeneracy of
a full linear Steiner tree. Suppose P is a simple polygonal line. Roughly speaking, T is similar to P
if its trunk turns to the left or right when P does. P is a left-turn (or right-turn) polygonal spiral if
it always turns to the left (or right) at its vertices. P is an infinite spiral if n tends to infinity. In this
paper we first prove some results on nonminimal paths and the decomposition of Steiner minimal
trees, and then, based on these results, we study the case in which an infinite spiral P has a Steiner
minimal tree that is linear and similar to P itself.
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1. Linear Steiner trees and polygonal spirals. A Steiner minimal tree
SMT (A) for a set A of given points (called regular points) is a shortest network
interconnecting these points with some additional points (called Steiner points) [3].
All angles in SMT (A) are no less than 120◦. A tree satisfying this angle condition is
called a Steiner tree. By topology of a network we mean the graph structure of the
network. Steiner trees can be classified as full or nonfull. A Steiner tree is called full
if every regular point is of degree one. The importance of this classification is that
any Steiner tree can be decomposed into a union of full subtrees. On the other hand,
a nonfull Steiner tree can be regarded as a degeneracy of a full Steiner tree [4]; i.e.,
some Steiner points in the tree collapse into their adjacent regular points.

In this paper we give another natural classification of Steiner trees. Suppose a
Steiner tree T for A is full. If every Steiner point is adjacent to three regular points,
then there is only one Steiner point, and A is a three-point set. If every Steiner point
is adjacent to two regular points, then there are only two Steiner points, and A is a
four-point set. When A has five points, every Steiner point in T is at least adjacent to
one regular point. However, when A has more than five regular points, there may be
Steiner points that are not adjacent to any regular points. It is worth noticing that if
every Steiner point is at least adjacent to one regular point in a full Steiner tree, then
all Steiner points lie on one path. Such a full Steiner tree is defined to be linear, and
the path joining all Steiner points in sequence is called its trunk. A nonfull Steiner
tree is defined to be linear if it is a degeneracy of a full linear Steiner tree. Clearly,
in a certain sense, linear trees are the simplest of all Steiner trees. First, we ask the
following question: What sets of points have linear Steiner minimal trees?

A sequence of points {a0, a1, . . . , an} (n ≥ 2) is called a (simple) polygonal line if
no two nonconsecutive line segments ai−1ai and aiai+1 meet. This line will be written
as P = a0a1 · · · an. Suppose a Steiner tree T for P is linear with trunk s1s1 · · · sn−1.
(As mentioned above, some Steiner points may coincide with regular points if T is
nonfull.) T is defined to be similar to P if si are adjacent to ai for all i (1 ≤ i ≤ n−1).
The modifier “similar” comes from the fact that, roughly speaking, in this case the
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(a) (b)

Fig. 1.

trunk turns to the right or left when P does. Now the second question arises: What
polygonal lines have Steiner minimal trees that are similar to themselves?

There are two extreme types of polygonal lines. If a polygonal line P = a0a1 · · · an
always turns to the left or right at its vertices, then it is called a left-turn or right-
turn polygonal spiral. (For simplicity, we often just say that P is a spiral and omit
the modifier “polygonal.”) If P turns left and right alternately in some way, then
it is a wave line. In this paper we study only the spirals that have similar Steiner
minimal trees and leave the discussion on wave lines with similar Steiner minimal trees
to another paper. When P is a spiral, we are much more interested in its behavior
when n tends to infinity; i.e., n is arbitrarily large. Such a spiral is referred to as an
infinite spiral. In this paper we first prove some results on nonminimal paths and the
decomposition of Steiner minimal trees, and then, based on these results, we study
the case in which an infinite spiral P has a Steiner minimal tree that is similar to P
itself.

2. Nonminimal paths and the decomposition of Steiner minimal trees.
In this section we prove some general results that can be used to eliminate nonminimal
Steiner trees.

A path in a Steiner tree that always turns left (or right) at its vertices is called
a left-turn (or right-turn) path. An object involving more than two points (e.g., an
angle, a path, a polygon, etc.) is usually written in counterclockwise order unless
specially indicated. After Cockayne [1], by (ab) denote the third vertex of the equi-
lateral triangle (ab)ba based on ab and on the right side of ab looking from a to b.
Furthermore, this notation can be used to represent a full Steiner tree. For example,
(ab)(cd) represents the full Steiner tree in which a, b join a Steiner point and c, d join
another Steiner point. By |x| we denote the length of x where x is a line segment, a
polygonal line, or a tree. In this section suppose T is a Steiner tree on a set A.

Lemma 2.1 (nonminimal paths). Suppose p · · · rq is a path in T such that 6 prq ≤
60◦. Let d be the point on rq (Figure 1(a)) or its extension (Figure 1(b)) such that
6 dpr = 6 prq. Suppose any regular point (e.g., ai in Figure 1) in the polygon p · · · rd
is connected to q via r, and suppose q is a Steiner point if q lies on rd. Then T is
not minimal.

Proof. If d lies strictly on rq then rq can be replaced by pd to shorten T since
|pd| < |rq|. Now suppose q lies on rd. If d = q, then q is a Steiner point by our
assumption. Hence, we obtain a new tree T ′ with the same length by replacing rq
with pq. Since the angle condition is not satisfied at q, T ′ is not minimal. Finally,
suppose d lies strictly on the extension of rq. Let the left edge of q looking from r to
q end at v. If qv meets pd at a point u, then |pu| ≤ |rq|. rq can be replaced by pu
to shorten T . If qv does not meet pd, then the right turn path rqv · · · ends nowhere
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Fig. 2.

since all regular points in p · · · rd have been connected to q through r.
Now we state a theorem which was first proved by Pollak [6], then improved in

[2] and [8].
Theorem 2.1 Suppose abcd is a quadrilateral such that 6 (ab)cd ≥ 120◦, 6 cd(ab) ≥

120◦, 6 (cd)ab ≥ 120◦, 6 ab(cd) ≥ 120◦. If the angle at the intersection of the diagonals
subtending to ab is less than 90◦, then the full Steiner tree (ab)(cd) exists and is the
unique Steiner minimal tree.

Lemma 2.2. Suppose ps1s2q is a convex path in T where s1, s2 are Steiner points.
If both |s1s2|/|ps1| and |s1s2|/|s2q| are less than sin(15◦)/sin(45◦) = 0.3660, then T is
not minimal.

Proof. If the condition is satisfied, then there is a point p′ on ps1 and a point
q′ on qs2 such that p′s2 is perpendicular to s1q

′. It follows that the angle at the
intersection of ps2 and s1q subtending pq is less than 90◦. Clearly, the quadrilateral
qps1s2 satisfies the conditions of Theorem 2.1. Therefore, |ps1|+|s1s2|+|s2q| is longer
than the Steiner minimal tree (qp)(s1s2). T is not minimal.

A Steiner polygon of a set A is a polygon such that all Steiner minimal trees for
A lie in it [1], [9].

Lemma 2.3. Suppose
(1) a, b, c, d are four consecutive vertices of a Steiner polygon of A and 6 abc +

6 bcd ≤ 180◦,
(2) there is no regular point in abcd, and
(3) the full Steiner tree (da)(bc) is the unique Steiner minimal tree on abcd.
If there is more than one Steiner point lying on the path connecting b, c in T , then

T is not minimal.
To prove this lemma we need the following embedding theorem [8].
Theorem 2.2. Suppose abcd is a quadrilateral embedded in another quadrilateral

a′b′c′d′ with a, d on a′d′ and b, c on b′c′. If the topology (a′d′)(c′b′) is optimal for
a′b′c′d′, then the topology (ad)(cb) is optimal for abcd.

Proof of Lemma 2.3. Let T1 = (da)(bc), in which a, d join the same Steiner point
s1 and b, c join the same Steiner point s2. Let T2 be the Steiner tree whose topology
is (ab)(cd) or a degeneracy of it. Let a, b join the same Steiner point s3 and c, d join
the same Steiner point s4 in T2. By the assumption, |T2| > |T1|.

Since 6 abc + 6 bcd ≤ 180◦, there are at most two Steiner points, say s′3 and s′4,
on the convex path connecting b, c in T . Because the left-turn Steiner path starting
with bs′3 cannot intersect ab and there is no regular point in abcd, the third edge of
s′3 must meet ad at a point p (Figure 2). Similarly, the third edge of s′4 meets ad at
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Fig. 3.

a point q. Applying the embedding theorem to abcd and pbcq, we conclude that the
subtree on pbcq, and consequently T , is not minimal.

Let T be a Steiner minimal tree on a set A. Suppose A is decomposed into two
subsets A1 and A2, and T can accordingly be decomposed into two subtrees T1 and
T2 so that Ti(i = 1, 2) connect the regular points in Ai(i = 1, 2), respectively. If A1

and A2 share only one regular point a and T1 joins T2 at a, then T as well as A is
defined to have a point decomposition at a. If A1 and A2 are disjoint and T1 joins
T2 by an edge s1s2 with si(i = 1, 2) in Ti, then T as well as A is defined to have an
edge decomposition with s1s2. In such decomposition terms the above lemma can be
stated as follows.

Lemma 2.3*. Let A1 = {b, c} and let A2 consist of a, d and other regular points
of A. If the conditions in Lemma 2.3 are satisfied, then the Steiner minimal tree T
on A has an edge decomposition with two subtrees spanning A1 and A2, respectively.

Gilbert and Pollak [3] proved a property concerning the decomposition of Steiner
minimal trees which they called the double wedge property.

Double Wedge Property. Suppose two lines meet 120◦ at a point o so that
all points of A lie in two 60◦ wedges R1 and R2.

(1) If o is a regular point, then the Steiner minimal tree T has a point decompo-
sition at o with two subtrees spanning the subsets of A in R1 and R2, respectively.

(2) If o is not a regular point then T has an edge decomposition with two subtrees
spanning the subsets of A in R1 and R2, respectively.

Suppose bb′ · · · c′cdd′ · · · a′a is a Steiner polygon of A. Let o be the intersection
of ac and bd. If 6 boa ≥ 120◦ and no regular points lie in 4boa and 4doc, then
abcd is called a neck of the Steiner polygon. Thus, the double wedge property can be
improved as follows.

Lemma 2.4 (neck decomposition). Suppose bb′ · · · c′cdd′ · · · a′a is a Steiner poly-
gon of A with a neck abcd. Then the Steiner minimal tree T has either a point
decomposition (Figure 3(a)) or an edge decomposition (Figure 3(b)) as stated in the
double wedge property.

Proof. Suppose o is the intersection of ac and bd. Let the regions enclosed by
obb′ · · · c′c and odd′ · · · a′a be R1 and R2, respectively. If o is a regular point, then we
can delete 4boa from the Steiner polygon of A since 6 boa ≥ 120◦. Similarly, we can
delete 4doc. Thus we obtain a new Steiner polygon consisting of two small ones that
join at o. Hence, T has a point decomposition at o.

Now suppose o is not a regular point. If there is a Steiner point s in 4boa, then
there is a left- or right-turn path starting from s which intersects ab at an interior
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point and goes out of the Steiner polygon. This contradicts the definition of Steiner
polygons. Similarly, there is no Steiner point in 4doc. Hence, all Steiner points lie in
R1 and R2. Suppose there are two edges in T crossing the sides of 4boa and/or 4doc
at p1, q1 in R1 and p2, q2 in R2, respectively. Since 6 boa ≥ 120◦, one of p1p2, q1q2 is
the longest side of p1q1q2p2. Hence, T cannot contain both p1p2 and q1q2. We obtain
a contradiction.

Remark. In the lemma it is not required that no regular points lie in two angles
6 boa or 6 doc. For example, a′, b′ lie in 6 boa in Figure 3.

3. Logarithmic spirals. Suppose P = a0a1a2 · · · an is a left-turn spiral. P
can be characterized by two sets of parameters: edge ratios ki = |aiai+1|/|ai−1ai|
and turning angles αi = 6 ai−1aiai+1. It is naturally assumed that 0 < ki < 1 and
0 < αi < 180◦. Without loss of generality, assume |a0a1| = 1.

Theorem 3.1. If ki = k and αi = α, where k and α are two constants, then
all ai lie on a logarithmic spiral curve with an asymptotic point o. All polar angles
6 aioai+1 between two adjacent points ai, ai+1 (0 ≤ i < n) are equal.

Proof. Let o be the intersection of the arcs
︷ ︷
a0a1,

︷ ︷
a1a2 such that 6 a2oa1 =

6 a1oa0 = ᾱ = 180◦ − α. Since

6 a0a1o = α− 6 oa1a2 = 180− 6 a2oa1 − 6 oa1a2 = 6 a1a2o,

the two triangles 4oa0a1 and 4oa1a2 are similar. Now because ki = k and αi = α,
all 6 ai+1oai equal ᾱ and all 4ai+1oai are similar (Figure 4). Let o be the pole and
oa0 the polar axis. Let ρ denote the radius vector and θ the polar angle. Hence, the
coordinates of ai are ρ(ai) = |oai| and θ(ai) = iᾱ. Since |oai+1|/|oai| = k, they satisfy

ρ(ai) = |oai| = ρ0k
i = ρ0(k

1/ᾱ)θ(ai),
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where ρ0 = |oa0|. Hence, ai (0 ≤ i ≤ n) lie on the logarithmic spiral curve

ρ(θ) = ρ0(k
1/ᾱ)θ

and the polar angles between ai and ai+1 (i ≥ 0) are all equal to ᾱ.
By this theorem, a (polygonal) spiral with constant edge ratio k and turning angle

α is called a logarithmic (polygonal) spiral and is denoted by Ln(k, α). If n tends to
infinity, then it is denoted by L∞(k, α). Let β = 6 oaiai+1, γ = 6 aiai+1o. It is easy
to show that

ρ0 =
1√

1 + 2k cosα+ k2
,

sinβ = ρ0k sinα,

sin γ = ρ0 sinα.

If the Steiner minimal tree T for L∞(k, α) is similar to L∞(k, α) itself, then its
topology is

· · · ((· · · ((a0a1)a2) · · · ai−1)ai) · · · .

Define

ajj = aj , a
i
j = (aja

i−1
j ), 0 ≤ j < i.

Assume we have expanded T to ai0 by Melzak’s method [5], and we denote the ex-
panded tree by T i. Then T i is a Steiner minimal tree on the set

Ai = {ai0, ai+1, ai+2, . . . , an}.

Clearly, ai0a
i
1 · · · aii−1ai is a convex polygonal line with the same interior angle α+60◦.

It lies on the right (or left) side of ai0ai looking from ai0 to ai if α < 120◦ (or > 120◦).
When α = 120◦, all ai0, a

i
1, . . . , a

i
i−1, ai lie on the extension of ai+1ai (Figure 5), and

|ai0ai| = 1 + k + k2 + · · ·+ ki−1 =
1− ki

1− k
.

Theorem 3.2. The Steiner minimal tree for L∞(k, α) cannot be similar to
L∞(k, α) itself if α < 120◦.

Proof. First note that if the Steiner minimal tree for L∞(k, α) is similar to
L∞(k, α) itself, then the left-turn Steiner path starting from a0 is an infinite path;
that is, it has no end.

Now suppose α < 120◦; then 6 aii−1aia
i
0 > 0◦. It is easily seen by geometric

consideration that this angle is unlimited increasing. Consequently, 6 ai0aiai+1 =
α + 60◦ − 6 aii−1aia

i
0 < 180◦, and it is unlimited decreasing when i goes to infinity

(refer to Figure 4). Therefore, when i is large enough, ai0ai will intersect line seg-
ment ajaj+1 for certain j > i. It implies that the left-turn path starting from a0 is
not an infinite path and must end at a certain regular point. Thus, the theorem is
proved.

Theorem 3.3. If k ≤ 0.4758 and α ≥ 120◦, then the Steiner minimal tree for
L∞(k, α) is L∞(k, α) itself. Hence, the Steiner minimal tree is unique and similar.



394 J. F. WENG

Fig. 5.

Proof. Suppose T is the Steiner tree for L∞(k, α) with the topology

· · · ((· · · ((a0a1)a2) · · · ai−1)ai) · · · .
If the theorem is true for α = 120◦, then all Steiner points must collapse into their
adjacent regular points; that is, T is L∞(k, α) itself. Hence, the theorem also holds
for α > 120◦. Below we prove the theorem is true for α = 120◦.

When α = 120◦, ai0ai+1‖ai+6ai+7‖ai+4ai+3. By the formulae listed above,

ρ0 =
1√

1− k + k2
, sinβ =

√
3

2
ρ0k, sin γ =

√
3

2
ρ0.

Especially 1 < ρ0 < 2/
√

3, β < 30◦, γ > 90◦ when k ≤ 0.4758.
The theorem is proved if we can show that ai0 and ai+1 join the same Steiner point

in T i for all i ≥ 0, where T i is the Steiner minimal tree forAi = {ai0, ai+1, ai+2, . . . , an},
as stated before. We prove by contradiction. That is, below we will show that T i is
not minimal if there are m(≥ 2) Steiner points on the path connecting ai0 and ai+1 in
T i.

First, since the extension of ai+4ai+5 meets the line ai0ai+1 at 60◦, we have
6 ai0ai+5ai+4 > 120◦ and 6 ai+5a

i
0ai+1 < 60◦. Hence, 6 ai+5a

i
0ai+1 + 6 ai0ai+1ai+2 <

180◦. It implies that m ≤ 2.
Now suppose m = 2 and s′3, s

′
4 are the two Steiner points on the path connecting

ai0 and ai+1 in T i (Figure 5). We want to show that ai+6a
i
0ai+1ai+2 satisfy all three

conditions of Lemma 2.3. We have shown that

6 ai+6a
i
0ai+1 + 6 ai0ai+1ai+2 < 6 ai+5a

i
0ai+1 + 6 ai0ai+1ai+2 < 180◦.

To satisfy the first condition, we need only to prove that ai+6 is on the Steiner
polygon of Ai. It suffices to prove that the left-turn path starting with ai0s

′
3 cannot

meet ai+5ai+6. Suppose to the contrary they meet at a point r. Since the angle
between ai+5ai+6 and ai0ai+1 is 60◦, r lies on the third edge of s′3 and 6 ai+6rs

′
3 < 60◦.

Hence, by Lemma 2.1 the path connecting ai+6 and s′3 cannot do so through r; that
is, it should be through s′4. It follows that

|s′3s′4| < |ai+6r| ≤ |ai+6ai+5| = ki+5.
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Since 6 ai+6rs
′
3 < 60◦, we also have |ai+6s

′
3| < |ai+6ai+5| = ki+5. Hence,

|s′4ai+1| ≥ |oai+1| − |os′4| > |oai+1| − |oai+6| − |ai+6s
′
3| − |s′3s′4|

> ρ0k
i+1 − ρ0k

i+6 − 2ki+5

and

|s′3s′4|
|s′4ai+1| <

ki+5

ρ0ki+1 − ρ0ki+6 − 2ki+5

=
k4

ρ0(1− k5)− 2k4
<

k4

(1− k5)− 2k4
< 0.3660.

It is easily seen that 6 ai0ai+1s
′
4 ≥ 60◦ ≥ 6 s′3a

i
0ai+1. Hence, we have |s′3ai0| ≥ |ai+1s

′
4|

and |s′3s′4|/|s′3ai0| < 0.3660 too. By Lemma 2.2, T i is not minimal. This contradicts
the assumption that T i is minimal. Hence, ai+6, a

i
0, ai+1, ai+2 are four consecutive

vertices of the Steiner polygon of the set Ai. The first condition of Lemma 2.3 is
satisfied.

Let the distance of ai+6 from the line ai0ai+1 be d1 and the distance of ai+2 from
the line ai0ai+1 be d2. Note that ai+6 lies on oai. Since 1− k6 > 1− k + k2,

d1 = |ai+6ai| sinβ = (|oai| − |oai+6|) ρ0k sinα =

√
3

2
× ki+1

(
1− k6

)
1− k + k2

> d2 = |ai+2ai+1| sin (180◦ − α) =

√
3

2
ki+1.

Hence, ai+2 lies between the parallel lines ai0ai+1 and ai+6ai+7. It follows that there
is no regular point in ai0ai+1ai+2ai+6. The second condition of Lemma 2.3 is also
satisfied.

It is easy to check that all the angles 6 ai0ai+1(ai+2ai+6), 6 (ai+2ai+6)a
i
0ai+1,

6 (ai0ai+1)ai+2ai+6, 6 ai+2ai+6(a
i
0ai+1) are no more than 120◦. Let ψ be the angle

at the intersection of ai+6ai+1 and ai0ai+2 subtending ai0ai+1 (Figure 5). By Theorem
2.1, the full Steiner tree (ai0ai+1)(ai+2ai+6) exists and is the Steiner minimal tree for
ai0ai+1ai+2ai+6 if ψ < 90◦. Let θ = 6 ai+6ai+1ai+2 and let h be the point on ai+1ai+2

such that ai+6h ⊥ ai+1ai+2. Since 6 ai+1ai+2o = γ > 90◦, 6 ai+2oai+6 = 120◦, we
have 6 oai+6h < 60◦. Hence,

tan θ =
|ai+6h|
|ai+1h|

<
|ai+2o|+ |ai+6o|/2

|ai+1ai+2| − |ai+6o|
√

3/2
=

ρ0(k
i+2 + ki+6/2)

ki+1 − ρ0ki+6
√

3/2
=
ρ0(2k + k5)

2−√
3ρ0k5

.

It is easy to verify that the right-hand side is monotone increasing and is less than
1/
√

3 when k ≤ 0.4758. It follows that θ < 30◦, 6 ai0ai+1ai+6 = 120◦ − θ > 90◦, and
ψ < 90◦. Hence, the third condition of Lemma 2.3 is satisfied.

Now, by Lemma 2.3, T i is not minimal. This contradiction shows that m =
1; i.e., ai0 and ai+1 always join the same Steiner point for any i. The proof is
complete.

4. Spirals with two asymptotic points.
Lemma 4.1. Suppose L∞(k, 120◦) = a0a1a2 · · ·, k ≤ 0.4758, and v is any point

on a0a1. Then the Steiner minimal tree for va1a2 · · · is still va1a2 · · · itself.



396 J. F. WENG

Fig. 6.

Proof. The proof is by Theorem 3.3 and the variational argument [7],[8].
Let L1 = L∞(k1, 120◦) = a0a1a2 · · · with k1 ≤ 0.4758, L2 = L∞(k2, 120◦) =

b0b1b2 · · · with k2 ≤ 0.4758 be two left-turn logarithmic spirals. We combine them
into one spiral SL∞(k1, k2) = · · · a5a4 · · · a1b1 · · · b4b5 · · · with two asymptotic points
by setting a0 = b1 and b0 = a1 (Figure 6).

Theorem 4.1. The unique Steiner minimal tree for SL∞(k1, k2) is SL∞(k1, k2)
itself.

Proof. Obviously, b1b2 · · · b5a1a2 · · · a5 is a Steiner polygon of SL∞(k1, k2). Let
v be the midpoint of a1b1 and o be the intersection of a1b1 and a5b5. Then clearly
6 a0va5 > 120◦, 6 b0va5 > 120◦ since k1 < 1/2, k2 < 1/2. It follows that 6 a1ob5 >
120◦. Hence, a1a5b1b5 is a neck of the Steiner polygon. Applying Lemma 2.4 to
a1a5b1b5, the Steiner minimal tree for SL∞(k1, k2) consists of two trees T1 and T2

connected by an edge s1s2. Let q be the intersection of s1s2 and b1a1. By Lemma 4.1,
the Steiner minimal trees spanning qa1a2 · · · and qb1b2 · · · are qa1a2 · · · and qb1b2 · · ·
themselves. Hence, the unique Steiner minimal tree for SL∞(k1, k2) is SL∞(k1, k2)
itself.

Lemma 4.2. Suppose L∞(k, 120◦) = a0a1a2 · · · with k ≤ 0.4758. Then 6 a5a0a1 <
30◦.

Proof. First 6 oa0a1 = β = arcsin(
√

3
2 ρ0k) ≤ 28.58◦. Since |oa0| = ρ0, |oa5| = ρ0k

5

and 6 a0oa5 = 60◦. Let x = 6 a5a0o. By the law of sines, sinx/ sin(120◦ − x) =
|oa5|/|oa0| = k5. After simplification, tanx =

√
3k5/

(
2− k5

)
and x ≤ 1.26◦. Hence,

6 a5a0a1 = 6 a5a0o+ 6 oa0a1 ≤ 29.84◦.
Let L3 = L∞(k, 120◦) = a0a1a2 · · · be a left-turn spiral. Let L4 = b0b1b2 · · · be a

right-turn spiral with the same k and symmetrical to L3. We combine them into one
spiral CL∞(k) = · · · a5a4 · · · a1b1 · · · b4b5 · · · by setting a0 = b1 and b0 = a1.

Theorem 4.2. If k ≤ 0.4655, then the unique Steiner minimal tree for CL∞(k)
is CL∞(k) itself.

Proof. Obviously a1a2 · · · a5b5 · · · b2b1 is a Steiner polygon of CL∞(k). Let o be
the intersection of a1b5 and b1a5. By symmetry and the above lemma, 6 a1ob1 =
180◦−26 a5a0a1 > 120◦. Hence, b1a1a5b5 is a neck of the Steiner polygon of CL∞(k).
By Lemma 2.4, the Steiner minimal tree T for CL∞(k) has an edge s1s

′
1 which

connects a subtree T1 spanning a1a2 · · · and a subtree T2 spanning b1b2 · · ·. Clearly,
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Fig. 7.

by symmetry there are either four or two Steiner points on the path connecting a1 and
b1. However, the former case is impossible since 6 b2b1a1 = 6 b1a1a2 = 120◦. It follows
that the path is a1s1s

′
1b1 and s1s

′
1‖a1b1. Let the vertical bisector of a1b1 intersect

a1b1 at v and intersect s1s
′
1 at w. By symmetry, we need only consider T1, the left

part of T which spans w and a1a2 · · ·. Suppose to the contrary that s1 6= a1. There
are two possibilities:

(1) The third edge of s1 meets a5a6 (Figure 7(a)). It is easy to see for minimality
that s1 should end at a6 and T1 does not contain a1a2. Let the extension of a5a6

meet a1a2 at q. Since the asymptotic point o lies on a2a5, 6 a5qa2 = 60◦, 6 a2a5a6 =
β, 6 qa2a5 = γ, and we have

|a2q| = ρ2
0k

(
k2 + k5

)
, |a6q| = |a5q| − |a5a6| = ρ2

0

(
k2 + k5

)− k5.

Clearly, a1qa6s1 is a parallelogram, |s1a1| = |a6q|, and 6 va1s1 = 60◦.
Define

f (k) = |ws1|+ |s1a1|+ |s1a6| − (|va1|+ |a1a2|) =
1

2
|s1a1| − |a2q|

=
1

2

(
ρ2
0

(
k2 + k5

)− k5
)− ρ2

0k
(
k2 + k5

)
=

1

2

(
ρ2
0

(
k2 + k5

)
(1− 2k)− k5

)
.

f(k) is positive when k ≤ 0.4655, as shown in Figure 8. Hence, T is not minimal.
(2) The third edge of s1 does not meet a5a6. Then it meets the bisector of 6 a1a2a3;

otherwise the right-turn path a1s1s2 · · · ends nowhere (Figure 7(b)). (Recall that we
have shown a2 is between the lines a0a1 and a6a7 in the proof of Theorem 3.3.) If
s1s2 crosses the bisector of 6 a1a2a3 but does not meet a6a7, then the right-turn
path ends nowhere either. So, similarly to the argument in (1), for minimality, the
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Fig. 8.

third edge of s2 should end at a7 and a2a3 is not in T1. Let the bisector of a1a2

intersect a1a2 and s1s2 at v′ and w′. Then |ws1|+ |s1a1|+ |s1w′| = |va1|+ |a1v
′| and

|w′s2|+ |s2a2|+ |s2a7| > |v′a2|+ |a2a3|, as argued in (1). Hence,

|ws1|+ |s1a1|+ |s1s2|+ |s2a2|+ |s2a7| − (|va1|+ |a1a2|+ |a2a3|) > 0.

T is not minimal.
Thus, unlimitedly repeating such arguments results in T having to be linear and

similar to CL∞(k). In fact, T = CL∞(k) since all angles at ai equal 120◦. Clearly,
T is unique. The proof is complete.
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Abstract. An independent set of three vertices such that each pair is joined by a path that
avoids the neighborhood of the third is called an asteroidal triple. A graph is asteroidal triple-free
(AT-free) if it contains no asteroidal triples. The motivation for this investigation was provided, in
part, by the fact that the AT-free graphs provide a common generalization of interval, permutation,
trapezoid, and cocomparability graphs. The main contribution of this work is to investigate and re-
veal fundamental structural properties of AT-free graphs. Specifically, we show that every connected
AT-free graph contains a dominating pair, that is, a pair of vertices such that every path joining
them is a dominating set in the graph. We then provide characterizations of AT-free graphs in terms
of dominating pairs and minimal triangulations. Subsequently, we state and prove a decomposition
theorem for AT-free graphs. An assortment of other properties of AT-free graphs is also provided.
These properties generalize known structural properties of interval, permutation, trapezoid, and
cocomparability graphs.

Key words. asteroidal triples, asteroidal triple-free graphs, interval graphs, permutation graphs,
trapezoid graphs, cocomparability graphs, dominating pairs, graph decompositions, structural graph
theory
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PII. S0895480193250125

1. Introduction. The original motivation for this work was provided by the lin-
ear structure that is apparent in various families of graphs, including interval graphs,
permutation graphs, trapezoid graphs, and cocomparability graphs. Somewhat sur-
prisingly, the linearity of interval, permutation, trapezoid, and cocomparability graphs
is described in terms of different and seemingly ad hoc properties of each of these
classes of graphs. For example, in the case of interval graphs, the linearity property is
traditionally expressed in terms of a linear order on the set of maximal cliques [3, 4].
For permutation graphs, the linear behavior is explained in terms of the underlying
partial order of dimension two [1]. For cocomparability graphs, the linear behavior
is expressed in terms of the well-known linear structure of comparability graphs [17],
and so on. Our intention is to provide a unifying look at these classes in the hope of
identifying the “agent” responsible for their linear behavior.

Before proceeding, it is perhaps appropriate to recall a few definitions. A graph
is an interval graph if its vertices can be put in a one-to-one correspondence with a
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set of intervals on the real line in such a way that two vertices are adjacent if and only
if the corresponding intervals overlap. A graph is a comparability graph if the edges
may be given a transitive orientation. A cocomparability graph is the complement
of a comparability graph. A graph that is at the same time a comparability and a
cocomparability graph is said to be a permutation graph [13].

Fig. 1.1. A graph G.

Fig. 1.2. Trapezoid, interval, and permutation models of the graph in Figure 1.1.

A trapezoid representation R consists of two parallel lines (denoted L1 and L2)
and some trapezoids with two endpoints lying on L1 and the other two lying on L2.
A graph G is a trapezoid graph if it is the intersection graph of such a representation.
Specifically, the vertices of G are in one-to-one correspondence with the trapezoids
in R and two vertices in G are adjacent if and only if their corresponding trapezoids
intersect. If the trapezoids degenerate with the endpoints on L1 (respectively, L2)
coinciding (i.e., the trapezoids become lines), then the intersection graph is a permu-
tation graph. Similarly, if the intervals on L1 are the mirror image of the intervals
on L2, then the intersection graph is an interval graph. The reader is referred to
Figure 1.2 for an illustration of these notions for the graph presented in Figure 1.1.
It is shown in [6] that permutation graphs and interval graphs are strictly contained
in trapezoid graphs. Furthermore, trapezoid graphs are strictly contained in cocom-
parability graphs [5]. Cocomparability graphs, and thus trapezoid, permutation, and
interval graphs, are perfect in the sense of Berge [15]; i.e., for every induced subgraph
the chromatic number equals the clique number.

The trapezoid representation that provides the common thread with interval and
permutation graphs also indicates that, in some sense, the graphs can only “grow”
linearly. For example, referring to the graph in Figure 1.1 which is at the same time
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an interval, trapezoid, permutation, and cocomparability graph, we can add a new
vertex adjacent to one of the vertices 1, 2, 3, 4, or 5 without destroying membership
in any of these families; however, when looking at various intersection models of G
featured in Figure 1.2, it seems as though we cannot add a new vertex adjacent to 6
without destroying membership in each family.

More than three decades ago Lekkerkerker and Boland [18] set out to identify
the property that prevented a chordal graph, namely, a graph in which every cycle of
length at least four has a chord, from “growing” in three directions at once. For this
purpose, they defined an asteroidal triple to be an independent set of three vertices
such that each pair of vertices is joined by a path that avoids the neighborhood of the
third. For an illustration, the reader is referred to Figure 1.3, which features various
instances of asteroidal triples.

Fig. 1.3. Various examples of asteroidal triples.

Lekkerkerker and Boland [18] demonstrated the importance of asteroidal triples
in the following theorem.

Theorem 1.1 (see [18]). A graph is an interval graph if and only if it is chordal
and asteroidal triple-free.

Thus, it appears that the condition of being asteroidal triple-free (AT-free) pro-
hibits a chordal graph from growing in three directions at once. The top three graphs
in Figure 1.3 are examples of chordal graphs that are not interval graphs.

Later, Golumbic, Monma, and Trotter Jr. [16] showed that cocomparability graphs
(and, thus, permutation and trapezoid graphs) are also AT-free. Subsequently, it was
shown that the perfect AT-free graphs strictly contain the cocomparability graphs [5].
Since C5 is AT-free, the AT-free graphs need not be perfect. However, an easy argu-
ment shows that the celebrated Strong Perfect Graph conjecture is true for AT-free
graphs [19].

Three decades ago Gallai [14], in his monumental work on comparability graphs,
obtained the first characterization of AT-minimal graphs (i.e., graphs that contain
an asteroidal triple and are minimal with this property) in terms of 15 families of
subgraphs. Actually, Gallai’s list is not complete. Since he was only interested in
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graphs with no induced C5, all the AT-minimal graphs containing a C5 are missing
from [14]. For a full list of AT-minimal graphs the interested reader is referred to [7].
After Gallai’s paper, little work was done on AT-free graphs.

The main contribution of this work is to provide a number of structural results
concerning AT-free graphs. Our main results1 are as follows.

1. We show that every connected AT-free graph has a dominating pair, that is,
a pair of vertices such that every path joining them is a dominating set.

2. We provide properties of dominating pairs in AT-free graphs related to the
concepts of connected domination and diameter.

3. We provide a characterization of AT-free graphs in terms of dominating pairs.
4. We provide a characterization of AT-free graphs in terms of minimal trian-

gulations.
5. We provide a decomposition theorem for AT-free graphs.

The remainder of this work is organized as follows. Section 2 provides background
material along with definitions of technical terms used throughout the paper. In
section 3 we study the existence of dominating pairs in connected AT-free graphs.
In section 4 we discuss properties of dominating pairs in the context of connected
domination and show that some dominating pair achieves the diameter of the graph.
In section 5 we offer two characterizations of AT-free graphs. Specifically, we provide
characterizations of AT-free graphs in terms of dominating pairs and in terms of
minimal triangulations. In section 6 we show that an AT-free graph may be extended
to another AT-free graph by attaching, to each vertex in an appropriate dominating
pair, a new vertex of degree one. This result leads to a decomposition theorem for
AT-free graphs, whereby an AT-free graph is reduced to a single vertex by a sequence
of contractions. In section 7 we show that in AT-free graphs of diameter greater than
three, the sets of vertices that can be in dominating pairs are restricted to two disjoint
sets, thus strengthening the intuition about the linear structure of this class of graphs.
Finally, section 8 offers concluding remarks and poses some open problems.

2. Preliminaries. All graphs in this paper are finite with no loops or multiple
edges. We use standard graph-theoretic terminology compatible with [2], to which we
refer the reader for basic definitions.

As usual, we shall write G = (V,E) to denote a graph G with vertex set V and
edge set E. The complement of a graph G is the graph G having the same vertex set
as G; distinct vertices u and v are adjacent in G if and only if they are nonadjacent in
G. For a vertex x in G, NG(x) denotes the set of all the vertices adjacent to x in G.
The degree of vertex x in the graph G, denoted by dG(x), is the cardinality of NG(x).
A vertex x will be said to be pendant if its degree is one. We let N ′

G(x) stand for the
set of all the vertices adjacent to x in the complement G of G. The notation will be
shortened to N(x), d(x), and N ′(x), respectively, whenever the context permits. If H
is a subset of the vertex set V of G, then GH will denote the subgraph of G induced
by H. Occasionally, if no confusion is possible, we shall use H as a shorthand for GH .

A path is a sequence v0, v1, . . . , vp of distinct vertices of G with vi−1vi ∈ E for all
i (1 ≤ i ≤ p). A chord in a path v0, v1, . . . , vp is an edge vivj with i and j differing by
more than one. A cycle of length p+ 1 is a sequence v0, v1, . . . , vp of distinct vertices
of G such that vi−1vi ∈ E for all i (1 ≤ i ≤ p) and vpv0 ∈ E. We let Pn and Cn denote
the chordless path and cycle with n vertices, respectively. Unless stated otherwise,
all paths in this work will be assumed to be chordless.

1For undefined terms the reader is referred to section 2.



ASTEROIDAL TRIPLE-FREE GRAPHS 403

A set S of vertices of graph G is said to be dominating if every vertex outside
S is adjacent to some vertex in S. Among dominating sets S that induce connected
subgraphs of G, one is often interested in those that have minimum cardinality. In
the remainder of this paper such a dominating set will be referred to as an mccds. An
mccds that induces a path will be referred to as a path-mccds.

A path joining vertices x and y is termed an x, y-path. A vertex u misses a path
π if u is adjacent to no vertex on π; otherwise, u intercepts π. In a connected graph, a
pair (u, v) of vertices is termed a dominating pair if all u, v-paths are dominating. For
vertices u and v of graph G, we let D(u, v) denote the set of vertices that intercept
all u, v-paths. In this terminology, (u, v) is a dominating pair whenever D(u, v) = V .
For vertices u, v, and x of graph G, we say that u and v are unrelated with respect to
x if u 6∈ D(v, x) and v 6∈ D(u, x).

Given a connected graph G = (V,E), the distance dG(u, v) (or d(u, v), for short)
between vertices u and v is the length of a shortest path in G joining u and v. The
diameter of G is defined as

diam(G) = maxu,v∈V dG(u, v).

Two vertices u and v such that d(u, v) = diam(G) are said to achieve the diameter.

3. Dominating pairs in AT-free graphs. The main purpose of this section
is to prove a fundamental domination-related property of AT-free graphs. To state
this property, recall that a pair of vertices (x, y) is a dominating pair in a graph G
if all x, y-paths in G are dominating sets. As it turns out, connected AT-free graphs
always contain dominating pairs. Although it is straightforward to see that connected
interval, permutation, trapezoid, and cocomparability graphs all contain dominating
pairs, it is somewhat surprising that, up to now, this property had not been noticed
for these classes of graphs.

Throughout this section, we assume a connected AT-free graph G = (V,E) along
with an arbitrary vertex x of G. We are now in a position to state the main result of
this section.

Theorem 3.1. Every connected AT-free graph contains a dominating pair.
The conclusion of Theorem 3.1 is implied by the following stronger result.
Theorem 3.2. Let x be an arbitrary vertex of a connected AT-free graph G.

Either (x, x) is a dominating pair or else for a suitable choice of vertices y and z in
N ′(x), (y, x) or (y, z) is a dominating pair.

Our proof of Theorem 3.2 relies on a number of intermediate results about con-
nected AT-free graphs that we present next.

Claim 3.3. Let u, v, and w be arbitrary vertices of G. If u ∈ D(v, x), w ∈
D(u, x), and u and w are not adjacent, then w ∈ D(v, x).

Proof. Suppose that w misses some v, x-path π: v = v0, v1, . . . , vk = x. Let j
be the largest subscript for which u is adjacent to vertex vj of π: since u ∈ D(v, x),
such a subscript must exist. But now, w misses the u, x-path, u, vj , vj+1, . . . , vk = x,
contradicting that w ∈ D(u, x).

In the remainder of this section, we shall use “unrelated” as a shorthand for
“unrelated with respect to x.” The reader is referred to Figure 3.1 for an illustration.
The paths confirming that vertices u and v are unrelated are drawn in heavy lines.
We further assume that F is an arbitrary connected component of N ′(x).

Claim 3.4. F contains no unrelated vertices.
Proof. If u and v are unrelated vertices in F , then the connectedness of F implies

that {u, v, x} is an asteroidal triple.
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Fig. 3.1. Illustrating unrelated vertices.

Claim 3.5. If u and v are vertices in F and if v 6∈ D(u, x), then D(u, x) ⊂
D(v, x).

Proof. From Claim 3.4 it follows that u ∈ D(v, x). Let w be an arbitrary vertex
in D(u, x)\D(v, x). Clearly w 6∈ N(x). If w and u are not adjacent, then Claim 3.3
guarantees that w ∈ D(v, x); if w and u are adjacent, then clearly w ∈ F . If w
misses some v, x-path then, in particular, v and w are not adjacent. Thus, with π
standing for some u, x-path missed by v, π ∪ {w} contains a w, x-path missed by v.
But now, v and w are unrelated, contradicting Claim 3.4. Consequently, w ∈ D(v, x)
and D(u, x) ⊆ D(v, x); the inclusion is strict since v 6∈ D(u, x).

A vertex y in F is called special if D(u, x) ⊆ D(y, x) for all vertices u in F . The
following statement provides a characterization of special vertices.

Claim 3.6. A vertex y in F is special if and only if F ⊆ D(y, x).
Proof. First, if the vertex y is special then, for every vertex v in F , D(v, x) ⊆

D(y, x). In particular, v ∈ D(v, x), implying that F ⊆ D(y, x).
Conversely, suppose that F ⊆ D(y, x). Let u be an arbitrary vertex in F and

let w be an arbitrary vertex in D(u, x). If w belongs to F then, since F ⊆ D(y, x),
w ∈ D(y, x); if w does not belong to F , then u and w are not adjacent and Claim 3.3
guarantees that w ∈ D(y, x), confirming that D(u, x) ⊆ D(y, x). Since u is arbitrary,
the claim follows.

Claim 3.7. F contains a special vertex.
Proof. Choose a vertex y in F with D(y, x) ⊂ D(t, x) for no vertex t in F . If

y is not special then, by Claim 3.6, we find a vertex v in F with v 6∈ D(y, x). By
Claim 3.5, D(y, x) ⊂ D(v, x), contradicting our choice of y.

Claim 3.8. Let v be an arbitrary vertex in N ′(x) \F . Either v ∈ D(w, x) for all
vertices w in F or v 6∈ D(w, x) for all vertices w in F .

Proof. Suppose not. For a suitable choice of vertices w and w′ in F , we have
v ∈ D(w, x) and v 6∈ D(w′, x). Let π stand for a w′, x-path missed by v, and let π′

stand for a w,w′-path entirely within F . But now π ∪ π′ contains a w, x-path missed
by v, contrary to our assumption.

Claim 3.9. Let v be a vertex in N ′(x) \ F . If F 6⊂ D(v, x) then, for a special
vertex u∗ in F , u∗ 6∈ D(v, x).
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Proof. Write U = {u ∈ F | u 6∈ D(v, x)}. Since F 6⊂ D(v, x), U is nonempty.
Choose a vertex u∗ in U such that D(u∗, x) ⊂ D(u, x) for no vertex u in U . If u∗ is not
special then, by Claim 3.6, there exists some vertex w in F\D(u∗, x). In particular,
u∗ and w are not adjacent. By Claim 3.5, D(u∗, x) ⊂ D(w, x); by our choice of u∗, w
must belong to F \ U . This, however, implies that w ∈ D(v, x). Since w 6∈ D(u∗, x),
Claim 3.4 implies that u∗ ∈ D(w, x). Since u∗ and w are not adjacent, Claim 3.3
guarantees that u∗ ∈ D(v, x), which is the desired contradiction.

Call a vertex u of N ′(x) strong if N ′(x) ⊂ D(u, x). It is easy to verify that if u is
a strong vertex, then (u, x) is a dominating pair in G. From now on, we shall tacitly
assume that N ′(x) contains no strong vertices. A pair (y, z) of vertices in distinct
components of N ′(x) is an admissible pair if D(y, x)∪D(z, x) ⊂ D(t, x)∪D(t′, x) for
no vertices t, t′ in distinct components of N ′(x).

Notice that if N ′(x) is connected, Claim 3.7 implies that N ′(x) contains a special
vertex which, by virtue of Claim 3.6, is strong. We shall, therefore, assume that
N ′(x) is disconnected. Now, the absence of strong vertices in N ′(x) guarantees the
existence of admissible pairs. As it turns out, admissible pairs play a crucial role in
our arguments. We now study some of their properties.

Claim 3.10. Let Y and Z be two distinct components of N ′(x) and let vertices
y in Y and z in Z be an admissible pair. Then Y 6⊂ D(z, x) and Z 6⊂ D(y, x).

Proof. Assume Z ⊂ D(y, x). Then, in particular, z ∈ D(y, x). To see that
D(z, x) ⊆ D(y, x), note that for an arbitrary vertex w in D(z, x), w ∈ D(y, x) when-
ever w ∈ Z and that, by virtue of Claim 3.3, w ∈ D(y, x) whenever w 6∈ Z.

Since y is not strong, we find a vertex y′ in N ′(x)\D(y, x). But now, either (z, y′)
or (y, y′) contradicts our choice of (y, z). To see this, note that if y′ belongs to Y
then, by Claim 3.5, D(y, x) ⊂ D(y′, x), and so

D(y, x) ∪D(z, x) = D(y, x) ⊂ D(y′, x) ⊆ D(y′, x) ∪D(z, x).

If y′ does not belong to Y , then D(y, x) ∪ D(z, x) = D(y, x) ⊆ D(y′, x) ∪ D(y, x).
Since y′ does not belong to D(y, x), the inclusion is strict. The fact that Y 6⊂ D(z, x)
follows by a similar argument.

Claim 3.11. If (y, z) is an admissible pair, then N ′(x) ⊂ D(y, x) ∪D(z, x).
Proof. We assume, without loss of generality, that vertices y and z belong to

distinct connected components Y and Z of N ′(x), respectively. If the claim is false,
we find a vertex w in N ′(x)\(D(y, x)∪D(z, x)). Clearly, w 6∈ D(y, x) and w 6∈ D(z, x).

Since G is AT-free, it is easy to verify that

no distinct vertices t, t′, t′′ in N ′(x) are pairwise unrelated with respect to x.(3.1)

We claim that

w does not belong to Y ∪ Z.(3.2)

If the vertex w belongs to Y then, by Claim 3.5, D(y, x) ⊂ D(w, x), and since w 6∈
D(z, x),

D(y, x) ∪D(z, x) ⊂ D(z, x) ∪D(w, x),

contradicting that (y, z) is an admissible pair. The proof of the fact that w 6∈ Z is
similar and, thus, is omitted.

Further, we claim that for a suitable choice of vertices u and v in N ′(x)

u ∈ D(y, x)\(D(z, x) ∪D(w, x)) and v ∈ D(z, x)\(D(y, x) ∪D(w, x)).(3.3)
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To justify (3.3), observe that by (3.2) y, z, and w belong to distinct components of
N ′(x). Since (y, z) is an admissible pair,

D(y, x) ∪D(z, x) 6⊂ D(z, x) ∪D(w, x),

and, therefore, the required vertex u exists. A similar argument asserts the existence
of vertex v.

Next, we claim that

y ∈ D(z, x) ∪D(w, x) and z ∈ D(y, x) ∪D(w, x).(3.4)

To see this, note that if y 6∈ D(z, x)∪D(w, x), then our choice of w guarantees that y
and w are unrelated. Therefore, it must be that z ∈ D(y, x) ∪D(w, x), for otherwise
y, z, and w would be pairwise unrelated, contradicting (3.1). Consider the vertex v
specified in (3.3); since z ∈ D(y, x) ∪ D(w, x) and v ∈ D(z, x)\(D(y, x) ∪ D(w, x)),
Claim 3.3 implies that z and v are adjacent. But now {y, v, w} is an asteroidal triple.
This follows since y and w are unrelated, and both v, w and v, y are unrelated by (3.3)
and Claim 3.8. Along similar lines, one can prove that z ∈ D(y, x) ∪D(w, x). Thus,
(3.4) must hold.

Further, we claim that

u ∈ Y and v ∈ Z.(3.5)

By (3.4), y ∈ D(z, x) ∪D(w, x); by (3.3), u ∈ D(y, x)\(D(z, x) ∪D(w, x)). It follows
that u and y are adjacent, for otherwise we contradict Claim 3.3. The fact that v ∈ Z
is proved similarly.

To complete the proof of Claim 3.11, we first observe that (3.5), (3.3), and
Claim 3.8 combined guarantee that u 6∈ D(v, x) and v 6∈ D(u, x), and so u and v
are unrelated. Similarly, by (3.5), (3.3), and Claim 3.8, the vertices u and w are
unrelated, as are v and w. But now, the vertices u, v, and w are pairwise unrelated,
contradicting (3.1). With this, the proof of Claim 3.11 is complete.

We are now in a position to give the proof of Theorem 3.2.
Proof (Theorem 3.2). If N ′(x) is empty, then (x, x) is a dominating pair. If

N ′(x) is nonempty but contains a strong vertex y, then clearly (x, y) is a dominating
pair. Otherwise, let (y, z) be an admissible pair in N ′(x). We assume, without loss of
generality, that y and z belong to distinct connected components Y and Z of N ′(x),
respectively. By Claims 3.10, 3.9, and 3.8 we find special vertices y∗ in Y and z∗

in Z such that y∗ 6∈ D(z∗, x) and z∗ 6∈ D(y∗, x). Put differently, y∗ and z∗ are
unrelated. Furthermore, since y∗ and z∗ are special, we have D(y, x) ∪ D(z, x) ⊆
D(y∗, x) ∪D(z∗, x), implying that (y∗, z∗) is also an admissible pair.

We claim that

(y∗, z∗) is a dominating pair in G.

By Claim 3.11, any vertex v that misses some y∗, z∗-path must be in N(x). (Observe
that v and x are distinct, since every y∗, z∗-path contains at least one vertex in N(x).)
Since y∗ and z∗ are unrelated, y∗ misses some z∗, x-path π and z∗ misses some y∗, x-
path π′. But now we have reached a contradiction—{y∗, z∗, v} is an asteroidal triple.
To see this, note that, by assumption, v misses some y∗, z∗-path; in addition, y∗ misses
the z∗, v-path π ∪ {v} and z∗ misses the y∗, v-path π′ ∪ {v}.

It is perhaps interesting to note that Claim 3.4 suggests the following characteri-
zation of AT-free graphs. The proof is immediate and is left to the reader.

Theorem 3.12. A graph G is AT-free if and only if for every vertex x of G, no
component F of N ′(x) contains unrelated vertices.
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4. Distance properties of dominating pairs. The purpose of this section
is to examine various distance-related properties featured by dominating pairs in
connected AT-free graphs. Specifically, we study the maximum distance between
vertices of a dominating pair, as well as the relationship between dominating pairs and
minimum cardinality-connected dominating sets. In particular, we show that in every
connected AT-free graph some dominating pair achieves the diameter (Theorem 4.3)
and some dominating pair forms the endpoints of a path-mccds (Theorem 4.6). To
begin, we state a property of connected AT-free graphs that will be used throughout
this section.

Claim 4.1. A connected AT-free graph G is a clique if and only if it contains no
nonadjacent dominating pair.

Proof. The “only if” part is trivial. To prove the “if” part, note that if G is not
a clique then, for some vertex x of G, N ′(x) is nonempty. By Theorem 3.2, there
exist vertices y, z ∈ N ′(x) such that either (x, y) is a dominating pair (with x and
y nonadjacent) or, failing this, (y, z) is a dominating pair. In the latter case, the
vertices y and z belong to distinct connected components of N ′(x) and, consequently,
must be nonadjacent.

In the remainder of this section we assume a connected AT-free graph G which
is not a clique. Claim 4.1 guarantees that we can find a nonadjacent dominating pair
(x, y0) in G. Let F be the connected component of N ′(x) containing y0, and let Y
be the set of vertices y in F for which (x, y) is a dominating pair in G. A vertex a in
F \ Y is called an attractor if Y ⊂ D(a, x).

Claim 4.2. F contains no attractors.

Proof. If the statement is false then the set A of attractors in F \Y is nonempty.
Let a∗ be a vertex in A for which D(a∗, x) ⊂ D(a, x) for no vertex a in A. We claim
that (a∗, x) is a dominating pair in G. If the statement is false, we find a vertex t
that misses some a∗, x-path π. However,

(i) t 6∈ A by our choice of a∗ and Claim 3.5 combined,
(ii) t 6∈ Y because Y ⊂ D(a∗, x),
(iii) t 6∈ N ′(x)\F , for otherwise t would miss a y0, x-path (such a path is contained

in the concatenation of π with a y0, a
∗-path in F ),

(iv) t 6∈ F \ (A ∪ Y ). Since Y ⊂ D(a∗, x), t must be adjacent to every vertex in
Y , implying that t belongs to A, which is a contradiction.

The next result concerns the maximum distance between vertices in a dominating
pair.

Theorem 4.3. In every connected AT-free graph some dominating pair achieves
the diameter.

Our proof of Theorem 4.3 relies on the following intermediate result.

Lemma 4.4. Let G be a connected AT-free graph and let vertices x and a of
G be such that d(x, a) = diam(G). If (x, y) is a dominating pair with vertex y in
N ′(x), then there exists a vertex z such that (x, z) is a dominating pair and d(x, z) =
diam(G).

Proof. Clearly, we may assume that d(x, a) ≥ 2. Let Y be the set of vertices y in
N ′(x) such that (x, y) is a dominating pair.

We assume that a does not belong to Y , for otherwise there is nothing to prove.
Observe that Y is contained in the component of N ′(x) containing a; otherwise,
d(x, y) = 2 and d(x, a) = 2, since every path joining x and y must dominate a.

By virtue of Claim 4.2, a cannot be an attractor; we find a vertex y in Y such
that y 6∈ D(a, x). In particular, a and y are nonadjacent. Consider an arbitrary
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shortest x, y-path π(x, y): x = u0, u1, . . . , uk = y. Since (x, y) is a dominating
pair, a must be adjacent to some vertex uj . Since a and y are nonadjacent, j < k.
But now, diam(G) = d(x, a) ≤ d(x, uj)+ 1 ≤ d(x, y) ≤ diam(G), implying that (x, y)
is a dominating pair with d(x, y) = diam(G). This completes the proof of
Lemma 4.4.

We now give a proof of Theorem 4.3.
Proof (Theorem 4.3). Let vertices x and a be such that d(x, a) = diam(G). Let

C be the connected component of N ′(x) containing a. We may assume that x is in
no dominating pair involving a vertex in N ′(x); otherwise we are done by Lemma 4.4.
By the proof of Theorem 3.2, there exists a dominating pair (y, z) with vertices y and
z belonging to distinct components of N ′(x). We observe that precisely one of y and z
belongs to C; otherwise, d(y, z) = 2 and we are done. (To see this, note that if neither
of y and z is in C, then a must be adjacent to a neighbor of x; therefore, diam(G)
= d(a, x) = 2 and 2 ≤ d(y, z) ≤ diam(G), implying that (y, z) is a dominating pair of
distance diam(G).) Furthermore, we may assume that d(y, z) < diam(G); otherwise,
(y, z) is the desired dominating pair.

Assume without loss of generality that y belongs to C and that z belongs to
some component C ′ ( 6= C) of N ′(x). If there exists a shortest z, y-path π(z, y):
z = u0, u1, . . . , uk = y such that a is adjacent to uj , for some j < k, then diam(G)
= d(x, a) ≤ d(x, uj)+1 ≤ d(z, uj)+1 ≤ d(z, y) ≤ diam(G), and (y, z) is the required
dominating pair. Otherwise, y is the only vertex on π adjacent to a and diam(G)
= d(x, a) ≤ d(a, z) ≤ d(y, z) + 1 ≤ diam(G). Therefore, d(a, z) = diam(G) and the
conclusion follows by Lemma 4.4.

Thus, in a connected AT-free graph, some dominating pair achieves the diameter.
We now consider shortest dominating paths and their relation to connected dominat-
ing sets. In the remainder of this section we shall find it convenient to make use of a
special notation that we now introduce. When referring to a path π, we shall denote
by π− y the path obtained from π by removing y, one of its endpoints. Similarly, we
let π + x denote the path obtained from π by the addition of x as a new endpoint.

Theorem 4.5. Every connected AT-free graph has a path-mccds.
Proof. Let G be a connected AT-free graph, let D be an arbitrary mccds, and let

(x, y) be an arbitrary dominating pair in G. We may assume that |D| ≥ 3; otherwise
there is nothing to prove. We note that

if {x, y} ⊂ D then D induces a path.(4.1)

This follows from the fact that every x, y-path π in D is a connected dominating set,
implying that D = π.

Next, we claim that

if x ∈ D or y ∈ D then some mccds induces a path.(4.2)

To justify (4.2) assume, without loss of generality, that x ∈ D. By (4.1), we may
assume that y 6∈ D. Let Y consist of all the vertices in D adjacent to y. Since D is
connected, we find a path π joining x and a vertex y′ in Y such that all vertices in
π− y′ are in D\Y . Either D = π or π+ y is a dominating path of cardinality at most
|D|. Thus, (4.2) must hold.

By (4.1) and (4.2) combined we may assume that neither x nor y belongs toD. Let
X and Y be the sets of vertices in D adjacent to x and y, respectively. Observe that X
and Y must be disjoint, for otherwise with w standing for an arbitrary vertex in X∩Y ,
{x,w, y} induces a dominating path and there is nothing to prove. Connectedness of



ASTEROIDAL TRIPLE-FREE GRAPHS 409

D guarantees the existence of vertices x′ in X, y′ in Y , and of an x′, y′-path π in D,
all of whose internal vertices are in D\(X ∪ Y ). We claim that

|D\π| = 1.(4.3)

To see that this is the case, observe that if D = π then we are done; if |D\π| > 1,
then π+x+y is a dominating path of cardinality at most |D|. Thus, (4.3) must hold.

By (4.3) we write {z}=D\π. Since the path π+ x is of cardinality |D|, we find a
vertex u that misses π + x. Similarly, since the path π + y is of cardinality |D|, we
find a vertex v that misses π + y. The following are easily seen:
• u 6= v and uy, vx are edges (otherwise, we contradict that (x, y) is a dominating

pair),
• u and v are not adjacent (else {u, x, y′} is an AT in G),
• u 6= z, v 6= z, and both uz, vz are edges (otherwise, we contradict that D is a

connected dominating set),
• x′z, y′z are both edges (if x′z is not an edge, then {u, x′, v} is an AT). We

claim that
{u, z, v} is an mccds.

To see this, let w be a vertex that misses the path induced by {u, z, v}. Since D is
dominating, w must be adjacent to some vertex on π. But now, it is easy to confirm
that {u, v, w} is an AT.

Next, we show that Theorem 4.5 can be strengthened.
Theorem 4.6. In every connected AT-free graph the endpoints of some path-

mccds are a dominating pair.
Our proof of Theorem 4.6 relies on the following technical result.
Lemma 4.7. Let G be a connected AT-free graph and let π(x, a) be a path-mccds

in G with endpoints a and x. If x belongs to a dominating pair involving a vertex in
N ′(x), then there exists a vertex y in N ′(x) such that (x, y) is a dominating pair and
each shortest x, y-path is an mccds.

Proof. Write π(x, a): x = u0, u1, . . . , uk = a. We may assume that k ≥ 2.
Let C be the component of N ′(x) containing a. Observe that every vertex that
forms a dominating pair with x must belong to C. To clarify this, suppose such a
vertex t belongs to a component C ′ distinct from C. Then, since the path π(x, a) is
dominating, t is adjacent to u1, implying that d(x, t) = 2 ≤ k, and there is nothing
to prove.

Let Y be the set of all special vertices in C. It is easy to see that x forms a
dominating pair with every vertex in Y . Thus, we may assume that a 6∈ Y . Note that
if some vertex in Y is adjacent to uj with j < k then we are done; otherwise, a is an
attractor, contradicting Claim 4.2. This completes the proof of Lemma 4.7.

Proof (Theorem 4.6). For convenience, we inherit the notation of Lemma 4.7.
We may assume that π(x, a) is a path-mccds and that x is in no dominating pair
involving a vertex in N ′(x); otherwise we are done by Lemma 4.7. By the proof of
Theorem 3.2, there exists a dominating pair (y, z) with y and z in distinct components
of N ′(x). We observe that precisely one of the vertices y and z belongs to C; otherwise,
d(y, z) = 2 ≤ k and we are done.

Assume without loss of generality that y ∈ C and that z belongs to a component
C ′ distinct from C. Note that since π(x, a) is dominating, z is adjacent to u1. Thus,
y is adjacent to a and to no other vertex on π(x, a), for otherwise d(y, z)≤ k.

We claim that at least one of the paths π(x, a) − x + y or π(x, a) − x + z is
dominating. Observe that both of these paths are of length k and each of them is
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anchored at a vertex belonging to a dominating pair. Therefore, once we establish
this claim the conclusion of Theorem 4.6 follows from Lemma 4.7. If neither of these
paths is dominating then
• there exists a vertex v missing π(x, a) − x + y; trivially, both vx and vz are

edges,
• there exists a vertex w missing π(x, a) − x + z; trivially, both wx and wy are

edges.
But now we have reached a contradiction—{a,w, z} is an AT, and the proof of

the theorem is complete.

5. Two characterizations of AT-free graphs. The goal of this section is to
offer two characterizations of AT-free graphs. To motivate our first characterization,
notice that Theorems 3.1 and 3.2 do not lead to a necessary and sufficient condition
for a graph to be AT-free. For example, vertices achieving the diameter in the C6

constitute a dominating pair. Furthermore, if we add a universal vertex to an arbitrary
graph, we obtain a graph that has a dominating pair consisting of the universal vertex
and any other vertex. Clearly, any attempt to provide a characterization of AT-free
graphs involving dominating pairs must not only be based on induced subgraphs,
but it must also restrict the types of dominating pairs. For example, the graph C6

contains an AT, yet every induced subgraph has a dominating pair.
The first goal is to provide a characterization of AT-free graphs based on dominat-

ing pairs. As indicated previously, such a result must restrict the types of dominating
pairs. In particular, we impose an adjacency condition on G with dominating pair
(x, y), whereby the connected component of G \ {x} containing y has a dominating
pair (x′, y) with x′ adjacent to x. As illustrated in Figure 5.1, the graph C6 fails this
criterion. Here, (x, y) is a dominating pair in the graph, yet neither (x′, y) nor (x′′, y)
is a dominating pair in the graph obtained by removing vertex x.

Fig. 5.1. C6.

We begin by stating a simple property of vertices in AT-free graphs which is of
independent interest.

Claim 5.1. Let u, v, and y be vertices in a connected AT-free graph such that
v 6∈ D(u, y). If D(u, y) 6⊂ D(v, y) then, for some vertex w in D(u, y), v and w are
unrelated with respect to y.

Proof. Let π be a u, y-path missed by v. Let w be an arbitrary vertex in the
set D(u, y) \ D(v, y). Since w does not belong to D(v, y), w misses some v, y-path.
Since w belongs to D(u, y), w intercepts π and, moreover, π∪{w} contains a chordless
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w, y-path missed by v, confirming that v and w are unrelated with respect to y.

Let π = u1, u2, . . . , uk and π1 = v1, v2, . . . , vl be two paths. We shall refer to the
path u1, u2, . . . , ui with i ≤ k as a prefix of π. A vertex w is a cross point of π and
π1 if w = ui = vj and the four vertices ui−1, vj−1, ui+1, and vj+1 are all defined and
distinct.

For later reference, we now investigate properties of asteroidal triples. Let G
be a graph containing an AT. Choose an induced subgraph H of G with the least
number of vertices such that some triple {x, y, z} is an AT in H. Let π(x, y), π(x, z),
and π(y, z) be paths in H demonstrating that {x, y, z} is an AT. In the following
we write π(x, y) : x = u1, u2, . . . , uk = y, π(x, z) : x = v1, v2, . . . , vl = z, and
π(z, y) : z = w1, w2, . . . , wt = y. Clearly, the choice of H guarantees that x, y, and z
have degree at most two.

Claim 5.2. No pair of paths among π(x, y), π(x, z), and π(y, z) has a cross
point.

Proof. Suppose that the paths π(x, y) and π(x, z) have a cross point w such
that w = ui = vj . Observe that the definition of a cross point and the minimal-
ity of H combined guarantee that 3 ≤ i and 3 ≤ j. Since the paths demonstrate
that {x, y, z} is an AT, i ≤ k − 2 and j ≤ l − 2. But now, in H ′ = H \ {vj−1},
y misses the x, z-path u1, u2, . . . , ui = vj , vj+1, . . . , z and x misses the y, z-path
y, uk−1, . . . , ui = vj , vj+1, . . . , z. Thus, {x, y, z} is an AT in H ′, contradicting the
minimality of H.

Claim 5.3. Let i be the largest subscript for which there exists a subscript j such
that ui = vj and ui+1 6= vj+1. Then i = j and ut = vt for all 1 ≤ t ≤ i.

Proof. Since y are z are distinct and u1 = v1, the subscript i in the statement
of the claim always exists. Since, by Claim 5.2, ui cannot be a cross point, we must
have ui−1 = vj−1. Let t be the least value for which ui−t 6= vj−t. We may assume
that such a t exists, for otherwise there is nothing to prove.

Clearly, u1 = v1 implies that t ≤ min{i− 2, j − 2}. Consequently, we can remove
vertex vj−t from H, while still ensuring that {x, y, z} is an AT in the remaining graph.
This contradiction completes the proof of the claim.

Lemma 5.4. There exist unique vertices x′, y′, z′ in H such that

(i) the unique path between x and x′ is a prefix of both π(x, y) and π(x, z),
(ii) the unique path between y and y′ is a prefix of both π(y, x) and π(y, z),
(iii) the unique path between z and z′ is a prefix of both π(z, x) and π(z, y).

Proof. Claim 5.3 guarantees that one can associate with x a unique vertex x′

corresponding to the largest subscript for which ui = vi. Put differently, the path
x = u1, u2, . . . , ui = x′ in H is the common prefix of both π(x, y) and π(x, z). In a
perfectly similar way one can define vertices y′ and z′.

As it turns out, vertices x′, y′, z′ have a number of interesting properties. We
present some of them next.

Claim 5.5. The vertices x′, y′, and z′ are either all distinct or else they coincide.

Proof. Suppose that exactly two of the vertices x′, y′, z′ coincide. Symmetry
allows us to assume that x′ = y′. Write x′ = ui and y′ = wt−k+i. Since x′(= y′)
cannot be a cross point of π(x, z) and π(z, y), we must have vi+1 = wt−k+i−1. Now
an argument similar to that of the proof of Claim 5.3 guarantees that the subpaths
of π(x, z) and π(z, y) between z and x′ coincide, which is a contradiction.

Claim 5.5 and the minimality of H combined imply the following result.

Corollary 5.6. Vertices x′, y′, and z′ coincide if and only if H is isomorphic
to the graph in Figure 5.2.
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Fig. 5.2. Illustrating Corollary 5.6.

Claim 5.7. Vertex x′ is distinct from x if and only if dH(x) = 1. Furthermore,
if x′, y′, and z′ are distinct and x′ 6= x then xx′ is an edge.

Proof. First, observe that if x′ = x then, by Claim 5.3, dH(x) = 2. Conversely,
if vertices x and x′ are distinct, then π(x, y) and π(x, z) have at least one edge in
common, confirming that dH(x) = 1.

To settle the second part of the claim, assume that x′ = ui with 3 ≤ i. Since
x′, y′, z′ are distinct, ui−1 misses the path π(y, z) and, thus, {ui−1, y, z} is an AT in
H \ {x}. The conclusion follows.

For reasons that will become clear later, we shall say that a connected graph H
with a dominating pair satisfies the spine property if for every nonadjacent dominating
pair (α, β) in H there exists a neighbor α′ of α such that (α′, β) is a dominating pair
of the connected component of H \ {α} containing β. We are now in a position to
state the first main result of this section.

Theorem 5.8 (The Spine theorem). A graph G is AT-free if and only if every
connected induced subgraph H of G satisfies the spine property.

Proof. To settle the “only if” part, let G be an AT-free graph and let H be any
connected induced subgraph of G. We may assume that H is not a clique (complete),
since otherwise it has the spine property. By Claim 4.1, H has a nonadjacent domi-
nating pair (α, β). Let Cβ denote the connected component of H \ {α} that contains
β. Let A denote N(α) ∩ Cβ . We choose a vertex α̃ in A such that D(α̃, β) ⊂ D(t, β)
for no vertex t in A.

We claim that

(α̃, β) is a dominating pair in Cβ .(5.1)

To see that (5.1) holds, suppose that a vertex t in Cβ misses some α̃, β-path. Observe
that t must belong to A, for otherwise this path extends to an α, β-path in H missed
by t, contradicting that (α, β) is a dominating pair. Our choice of α̃ guarantees that
D(α̃, β) 6⊂ D(t, β). By Claim 5.1 we find a vertex w in D(α̃, β) such that t and w are
unrelated with respect to β. Note that w belongs to A; otherwise the t, β-path missed
by w would extend to an α, β-path missed by w. But now, w and t are in the same
component of N ′(β) and are unrelated with respect to β, contradicting Claim 3.4.
This completes the proof of the “only if” part.
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To prove the “if” part, let H be an induced subgraph of G with the least number
of vertices in which some set {x, y, z} is an AT. Further, let π(x, y), π(x, z), and π(y, z)
be (chordless) paths in H demonstrating that {x, y, z} is an AT.

Claim 5.9. If H has an adjacent dominating pair, it also has a nonadjacent
dominating pair.

Proof. Suppose that (a, b) is an adjacent dominating pair in H and let A =
{v | av ∈ E, bv /∈ E} B = {v | bv ∈ E, av /∈ E}, and C = {v | av, bv ∈ E}. By the
minimality of H, every vertex of H\{x, y, z} is on at least one π path. If x = a, then
y and z are in B and H\{b} contains an AT on {x, y, z}. Thus we may assume that
{a, b}∩{x, y, z} = ∅. Furthermore, it is easy to see that A and B each contain at least
one of {x, y, z}; otherwise one of a or b can be removed from H without destroying
the AT. We now have two cases.

Case 1: x ∈ A, y ∈ B, z ∈ C. Since a and b must be on at least one π path,
π(x, z) = x, a, z and π(y, z) = y, b, z. Consider π(x, y) = v1(= x), v2, . . . , vk(= y).
First we note that none of v2, . . . , vk−2 can be in A since such a vertex together with
y and z would form an AT in H\{x}. Similarly, none of v3, . . . , vk−1 can be in B.
Thus all of v3, . . . , vk−2 (if they exist) must be in C. If v2 is in C, then B = {y} and
(a, y) is a nonadjacent dominating pair; if vk−1 is in C, then (x, b) is a nonadjacent
dominating pair. Thus v2 is in B, vk−1 is in A, and all of v3, . . . , vk−2 are in C. Now
if k > 4, then {v2, vk−1, z} forms an AT in H\{x, y}; otherwise (x, b) is a nonadjacent
dominating pair.

Case 2: x ∈ A, y, z ∈ B. Since each of a and b must belong to some π path,
we may assume that a ∈ π(x, y) and π(y, z) = y, b, z. Furthermore, we may assume
that the degree of x is two since otherwise (x, b) would be a nonadjacent dominating
pair. We now study π(x, y) = v1(= x), v2(= a), . . . , vk(= y) and note by the fact that
π(x, y) is chordless that the only vertex of π(x, y), other than x, that could be in A
is v3. Similarly, we let π(x, z) = u1(= x), u2, . . . , uj(= z) and note that no vertex on
π(x, z) other than x and possibly u2 may be adjacent to a since otherwise an x, z-path
through a contradicts the minimality of H. We distinguish two subcases.

Case 2.1: v3 ∈ A. First we show that k = 4 (i.e., v3 is adjacent to y). To see this,
note that if (x, b) is not a dominating pair then there exists a chordless x, b-path, P ,
and a vertex w in A missing P . Furthermore, v4 must be adjacent to b. If w = v3,
then we have an AT on {x, v3, z} in H\{y}; for the x, z-path consider the induced
path on P and the edge bz. If w 6= v3, then w is on π(x, z) and we have {v3, y, z}
being an AT in H\{x}; now the v3, z-path consists of the subpath of π(x, z) from z
to w together with the edges wa and av3. Thus k = 4.

Now look at π(x, z). Since the degree of x is two, a is not on π(x, z). If u2 is in A,
then j = 3 (i.e., u2 is adjacent to z); otherwise {u2, y, z} would be an AT in H\{x}.
Now if u2v3 is an edge, then (x, b) is a nonadjacent dominating pair; otherwise (u2, v3)
is a nonadjacent dominating pair.

Thus we may assume that u2 is not in A and therefore is adjacent to b. If j = 3,
then (y, u2) is a nonadjacent dominating pair. Suppose v3 is not adjacent to some ui,
2 < i < j. Then {ui, x, y} forms an AT in H\{z}. If u2 is not adjacent to v3, then
{x, v3, z} forms an AT in H\{y}; otherwise, (x, b) is a nonadjacent dominating pair.

Case 2.2: v3 /∈ A. Thus all of v3, . . . , vk are adjacent to b. Hence (x, b) is a
nonadjacent dominating pair since b is adjacent to all vertices of H except x and
possibly u2, which is adjacent to x.

We now assume that H has a nonadjacent dominating pair (a, b).

Claim 5.10. Vertices a and b are distinct from x, y, z, x′, y′, and z′.
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Proof. To begin, we show that a and b are distinct from x, y, and z. Suppose not.
We may assume, without loss of generality, that a = x. Since (a, b) is a dominating
pair, b must belong to π(y, z). Consider the x, b-path contained in the concatenation
of π(x, y) with the y − b portion of π(y, z). This path is missed by z unless vertices b
and z are adjacent. A mirror argument shows that b and y are also adjacent.

Since, by assumption, H satisfies the spine property and vertices a and b are non-
adjacent, we should be able to find a neighbor b′ of b such that (a, b′) is a dominating
pair in H \ {b}. However, if b′ belongs to π(x, y), then z misses the corresponding
b′, a-path; if b′ belongs to π(x, z), then y misses a b′, a-path. The fact that a is distinct
from x′ follows by an identical argument, whose details are omitted.

Claim 5.10 has the following interesting corollary.
Claim 5.11. Each pair of vertices x and x′, y and y′, and z and z′ must coincide.
Proof. First, observe that the vertices x′, y′, z′ are distinct, for otherwise, by

Corollary 5.6, H is isomorphic to the graph in Figure 5.2 which does not satisfy the
spine property.

If the statement is false, then we may assume, without loss of generality, that
x and x′ are distinct. By Claim 5.7, x has degree one in H. By Claim 5.10, a
(respectively, b) is distinct from both x and x′, implying that x misses some a, b-path,
which is a contradiction.

By virtue of Claims 5.11 and 5.7 combined, x, y, and z have degree exactly two
in H and, moreover, H is biconnected. Without loss of generality, let vertices a and
b belong to π(x, y) and to π(x, z), respectively. Observe that vertices a and y must
be adjacent, for otherwise the a, b-path through x is missed by y. Similarly, vertices
b and z are also adjacent; otherwise the a, b-path through x is missed by z. Further,
either a or b is adjacent to x, for if not, the a, b-path through y and z is missed by x.
Symmetry allows us to assume, without loss of generality, that a and x are adjacent.

We claim that

vertices b and x are adjacent.(5.2)

Since vertices a and b are not adjacent and H is biconnected, the spine property
guarantees that we can find a neighbor a′ of a such that (a′, b) is a dominating pair
of H \ {a}. Clearly, a′ cannot be x; if b and x are not adjacent, then a′ cannot be y.
Therefore, a′ must belong to π(y, z). But now, x misses the a′, b-path containing z,
which is a contradiction. Thus, (5.2) must hold.

To complete the proof of the “if” part, we claim that

(b, y) is a dominating pair.(5.3)

It is clear that once (5.3) is proved, we have reached a contradiction: by Claim 5.10,
y cannot be in a dominating pair.

To prove (5.3) consider a vertex c that misses a path π joining b and y. Since
(a, b) is a dominating pair, π does not involve a. Trivially, c must belong to π(y, z).
But now, {c, x, y} is an AT in H \ {a}. To see this, note that π + x is an x, y-path
missed by c; the y, c-path consisting of the portion of π(y, z) from y to c is missed by
x; finally, π(x, z) concatenated with the c − z portion of π(y, z) contains a c, x-path
missed by y. This completes the proof of Theorem 5.8.

Let G = (V,E) be a connected AT-free graph and let (x, y) be an arbitrary
nonadjacent dominating pair in G. Construct a sequence x0, x1, . . . , xk of vertices of
G and a sequence G0, G1, . . . , Gk of subgraphs of G defined as follows:

(i) G0 = G and x0 = x,
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Fig. 5.3. Illustrating the Spine theorem.

(ii) for all i (0 ≤ i ≤ k − 1), xiy 6∈ E and xky ∈ E,
(iii) for all i (1 ≤ i ≤ k), let Gi stand for the subgraph of Gi−1 induced by the

component of Gi−1 \ {xi−1} containing y,
(iv) for all i (1 ≤ i ≤ k), let xi be a vertex in Gi adjacent to xi−1 and such that

(xi, y) is a dominating pair in Gi.
The existence of the sequence x0, x1, . . . , xk is guaranteed by the Spine theorem.

The sequence x0, x1, . . . , xk, y will be referred to as a spine of G. For an illustration
of the Spine theorem the reader is referred to Figure 5.3. The sequence of graphs
featured in Figure 5.3 begins with a graph G with vertex set {a, b, c, d, e, x, y}
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and dominating pair (x, y). The sequence continues with the graph G \ {x} with
dominating pair (a, y), and so on. The spine of the graph G is featured in heavy lines.

Note that the existence of a sequence of vertices and a sequence of subgraphs, as
defined in (i) through (iv) above, does not necessarily imply that the graph is AT-
free. For example, let (x, y) be the dominating pair (1, 4) of the graph G of Figure
5.4. The vertex sequence 1, 7 and the subgraph sequence G,G \ {1} satisfy (i)–(iv)
above; nevertheless, G is not AT-free ({2, 4, 6} is an AT). However, the Spine theorem
is not contradicted since the induced subgraph G \ {7} has a dominating pair (1,4),
yet G \ {1, 7} has no dominating pair consisting of 4 and a neighbor of 1.

Fig. 5.4. A graph G.

The second goal of this section is to give a characterization of AT-free graphs in
terms of minimal triangulations. Let G = (V,E) be an arbitrary graph. A triangula-
tion T (G) of G is a set of edges such that the graph G′ = (V,E ∪ T (G)) is chordal.
A triangulation T (G) is minimal when no proper subset of T (G) is a triangulation of
G. Recently, Möhring [20] proved the following result.

Theorem 5.12 (see [20]). If G is an AT-free graph, then for every minimal
triangulation T (G) of G, the graph G′ = (V,E ∪ T (G)) is an interval graph.

The remainder of this section is devoted to proving the converse of Theorem 5.12.
A different proof of the converse was obtained independently by Parra [23].

Theorem 5.13. A graph G is AT-free if and only if, for every minimal triangu-
lation T (G) of G, the graph G′ = (V,E ∪ T (G)) is an interval graph.

Our arguments rely, in part, on the following result which is of independent
interest.

Lemma 5.14. Let G be an arbitrary graph and let H = (V (H), E(H)) be an
induced subgraph of G. Let T (H) be an arbitrary minimal triangulation of H. There
exists a minimal triangulation T (G) of G such that the only edges in T (G) joining
vertices in H are those in T (H).

Proof. If the statement is false, then we select a minimal triangulation T (G) of
G that adds as few new edges to H as possible. Since T (H) is a triangulation of H,
some edge uv with both u and v in H, present in T (G) but not in T (H), must be
the unique chord of a set C of C4’s, each having (at least) one vertex outside H. Let
w and w′ be the remaining vertices of such a C4 with w outside H. The removal of
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the edge uv from T (G) and the addition of the ww′ edge(s) will triangulate all C4’s
in C, but may create new cycles, each of which contains at least one vertex (such
as w) that is not in H. Each such cycle will be triangulated by adding all possible
chords incident with a particular vertex outside H. The addition of these edges may
create new cycles that will be triangulated in a similar fashion. Since the graph is
finite, we eventually have a triangulation T ′(G) that has one fewer H edge than T (G).
Any minimal triangulation in T ′(G) also has one fewer H edge than T (G), thereby
contradicting our choice of T (G).

Proof (Theorem 5.13). The “only if” part follows from Theorem 5.12.
To prove the “if” part, let G be a graph containing an AT. Choose an induced

subgraph H = (V (H), E(H)) of G with the least number of vertices such that some
triple {x, y, z} is an AT in H. Let π(x, y), π(x, z), and π(y, z) be paths in H
demonstrating that {x, y, z} is an AT, and write π(x, y) : x = u1, u2, . . . , uk = y,
π(x, z) : x = v1, v2, . . . , vl = z, and π(z, y) : z = w1, w2, . . . , wt = y. Clearly, the
choice of H guarantees that x, y, and z have degree at most two.

Our plan is to exhibit a minimal triangulation T (H) of H that results in a
noninterval graph H ′ = (V (H), E(H) ∪ T (H)). For this purpose, let x′, y′, and
z′ be the vertices specified in Lemma 5.4 and consider the triangulation T (H) of H
returned by the following procedure.

Step 1. If x′ = y′ = z′ then set T (H)← ∅ and return.
Step 2. Let F be the graph obtained from H by removing vertices x, y, z and

by adding the edges u2v2 (in case x = x′), uk−1wt−1 (in case y = y′), and vl−1w2

(in case z = z′). Let T (F ) be an arbitrary minimal triangulation of F . Return
T (H) ← T (F ) ∪ {xu2, xv2, yuk−1, ywt−1, zvl−1, zw2} (in case x 6= x′ one adds the
edge xx′ instead of the edges xu2 and xv2, etc.).

Now Claim 5.5 along with an easy ad hoc argument shows that T (H) is a minimal
triangulation of H and that {x, y, z} is still an AT in the graph H ′ = (V (H), E(H)∪
T (H)). By Lemma 5.14, there must exist some minimal triangulation T (G) of G such
that H ′ is an induced subgraph of G = (V,E ∪ T (G)). The conclusion follows.

6. Augmenting AT-free graphs. The purpose of this section is twofold. First,
we exhibit a structural property of AT-free graphs that naturally allows one to
“stretch” an AT-free graph to a new AT-free graph. This in turn provides a condition
under which two AT-free graphs can be “glued together” to form a new AT-free graph
(Corollary 6.10). Next, we provide a decomposition theorem for AT-free graphs.

To begin, we address the issue of creating new AT-free graphs out of old ones.
Specifically, we show how to “augment” an arbitrary AT-free graph G to obtain a
new AT-free graph. This augmentation will be accomplished by finding a particular
dominating pair (x, y) and by adding new vertices x′ and y′ adjacent to x and y,
respectively. This augmentation of G again confirms our intuition about the linear
structure of AT-free graphs, since the dominating pair (x, y) has been stretched to a
new dominating pair (x′, y′).

In preparation for stating the first main result of this section, we need to define a
few terms. A vertex v of an AT-free graph G is called pokable if the graph G′ obtained
from G by adding a pendant vertex adjacent to v is AT-free; otherwise, it is called
unpokable. For example, referring to Figure 6.1, vertex u is pokable since the addition
of a pendant vertex u′ does not create an AT in the graph. At the same time, vertex v
is unpokable, for the addition of the vertex v′ creates the AT {a, b, v′}. A dominating
pair (x, y) is referred to as pokable if both x and y are pokable. For further reference,
we take note of the following simple observation whose proof is routine.
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Fig. 6.1. Illustrating pokable and unpokable vertices.

Observation 6.1. A vertex v of an AT-free graph G is unpokable if and only if
there exist vertices u and w in G such that u and w are unrelated with respect to v
and there is a u,w-path in G that does not contain v.

Whenever we have a vertex v for which there exist vertices u and w unrelated
with respect to v, we shall refer to the following induced paths, which must exist by
the definition of unrelated vertices: a v, u-path v = u0, u1, . . . , up = u missed by w
and a v, w-path v = w0, w1, . . . , wq = w missed by u. We are now in a position to
make the previous discussion precise.

Theorem 6.2. Every connected AT-free graph contains a pokable dominating
pair; furthermore, every connected AT-free graph which is not a clique contains a
nonadjacent pokable dominating pair.

Proof. The theorem is trivial for cliques. We shall assume therefore that G is not
a clique. Now, Claim 4.1 guarantees the existence of a nonadjacent dominating pair
(x, y0) in G. Let F be the connected component of N ′(x) containing y0, and let Y
stand for the set of vertices y in F for which (x, y) is a dominating pair in G. The
conclusion of Theorem 6.2 is implied by the following technical result that will be
proved later.

Lemma 6.3. Y contains a vertex y such that G has no unrelated vertices with
respect to y.

Let us examine how Theorem 6.2 follows from Lemma 6.3. Note that Lemma 6.3,
together with Observation 6.1, implies that Y contains a pokable vertex. Let β be a
pokable vertex in Y and let X denote the set of vertices x′ in the same component
of N ′(β) as x, for which (β, x′) is a dominating pair. Clearly x belongs to X, and so
X is not empty. By applying Lemma 6.3 again, with β as the “anchor,” we find a
pokable vertex α in X. The proof of Theorem 6.2 is established by noting that (α, β)
is the desired nonadjacent pokable dominating pair.

Proof (Lemma 6.3). The proof is by induction on the number of vertices in G.
Assume that the lemma is true for all connected AT-free graphs with fewer vertices
than G. We now present various facts that are used in the proof.
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Claim 6.4. Let v be a vertex in Y such that vertices u and w are unrelated with
respect to v in G. Then all vertices ui and wj (1 ≤ i ≤ p; 1 ≤ j ≤ q) belong to F .

Proof. Without loss of generality let i be the smallest subscript for which ui lies
outside F . Trivially, ui must belong to N(x). Since w cannot miss the v, x-path, v =
u0, u1, . . . , ui, x, and since w is adjacent to no vertex on the path v = u0, u1, . . . , ui,
it follows that w belongs to N(x).

Similarly, since u cannot miss the v, x-path, v = w0, w1, . . . , wq = w, x, and since
u is adjacent to no vertex on the path v = w0, w1, . . . , wq, it follows that u belongs to
N(x). But now, {u, v, w} is an AT, contradicting G being AT-free.

It is important to note that, by virtue of Claim 6.4, Lemma 6.3 is established
as soon as we exhibit a vertex y in Y such that there are no unrelated vertices with
respect to y in the subgraph of G induced by F . If F and Y coincide, then by the
induction hypothesis such a vertex must exist. Therefore, from now on, we shall
assume that

F \ Y 6= ∅.(6.1)

Let Y1, Y2, . . . , Yk (k ≥ 1) be the connected components of the subgraph of G
induced by Y .

Claim 6.5. Let t be a vertex in F \Y . If some vertex z in Yi satisfies z ∈ D(t, x),
then Yi ⊂ D(t, x).

Proof. If the claim is false, then we find vertices z, z′ in Yi such that z ∈ D(t, x)
and z′ 6∈ D(t, x). Since Yi is a connected subgraph of G, there exists a chordless path
z = s1, s2, . . . , sr = z′ joining z and z′ in G, with all internal vertices in Yi.

Let j be the smallest subscript for which sj 6∈ D(t, x). Since z′ 6∈ D(t, x), such a
subscript must exist. But now, in G, sj−1 and sj are nonadjacent and sj misses some
t, x-path, while sj−1 intercepts all such paths. It follows that sj misses a sj−1, x-path,
which is a contradiction since sj−1 belongs to Y .

Claim 6.6. Y induces a disconnected subgraph of G.
Proof. First, we claim that

|Y | ≥ 2.(6.2)

If (6.2) is false, then Y = {y0}. Let U stand for the set of all vertices in F adjacent
to y0. Note that (6.1), along with the connectedness of F , guarantees that U is
nonempty. But now, for every u in U , Y = {y0} ⊂ D(u, x). Thus, u is an attractor,
contradicting Claim 4.2. Therefore, (6.2) holds. Note that by virtue of (6.2) it makes
sense to talk about Y being disconnected in the complement.

We now continue the proof of Claim 6.6. If Y = Y1, then (6.1) and the connect-
edness of F imply the existence of a vertex z in Y adjacent to some vertex t in F \Y .
Note, in particular, that z belongs to D(t, x) and so, by Claim 6.5, Y ⊂ D(t, x). How-
ever, now t is an attractor, which is a contradiction. With this, the proof of Claim 6.6
is complete.

Claim 6.7. Let v be a vertex in Y such that vertices u and w are unrelated with
respect to v in G. Then
• for all i (1 ≤ i ≤ p), v belongs to D(ui, x) and
• for all j (1 ≤ j ≤ q), v belongs to D(wj , x).
Proof. Since v is adjacent to u1, it follows that v ∈ D(u1, x). Let i be the smallest

subscript for which v does not belong to D(ui, x). Let π be a ui, x-path missed by
v. Note that w must intercept π, for otherwise w would miss a v, x-path contained
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in {v, u1, . . . , ui} ∪ π. However, now {u, v, w} is an AT. The proof that v belongs to
D(wj , x) follows by a mirror argument.

For every i (1 ≤ i ≤ k), let Ti stand for the set of vertices t in F \ Y with the
property that Yi ⊂ D(t, x). By renaming the Yi’s, if necessary, we ensure that

|T1| ≤ |T2| ≤ · · · ≤ |Tk|.

Claim 6.8. Every vertex in T1 is adjacent to all vertices in Y1.
Proof. The statement is vacuously true if T1 is empty. Now assume that T1 is

nonempty and let t be a vertex in T1 nonadjacent to some z in Y1. Since, by Claim 4.2,
t cannot be an attractor, we find a subscript j (j ≥ 2) such that for some z′ in Yj , z

′

does not belong to D(t, x). Thus t ∈ T1 \ Tj . Now, |T1| ≤ |Tj | implies that there
must exist a vertex t′ in Tj \ T1. By Claim 6.5, z does not belong to D(t′, x). Note
that t does not belong to D(t′, x); otherwise, by Claim 3.3, z would belong to D(t′, x),
which is a contradiction.

Since z′ does not belong to D(t, x), in particular, z′ is not adjacent to t. The fact
that t does not belong to D(t′, x) implies the existence of a t′, x-path π′ missed by t.
Since z′ ∈ D(t′, x), z′ intercepts π′ and thus π′ ∪ {z′} contains a z′, x-path missed by
t, contradicting that z′ is in Y .

We now continue the proof of Lemma 6.3. Let Z be a connected component of
the subgraph of G induced by Y1. By the induction hypothesis, Z contains a vertex
v such that Z has no unrelated vertices with respect to v. To complete the proof
of Lemma 6.3, we need show only that F has no unrelated vertices with respect to
v. Suppose u and w in F are unrelated with respect to v. By Claims 6.5 and 6.7
combined, all the vertices ui and wj (1 ≤ i ≤ p; 1 ≤ j ≤ q) belong to Y or to
T1. By Claims 6.6 and 6.8 and the fact that the paths v = u0, u1, . . . , up = u and
v = w0, w1, . . . , wq = w are chordless, it follows that at most u1 and w1 belong to
T1 ∪ Y \Y1. However, if either u1 or w1 is in T1 ∪ Y \Y1 then, by Claims 6.6 and 6.8,
the edge u1w or the edge w1u must be present, contradicting the fact that u and w
are unrelated with respect to v. Thus, all the ui’s and wj ’s belong to Y1. In fact,
since Z is a connected component of Y1, all the ui’s and wj ’s must belong to Z, which
is a contradiction. This completes the proof of Lemma 6.3.

Theorem 6.2 implies the following results that are interesting in their own right.
Corollary 6.9. Every AT-free graph is either a clique or contains two nonad-

jacent pokable vertices.
Corollary 6.10 (The Composition theorem). Given two AT-free graphs G1

and G2 and pokable dominating pairs (x1, y1) and (x2, y2) in G1 and G2, respectively,
let G be the graph constructed from G1 and G2 by identifying vertices x1 and x2. Then
G is an AT-free graph.

The reader is referred to Figure 6.2 for an illustration of the Composition theorem.
We now show that the existence of a pokable dominating pair in a connected AT-

free graph leads to a natural decomposition scheme. In preparation for stating the
second main result of this section, we first give a necessary and sufficient condition
for a vertex in a dominating pair to be pokable. Specifically, we have the following
result.

Claim 6.11. Let G be a connected AT-free graph with a dominating pair (x, y).
Then x is pokable if and only if there are no unrelated vertices with respect to x.

Proof. The “if” part is easily seen. To prove the “only if” part, consider unrelated
vertices u and v with respect to x. In particular, we find a v, x-path missed by u and
a u, x-path missed by v. Since (x, y) is a dominating pair, u and v intercept every
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Fig. 6.2. Illustrating the Composition theorem.

path joining x and y. Let π be such a path and let u′ and v′ be vertices on π adjacent
to u and v, respectively. Trivially both u′ and v′ are distinct from x. But now, there
exists a u, v-path in G that does not contain x (this path contains vertices u′, v′ and
a subpath of π), implying that x is not pokable.

Let G = (V,E) be a connected AT-free graph with at least two vertices and let
(x, y) be a pokable dominating pair in G. Define a binary relation R on G by writing
for every pair u, v of vertices,

u R v ⇐⇒ D(u, x) = D(v, x).(6.3)

Clearly, R is an equivalence relation; let C1, C2, . . . , Ck (k ≥ 1) be the equivalence
classes of G/R. A class Ci is termed nontrivial if |Ci| ≥ 2. The existence of nontrivial
equivalence classes with respect to R is not immediately obvious. In what follows, we
assume that the pokable dominating pair (x, y) is chosen to be nonadjacent whenever
possible. The following result guarantees that nontrivial equivalence classes always
exist.

Claim 6.12. G/R contains at least one nontrivial equivalence class.
Proof. If N ′(x) is empty then the class containing y, C(y), is equal to V and

is therefore nontrivial. Otherwise, Theorem 6.2 and our choice of x and y combined
guarantee that x and y are nonadjacent. Let F be the connected component of N ′(x)
containing y and let Y stand for the subset of F consisting of all the vertices that are
in a dominating pair with x. Clearly, y ∈ Y , and so Y is nonempty. If F contains
at least two vertices then (6.2) guarantees that Y itself contains at least two vertices,
and so the equivalence class containing y is nontrivial.
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We may assume, therefore, that F = {y}. Let y′ be an arbitrary neighbor of
y in N(x). Clearly, D(y′, x) = V , for otherwise if some vertex z does not belong
to D(y′, x), then z must miss the y, x-path consisting of y, y′, and x. Consequently,
the equivalence class containing y is nontrivial and the proof of Claim 6.12 is
complete.

Remark. In fact, the proof of Claim 6.12 also tells us that the classC(y) containing
y is always nontrivial as long as the original graph has at least two vertices.

A nontrivial class C of G/R is said to be valid if C induces a connected subgraph
of G. As before, the existence of valid equivalence classes is not immediately obvious.
As we shall prove next, such classes always exist. Specifically, we propose to show
that C(y) is valid. As it will turn out, all valid classes of G/R enjoy very interesting
properties that will allow us to select an arbitrary one for the purpose of decomposing
the original graph. This freedom of choice opens the door to parallel decomposition
algorithms for AT-free graphs.

Claim 6.13. G/R contains at least one valid equivalence class.
Proof. If N ′(x) is empty, then C(y) = V and there is nothing to prove. We

may therefore assume that N ′(x) is nonempty. As before, we may also assume that
y belongs to N ′(x). Let F be the connected subgraph of N ′(x) containing y, let Y
stand for the subset of F consisting of all the vertices that are in a dominating pair
with x, and let C(y) be the equivalence class containing y.

Notice that every vertex w that belongs to N(x) and to C(y) must be adjacent
to all the vertices in F . In particular, if such a vertex exists, then C(y), which by
Claim 6.12 is nontrivial, must be connected and, thus, valid.

We will assume, therefore, that N(x) and C(y) are disjoint. In turn, this implies
that C(y) = Y . Recall that, by Claim 6.6, Y induces a disconnected subgraph of G,
confirming that C(y) is connected as a subgraph of G. The conclusion follows.

Let S be a set of vertices of G. The graph G′ is said to arise from G by an S-
contraction if G′ contains all the vertices in G \S along with a new vertex s adjacent,
in G′, to all the vertices in G \ S that were adjacent, in G, to some vertex in S. Our
next result states a fundamental property of valid equivalence classes, namely, that
contracting any of them will result in an AT-free graph. The details are spelled out
as follows.

Lemma 6.14. Let C be an arbitrary valid equivalence class of G/R. The graph
G′ obtained from G by a C-contraction is AT-free.

Proof. Let c be the vertex in G′ obtained by contracting C. To begin, we claim
that

there are no vertices u, v in G′ such that {u, v, c} is an AT.(6.4)

To justify (6.4) note that if π(u, v) is a u, v-path missed by c, then the same path
is missed, in G, by all the vertices in C. Let π(u, c) be a u, c-path in G′ missed by
v. Then there exists a vertex c1 in C such that v misses the path π(u, c) − c + c1.
Similarly, let π(v, c) be a v, c-path in G′ missed by u. There must exist a vertex c2 in
C such that u misses the path π(v, c)− c+ c2. Since C induces a connected subgraph
of G, there exists a path joining c1 and c2, all of whose internal vertices are in C. By
a previous observation, both u and v miss this path. Therefore, for a suitably chosen
vertex c′ in C, {u, v, c′} is an AT in G, which is a contradiction. Thus, (6.4) must
hold.

To complete the proof of Lemma 6.14, let {u, v, w} be an arbitrary AT in G′. By
(6.4), c is distinct from u, v, w. Let π(u, v), π(u,w), and π(v, w) be paths in G′
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confirming that {u, v, w} is an AT. If c belongs to none of these paths, then {u, v, w}
is an AT in G. We may therefore assume without loss of generality that c belongs to
π(u, v). Since w misses π(u, v), it is clear that w is adjacent to no vertex in C.

We claim that there exists a path π′(u, v) in G missed by w. This path contains
the same vertices as π(u, v) outside of C. Inside C it contains a path between two
vertices c′ and c′′ of C such that
• w misses a u, c′-path consisting of a subpath of π(u, v),
• w misses a c′′, v-path consisting of the remaining vertices in π(u, v)− c.
This completes the proof of Lemma 6.14.

Fig. 6.3. A graph G.

Fig. 6.4. The graph G′ obtained by contracting {a, b}.

The example in Figures 6.3 and 6.4 shows that the connectivity of the equivalence
class C in Lemma 6.14 is required if we are to guarantee that the resulting graph is AT-
free. To wit, the graph G featured in Figure 6.3 is AT-free with a pokable dominating
pair (x, e). The contraction of the equivalence class {a, b} yields the graph G′ in
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Figure 6.4, which has the AT {a′, b′, w}. For the reader’s benefit, the various values
of the D(∗, x) sets, along with the equivalence classes corresponding to the graph in
Figure 6.3, are summarized in Table 6.1.

Let C(y) be the equivalence class containing y. Let G′ be the graph obtained
from G by a C(y)-contraction. Recall that the proof of Claim 6.13 guarantees that
C(y) is valid, and so Lemma 6.14 asserts that the graph G′ is also AT-free. Let y′ be
the vertex of G′ obtained by contracting C(y). We now show that, in fact, more can
be said about G′. Specifically, we have the following result.

Lemma 6.15. (x, y′) is a pokable dominating pair in G′.
Proof. To begin, we establish that (x, y′) is a dominating pair in G′. For this

purpose, suppose that there exists some path π(x, y′) joining x and y′, missed by a
vertex w. Clearly, w is adjacent, in G, to no vertex in C(y). In particular, w is not
adjacent to y. Since C(y) is valid, w misses, in G, a y, x-path consisting of all the
vertices in π(x, y′), along with a suitable path in C(y). Therefore, (x, y′) must be a
dominating pair in G′.

Next, we show that both x and y′ are pokable vertices of G′. Suppose that x is
not pokable. Now Claim 6.11 guarantees the existence of unrelated vertices u and v
(with respect to x). This, in turn, implies the existence of paths π(v, x) and π(u, x)
in G′, missed by u and v, respectively. Since (x, y′) is a dominating pair in G′, y′

belongs to neither of these paths. But now, these paths must have been paths in G,
which is a contradiction.

Finally, suppose that y′ is not pokable. By virtue of Claim 6.11 this implies the
existence of vertices u and v and paths π(v, y′) and π(u, y′) in G′, missed by u and
v, respectively. In particular, neither u nor v is adjacent to y′. In turn, this implies
that neither u nor v is adjacent to a vertex in C(y). But now, in G, there exists a
u, y-path missed by v and a v, y-path missed by u, contradicting that y is pokable.
This completes the proof of Lemma 6.15.

Table 6.1

Illustrating the various equivalence classes.

Equivalence class D(∗, x)

x {x, 1, 2}
1,2 V \ {c, d, e}
a′ V \{c, d}
a, b: V \{d}
b′ V \{e}

w, c, d, e V

At this stage, the reader may wonder whether the class C(y) is the only one
whose contraction leaves x pokable. The answer is provided by the following result
that complements Lemma 6.15.

Lemma 6.16. Let C be an arbitrary valid equivalence class in an AT-free graph
G, and let G′ be the graph obtained from G by a C-contraction. If C is distinct from
C(x) and C(y), then (x, y) is a pokable dominating pair in G′.

Proof. Let c be the vertex of G′ obtained by the C-contraction. By assumption,
c is distinct from y and x. We begin by showing that (x, y) is a dominating pair in
G′. Suppose that there exists some path π(x, y) joining x and y in G′, missed by a
vertex w. Clearly, c must belong to π(x, y). Notice that w is adjacent, in G, to no
vertex in C. Since C is valid, w misses, in G, a y, x-path consisting of all the vertices
in π(x, y) − c, along with a suitable path in C. Thus, (x, y) must be a dominating
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Fig. 6.5. Illustration of an involutive sequence.

pair in G′.
Next, we show that both x and y are pokable vertices of G′. If x is not pokable,

Claim 6.11 guarantees the existence of vertices u and v unrelated with respect to x.
In turn, this implies the existence of paths π(v, x) and π(u, x) in G′, missed by u and
v, respectively. Since x is pokable in G, c must belong to (at least) one of these paths.
Symmetry allows us to assume, with no loss of generality, that c belongs to π(u, x).
The fact that v misses π(u, x) guarantees that v is adjacent, in G, to no vertex in C.
But now, we have reached a contradiction: v misses a u, x-path in G consisting of all
the vertices of π(u, x) outside C, along with a suitably chosen path in C. Thus, x
must be pokable in G′.
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A perfectly similar argument, whose details are omitted, asserts that y is also
pokable. With this, the proof of Lemma 6.16 is complete.

Lemmas 6.15 and 6.16 combined set the stage for a decomposition theorem for
AT-free graphs. Consider an AT-free graph G = (V,E) and let (x, y0) be a pokable
dominating pair in G. Let G0, G1, . . . , Gk be a sequence of graphs defined as follows.

(i) G0 = G.
(ii) For all i (0 ≤ i ≤ k − 1), let Ri be the equivalence relation defined on Gi

by setting uRiv ⇐⇒ D(u, x) = D(v, x), and let C be an arbitrary valid
equivalence class of Gi/Ri. Let Gi+1 be the graph obtained from Gi by a
C-contraction (i.e., Gi+1 contains all the vertices in Gi\C as well as a new
vertex c which is adjacent to all vertices in Gi\C that were adjacent to at
least one vertex in C).

(iii) Gk consists of a single vertex.
Such a sequence G0, G1, . . . , Gk is called involutive. The reader is referred to

Figure 6.5, which features the first five graphs in an involutive sequence of the given
graph. Note that in the transition from G2 to G3 in Figure 6.5 two equivalence classes
could be contracted, namely, {a, b} and {d, efgh}. We have selected to contract the
class C = {a, b}.

The obvious question is whether every connected AT-free graph has such an in-
volutive sequence. This fundamental question is answered in the affirmative in the
following theorem.

Theorem 6.17. Every connected AT-free graph G has an involutive sequence.
Proof. We shall assume that G is not a clique, since otherwise there is nothing

to prove. By Theorem 6.2, we find a nonadjacent pokable dominating pair (x, y0) in
G. Consider the transition from Gi to Gi+1 for some i (0 ≤ i ≤ k − 1). Let C be
an arbitrary valid equivalence class in Gi/Ri, and let (x, yi) be a pokable dominating
pair in Gi. Define yi+1 to be yi in case C is distinct from C(yi) and to be the vertex
obtained by contracting C(yi) otherwise. Clearly, Gi+1 is connected whenever Gi

is. By Lemmas 6.14, 6.15, and 6.16 combined, Gi+1 is AT-free and (x, yi+1) is a
pokable dominating pair in Gi+1. This completes the proof of Theorem 6.17.

We close with the obvious question: Can such an involutive sequence be con-
structed efficiently?

7. Dominating pairs in high diameter AT-free graphs. The purpose of
this section is to show that, in a connected AT-free graph with diameter larger than
three, the set of vertices that can be in dominating pairs is restricted to two disjoint
sets. Specifically, we have the following result.

Theorem 7.1. Let G be a connected AT-free graph with diameter at least four.
There exist nonempty, disjoint sets X and Y of vertices of G such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y .

We note that Theorem 7.1 is the best possible in the sense that for AT-free graphs
of diameter less than four, the sets X and Y are not guaranteed to exist. To wit,
C5 and the graph of Figure 7.1 provide counterexamples of diameter two and three,
respectively.

Proof. Let (x0, y0) be a dominating pair in G achieving the diameter. (The
existence of such a pair follows from Theorem 4.3.) Let Y stand for the set of all the
vertices y in G such that (x0, y) is a dominating pair, and let X be the set of all the
vertices x in G for which (x, y0) is a dominating pair. We propose to show that X
and Y are the sets with the property specified in Theorem 7.1. Our proof relies on a
number of intermediate results that we present next.
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Fig. 7.1. An AT-free graph of diameter three.

To begin, we note that

x0 ∈ X and y0 ∈ Y.(7.1)

In addition, by Claim 6.6,

both X and Y are disconnected in G.(7.2)

Our choice of x0 and y0 guarantees that

x0 (respectively, y0) is adjacent to no vertices in Y (respectively, X).(7.3)

Otherwise, (7.1) and (7.2) would imply that d(x0, y0) ≤ 3.
Note that (7.2) and (7.3) combined guarantee that

X and Y are disjoint.(7.4)

The following argument justifies (7.4). If z ∈ X ∩ Y then, in particular, z ∈ X and
so (z, y0) is a dominating pair. By (7.2), there exists a z, y0-path contained in Y . By
(7.3), x0 misses this path, contradicting the fact that (z, y0) is a dominating pair.

Let x and y be arbitrary vertices in X and Y, respectively. We claim that

(x, y) is a dominating pair.(7.5)

To justify (7.5), suppose that some vertex u misses an x, y-path π. Observe that
(7.2) guarantees the existence of an x0, y-path contained in π ∪X. Since (x0, y) is a
dominating pair, this path is dominating. By (7.3), y0 must be adjacent to a vertex
of π \ {x}. Thus, π ∪ {y0} contains an x, y0-path. This path must be dominating and
so u must be adjacent to y0. A perfectly similar argument shows that u is adjacent
to x0, contradicting that x0 and y0 achieve the diameter.

Next, let x be an arbitrary vertex in X. We claim that

if (x, z) is a dominating pair then z ∈ Y.(7.6)

Trivially, z 6∈ X; since diam(G) ≥ 4, x and z are not adjacent. If z 6∈ Y , there exists
an x0, z-path π missed by some vertex u. Note that π ∪ X contains an x, z-path.
Since, by assumption, (x, z) is a dominating pair, this path is dominating and so y0

must intercept it. By (7.3) y0 intercepts π \ {x0}. Since (x0, y0) is a dominating pair
it follows that u is adjacent to y0. Trivially, u is not adjacent to x; otherwise the path
y0, u, x which is dominating implies that x and x0 are adjacent and so d(x0, y0) ≤ 3.
Further, u and x being nonadjacent guarantees that x and x0 are also nonadjacent;
otherwise u misses the x, z-path contained in π ∪ {x}. Now, (7.2) guarantees that
some x′ in X is adjacent to both x0 and x. Since (x, z) is a dominating pair, u must
be adjacent to x′. However, this implies that d(x0, y0) ≤ 3, which is a contradiction.

Let y be an arbitrary vertex in Y . As above, we can prove that

if (y, z) is a dominating pair then z ∈ X.(7.7)
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Note that by virtue of (7.4), (7.5), (7.6), and (7.7), to complete the proof of
Theorem 7.1 we only need to prove that if (v, w) is a dominating pair then v ∈ X and
w ∈ Y (or v ∈ Y and w ∈ X). Suppose not.

By (7.5), (7.6), and (7.7) it must be that v 6∈ X ∪Y and w 6∈ X ∪Y . Let F be the
component of N ′(x0) that contains Y . (Observe that diam(G) ≥ 4 guarantees that
Y is restricted to a unique component of N ′(x0).) We claim that

v or w belongs to F.(7.8)

To justify (7.8), consider a shortest v, w-path in G. By assumption, this path is dom-
inating and so both x0 and y0 must intercept it. Assume, without loss of generality,
that y0 intercepts the path “closer” to w than x0 at a vertex t. Trivially, x0 is adjacent
to no vertex on this path from t to w, and the conclusion follows.

Let H be the component of N ′(y0) that contains X. By virtue of (7.8) we may
assume, without loss of generality, that w ∈ F and that v ∈ H. Now, observe that y0

can miss no w, x0-path since such a path extends inside H to a w, v-path missed by
y0. Similarly, no vertex y ∈ Y nonadjacent to y0 can miss a w, x0-path; otherwise, y
would miss a y0, x0-path, which is a contradiction. Let y ∈ Y be a vertex that misses
some w, x0-path π. By the previous argument, y and y0 are adjacent. However, since
(w, v) is a dominating pair, y must intercept every w, v-path contained in π ∪ H,
implying that y is adjacent to some neighbor x′ of x0. But now we have reached a
contradiction—x0 and y0 are joined by a path of length three.

With this the proof of Theorem 7.1 is complete.

8. Concluding remarks and open problems. Many families of graphs, in-
cluding interval graphs, permutation graphs, trapezoid graphs, and cocomparability
graphs, demonstrate a type of linear ordering on their vertex sets. It is precisely
this linear order that is exploited, in one form or another, in a search for efficient
algorithms for these classes of graphs. The classes mentioned are known to have
wide-ranging practical applications. In addition, they are all subfamilies of the class
of graphs called AT-free graphs.

This work is the first attempt, known to us, to investigate structural properties
of the AT-free graphs. In this direction our contributions are as follows.

1. We showed that every connected AT-free graph has a dominating pair, that
is, a pair of vertices such that every path joining them is a dominating set.

2. We provided properties of dominating pairs in AT-free graphs related to the
concept of connected domination and diameter.

3. We provided a characterization of AT-free graphs in terms of dominating
pairs.

4. We provided a characterization of AT-free graphs in terms of minimal trian-
gulations.

5. We provided a decomposition theorem for AT-free graphs.

The authors have also addressed some algorithmic questions with respect to AT-
free graphs. Specifically, in [9], O(|V | + |E|) time algorithms are given for finding a
pokable dominating pair in a connected AT-free graph G = (V,E) and for finding all
dominating pairs in a connected AT-free graph G = (V,E) of diameter greater than
three. Included in the latter algorithm is an efficient procedure for computing all of the
“D” sets, with respect to a particular pokable dominating pair vertex. An extended
abstract of [9] can be found in [11]. Some preliminary results and an alternative
approach to the dominating pair problem can be found in [10] and [12], respectively.
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Many other questions are still open. For example, it is well known [17] that
cocomparability graphs have a linear ordering; this ordering exemplifies the linear
structure we observe in interval graphs, permutation graphs, and trapezoid graphs.
It would be interesting to see whether the AT-free graphs also possess some linear
ordering. Such an ordering could, conceivably, be exploited for algorithmic purposes.

A further natural question to ask is “What are the roles of dominating pairs and
pokable vertices in the subfamilies of AT-free graphs?” It is clear that the extreme
vertices of any intersection representation, for a connected graph in any of the sub-
families, form a dominating pair. Some additional partial answers to this question
have been given, in a slightly different setting, in [21] and [22]. Investigating fur-
ther properties of dominating pairs and pokability in each of these particular families
promises to be a fruitful area for further research.

Recently Möhring [20] has added to the understanding of the linear structure
of AT-free graphs by showing that the pathwidth of an AT-free graph equals its
treewidth.

Just as there are many families of perfect AT-free graphs, one would expect to
see a rich hierarchy of families of nonperfect AT-free graphs. So far nothing is known
here. Since perfect AT-free graphs strictly contain cocomparability graphs, it would
be interesting to study the perfect AT-free graphs.

The fastest recognition algorithm known to us runs inO(n3) time with an n-vertex
graph as input. It is a tantalizing open problem to produce a recognition algorithm
that is more efficient, perhaps even optimal.
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Abstract. We study adjacency of vertices on Tn, the asymmetric traveling salesman polytope of
degree n. Applying a result of G. Boccara [Discrete Math., 29 (1980), pp. 105–134] to permutation
groups, we show that Tn has Ω((n− 1)(n− 2)! 2 logn) edges, implying that the degree of a vertex of
Tn is Ω((n− 2)! logn). We conjecture the degree to be Ω((n− 2)!(logn)k) for any positive integer k.
We compute the density function δn given by the fraction of the total number of vertices adjacent
to a given vertex for small values of n, and conjecture that it decreases with n.
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1. Introduction. The asymmetric traveling salesman polytope (ATSP) is one of
the widely studied polytopes in combinatorial optimization for its intrinsic relation
to the traveling salesman problem. Many results are known about the facets of this
polytope (see chapter 8 of [4] for a detailed survey), but not much is known about
adjacency of vertices on this polytope. From an optimization point of view, study-
ing adjacency helps in estimating the size of exact neighborhoods for local search
algorithms. Such estimates have been carried out in [7] for the symmetric TSP.

The most common relaxation of the ATSP is the Birkhoff (or assignment) poly-
tope Bn. We study the relationship between the faces of Bn and Tn, specifically the
edges of Tn arising from certain two-dimensional faces of Bn. These edges are counted
using a result of Boccara [2] giving us the lower bound for the number of edges of
Tn. In particular, we show that Tn has Ω((n− 1)(n− 2)! 2 logn) edges and thus each
vertex of Tn has degree Ω((n− 2)! log n).

We define some terms that will be used for the rest of this paper. Let Sn be the
symmetric group of degree n, i.e., the set of all permutations of [n] := {1, 2, . . . , n}.
We call a permutation even (odd) if it can be expressed as a product of an even (odd)
number of transpositions. Two permutations are said to have different parity if one is
even and the other odd. Given σ ∈ Sn, we define the corresponding n×n permutation

matrix Xσ ∈ Rn2

by

(Xσ)ij :=
{

1 if σ(i) = j,
0 otherwise.

We denote by Bn the Birkhoff polytope of degree n, given by

Bn := conv{Xσ : σ ∈ Sn}.

Let

Tn := {σ ∈ Sn : σ is a cycle of length n} ⊂ Sn.

∗Received by the editors March 27, 1995; accepted for publication (in revised form) May 31, 1996.
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The ATSP of degree n is defined by

Tn := conv{Xσ : σ ∈ Tn},

so that

Tn ⊂ Bn ⊂ Rn2

.

Thus if F is a face of Bn, then F ∩ Tn is a face of Tn induced by F .
We call two vertices adjacent on a polytope P if they form an edge of P . The

graph of P is a graph whose nodes are the vertices of P with two nodes adjacent if
the corresponding vertices are adjacent on P .

A partition of n is a sequence of positive integers λ := (λ1, . . . , λk), with
∑

λi = n
and λ1 ≥ λ2 ≥ · · · ≥ λk and we indicate this by λ ` n. We call λ an even (respectively,
odd) partition if n−k is even (respectively, odd). Let ê := (1, 1, . . . , 1) be the identity
partition. If π ∈ Sn is a product of k disjoint cycles of lengths l1, . . . , lk (including
cycles of length 1) in nonincreasing order, then (l1, . . . , lk) is a partition of n. We call
(l1, . . . , lk) the cycle type of π. A composition of n is a sequence of positive integers
λ := 〈λ1, . . . , λk〉 with

∑
λi = n and we indicate this by λ |= n. Hence a partition

of n into k parts can define up to k! distinct compositions by permuting the parts
of the partition. A k-partition (respectively, a k-composition) of n is a partition
(respectively, a composition) of n into k parts.

If f(n) and g(n) are two positive valued functions, then we say f(n) = Ω(g(n)) if
there exists a positive constant c such that g(n) ≤ cf(n), for all allowable values of n.

2. The edges of the ATSP. We will denote the matrix Xσ by σ. We study
faces of Bn induced by a pair of vertices σ, π. The following result found in [1,
Proposition 2.1] and in [3] shows that these faces are in fact cubes.

Proposition 2.1. If σ−1π =
∏k

i=1 Ci ∈ Sn where C1, . . . , Ck are disjoint cycles,
then the smallest face Fσ,π of Bn containing both σ and π is a k-cube, where k ≤

⌊
n
2

⌋
.

The vertices of Fσ,π are given by σΠi∈SCi, for S ⊆ [k].
The convex hull of the vertices of Fσ,π that correspond to cycles of length n is

a face of Tn. In particular, if σ, π ∈ Tn, and σ−1π = C1C2 is a product of two
cycles of even length, then Fσ,π is a 2-cube. Since σC1 and σC2 have parity different
from that of σ, neither can be n-cycles. Thus σ and π are adjacent on Tn. We now
find the number of such representations. To do this, we need the following result [2,
Corollary 4.8].

Proposition 2.2. Let l = (l1, . . . , lk) ` n. Let g(l) be the number of ways of
writing a permutation of cycle type l as a product of two n-cycles. Then

g(l) =
2(n− 1)!

n + 1

∑
I⊆{2,...,k}

(−1)|I|+s(I)

(
n

s(I)

)−1

,(2.1)

if l is an even partition and zero otherwise. Here s(I) =
∑

i∈I li.
Thus if l = (l1, l2), and n is even, then

g(l) =
2(n− 1)!

n + 1

(
1− (−1)l1

(
n

l1

)−1
)
,(2.2)

and if l = (l1, l2, l3), and n is odd, then

g(l) =
2(n− 1)!

n + 1

(
1− (−1)l1

(
n

l1

)−1

− (−1)l2
(
n

l2

)−1

− (−1)l3
(
n

l3

)−1
)
.(2.3)
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This result is generalized in [6] to give the number of ways of writing a permutation
as a product of an arbitrary number of n-cycles.

Theorem 2.3. Let en be the number of edges of Tn, n > 3. Then

en = Ω((n− 1)(n− 2)!2 logn).

Proof. Suppose n = 2m is even. Let η ∈ Sn have cycle type λr = (n−2r, 2r), 1 ≤
r ≤ m/2. If σ, π ∈ T n, and σ−1π = η, then by the argument before Proposition 2.2
σ and π are adjacent on Tn. By (2.2), the number of ways of writing η as a product
of two n-cycles is

g(λr) =
2(n− 1)!

n + 1

(
1−

(
n

2r

)−1
)
≥ (n− 1)!

n + 1
as

(
n

2r

)
≥ 2,

and every such pair of n-cycles induce an edge in Tn. Now the number of permutations
of cycle type λr is at least n!/(4r(n− 2r)). Hence, counting each edge exactly once,

en ≥
(n− 1)!

2(n + 1)

bm/2c∑
r=1

n!

4r(n− 2r)
=

(n− 1)! 2

4(n + 1)

bm/2c∑
r=1

(
1

2r
+

1

n− 2r

)

≥ (n− 1)! 2

8(n + 1)

m−1∑
r=1

1/r ≥ (n− 1)! 2

8(n + 1)
logm = Ω((n− 1)(n− 2)!2 logn).

If n = 2m+1 is odd, then let η ∈ Sn have cycle type λ′r = (2m−2r, 2r, 1), 1 ≤ r ≤ m/2.
By (2.3), the number of pairs of n-cycles whose product is η is

g(λ′r) =
2(n− 1)!

n + 1

(
1−

(
n

2m− 2r

)−1

−
(
n

2r

)−1

+
1

n

)
≥ (n− 1)!

n + 1
,

and each such pair induce an edge in Tn. Hence the bound for en follows as
before.

The lower bound for the degree now follows from observing that Tn is a vertex
symmetric polytope. If σ, π ∈ T n, then there exists γ ∈ Sn such that σ = γπγ−1.
Hence vertices π and π1 are adjacent on Tn if and only if σ is adjacent to γπ1γ

−1. As
a result the degree of each vertex of Tn is the same value deg (n) and

deg (n) =
2en

(n− 1)!
≥ (n− 1)!

4(n + 1)
logm = Ω((n− 2)! log n).(2.4)

3. Further discussions. The degree bound shows the graph of Tn to be fairly
dense. This may not seem very surprising considering that the diameter of Tn is 2
as shown in [5]. For the Birkhoff polytope Bn, the degree of a vertex is known to be∑n−2

k=0

(
n
k

)
(n− k − 1)!, while for the symmetric TSP it is Ω(bn−1

2 c!) as shown in [7].
An expression for the number of edges of Tn can be written as

en =
∑

λ`n, λ 6=ê
λ even

nλ g(λ)h(λ)

2
,(3.1)
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where nλ is the number of permutations of cycle type λ and h(λ) is the fraction of
the pairs of n-cycles (σ, π) which are adjacent on Tn and such that σ−1π has cycle
type λ. Hence h(λ) = 1 if λ corresponds to a cycle or a product of two cycles of even
length. It is natural to ask how large en would be if this summation is taken over all
k-partitions λ for a fixed k. We estimate this partially.

Conjecture 3.1. For any positive integer k,

deg (n) = Ω((n− 2)!(logn)k).

The rationale for this conjecture stems from the following argument. From (2.1)
it follows that for an even partition l = (l1, . . . , lk) ` n,

g(l) ≥ 2(n− 1)!

n + 1

(
1− 2k−1

n

)
≥ (n− 1)!

n + 1
for n ≥ 2k,

since each term in the summation in (2.1) is at least −1/n except for the term cor-
responding to the empty set which is 1. Let ni be the number of permutations that
can be expressed as a product of i disjoint cycles (including cycles of length 1). We
estimate the asymptotic growth of ni with i fixed. We have

ni =
∑

〈l1,...,li〉 |=n

n!

i!l1l2 · · · li
= Ω((n− 1)!(logn)i−1).

The above sum is taken over all i-compositions of n. The last equality follows from
the lemma below.

Lemma 3.2. Let

fi(n) :=
∑

〈l1,...,li〉|=n

n

l1l2 · · · li
,

the sum being taken over all i-compositions of n. Then fi(n) = Ω((logn)i−1). In
particular, we show that if n ≥ 2i, then fi(n) ≥ ci(logn)i−1, ci = 2−(i−1)(i−2)/2.

Proof. We prove this by induction on i. The result is straightforward for i = 1.
Then for i > 1 and n ≥ 2i,

fi(n) ≥
bn/2c∑
l1=1

n

l1(n− l1)
fi−1(n− l1).

As l1 ≤ n/2, we have by induction fi−1(n− l1) ≥ ci−1(log(n− l1))
i−2 ≥ ci(logn)i−2

since log(n− l1) ≥ log(n/2) ≥ 1/2 logn. Hence

fi(n) ≥ ci(logn)i−2

bn/2c∑
l1=1

(
1

l1
+

1

n− l1

)
≥ ci(logn)i−1 = Ω((logn)i−1),

proving the result.
The conjecture amounts to showing that for each k, there exists a positive constant

hk such that h(λ) ≥ hk for any k-partition λ of n and any n such that n− k is even.
If this were true, then summing (3.1) over all k-partitions of n yields

en ≥
hknk(n− 1)!

2(n + 1)
= Ω((n− 1)(n− 2)!2(logn)k−1)
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when n − k is even. If n − k is odd, then we sum (3.1) over all (k + 1)-partitions of
n to get a bound of Ω((n − 1)(n − 2)!2(logn)k) for en. This yields the conjectured
bound for deg (n).

We define the density δn of Tn to be the fraction of the total number of vertices
adjacent to a given vertex, i.e., δn := deg (n)/((n − 1)! − 1). Our bounds on deg (n)
show that δn = Ω(logn/n). It would be desirable to bound this number either away
from 0 or below 1 as n → ∞. Since T3 and T4 are simplices and T5 is 2-neighborly,
they have a density of 1. Using MAPLE, some other densities were computed by
constructing the cube Fσ,π for a fixed n-cycle σ and examining when the n-cycle π
was adjacent to σ. These are tabulated below:

n deg (n) δn

6 110 0.92

7 628 0.87

8 4174 0.83

9 32433 0.80

We observe that δn decreases with n for n ≤ 9. We conjecture that this holds in
general.

Acknowledgments. I thank Louis J. Billera and the referees for their comments
and criticisms that have greatly improved the exposition of this paper.
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Abstract. This paper considers counting problems associated with K-spanning and K-discon-
necting sets for a specified terminal set K in an undirected graph G. In particular, we consider the
problems of computing the number of Steiner trees and min K-cuts for G, as well as K-spanning
and K-disconnecting sets of cardinality close to the minimum values. Among other things, these
numbers are critical to the efficient approximation of K-connected reliability measures in stochastic
networks. Although the counting problems considered in this paper are NP-hard in general, a large
number of methods for finding shortest paths, min cuts, and Steiner trees in graphs can be extended
to efficiently count K-spanning and K-disconnecting sets in important special cases.
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1. Introduction. The K-connectedness problem considered in this paper has as
input undirected graph G = (V,E) along with subset K of terminal vertices. (Parallel
edges and loops are allowed and are in fact necessary for some of the algorithms given
in the paper.) We denote by n, m, and k the number of vertices, edges, and terminals
of G, respectively. A subset S of edges of G is called K-connected if every pair of
vertices in K can be connected by a path in S. S is called a K-disconnecting set if E\S
is not K-connected. The minimum cardinality K-connected and K-disconnecting sets
in G are called, respectively, K-Steiner trees and min K-cuts. We are concerned in
this paper with the problems of counting the following numbers:

τ(G,K) = the number of K-Steiner trees in G;
γ(G,K) = the number of min K-cuts in G;
κ(G,K, r) = the number of K-connected sets of cardinality r in G.
=
(
m
r

)
−the number of K-disconnecting sets of cardinality m− r in G.

The numbers τ(G,K), γ(G,K), and κ(G,K, r) are important measures in the assess-
ment of reliability and vulnerability with respect to K-connectivity in networks. The
numbers κ(G,K, 0), κ(G,K, 1), . . . , κ(G,K,m) are in fact the coefficients of the K-
connectedness reliability polynomial, as given in [4]. The terms τ(G,K) and γ(G,K)
comprise the “extreme” values for κ(G,K, r); that is, if we denote by l and c the car-
dinalities of a K-Steiner tree and min K-cut, respectively, then τ(G,K) = κ(G,K, l)
and γ(G,K) =

(
m
c

)
− κ(G,K,m − c). Any values of κ(G,K, r) outside the range

t, t + 1, . . . ,m − c are trivial, being either 0 or
(
m
r

)
. Thus the values τ(G,K) and

γ(G,K) provide an important measure of the distribution of small and large K-
connected sets, respectively, and in fact the values of κ(G,K, r) for r close to t and
to m − c provide the most significant terms of the reliability polynomial for edge
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1996.
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operating probabilities close to 0 and 1, respectively. These measures play a critical
role in the approximation scheme developed in [3], where the theory of Steiner com-
plexes is used to develop bounds on K-connectedness reliability in graphs using these
measures.

Although much study has been devoted to finding Steiner trees and min cuts,
relatively little has been done with regard to counting these objects. Almost all of
the counting problems considered here are NP-hard—technically #P-complete [17]—
in the general case, and hence are unlikely to be computable in polynomial time.
The purpose of this paper is to give algorithms for computing τ(G,K), γ(G,K),
and κ(G,K, r) and to identify some important classes of problems where this can be
accomplished in polynomial time. The methodology takes advantage of several known
counting techniques in graph theory and also points out the interesting interplay
between the optimization algorithms for these problems and the associated counting
algorithms.

2. Review of some known counting algorithms. In this section we review
several important algorithms in the literature which, in addition to giving values for
τ(G,K), γ(G,K), and κ(G,K, r) for K = {s, t} and K = V , will also be used as
subroutines for computing these measures for general K. We will restrict ourselves
here to giving only the basic results; for proofs and details of the algorithms the
reader is referred to the associated references. All complexities in this paper are given
in terms of the number of arithmetic operations. As a technical matter, it should
be pointed out that in many of the procedures given in this paper the associated
numbers can be of the order of 2m. Thus in a logarithmic computational model the
actual complexity could involve another factor of m.

2.1. Counting shortest (s, t)-paths and min (s, t)-cuts. The paper [1, sec-
tion III-C] gives a method for computing τ(G, {s, t}), the number of shortest paths
between two vertices s and t in G. The method is based on a simple modification of
a breadth-first shortest-path algorithm and gives the following result [1].

Lemma 2.1. The number τ(G, {s, t}) of shortest (s, t)-paths in G—and in fact the
number of shortest (s, v)-paths for all v ∈ V in G—can be determined using O(n+m)
arithmetic operations.

Procedures for counting cuts often involve first explicitly listing the collection of
cuts, and keeping a count as the listing proceeds. Algorithms for listing the collection
of min {s, t}-cuts in a graph have been given by several authors [1], [7], [11], [14]. All
algorithms are based on solving a max flow problem on G, and then using the resulting
flow to identify the min {s, t}-cuts. The results of these papers can be summarized
in the following lemma.

Lemma 2.2. The collection of min {s, t}-cuts of G can be listed in time O(mγ+α),
where γ = γ(G, {s, t}) is the number of min cuts and α is the time to find an {s, t}-
cut.

Note that this is not a polynomial-time method for computing γ(G, {s, t}), since
γ(G, {s, t}) can grow exponentially in the size of G. Indeed, the problem of computing
γ(G, {s, t}) in general graphs is NP-hard [13]. However, for certain cut-listing prob-
lems, for example, those associated with γ(G,V ), the size of the associated collection
of {s, t}-cuts is polynomially bounded in the size of the graph. Thus the cut-listing
algorithm provides a polynomial-time method for computing γ(G,V ) (see [1]) as well
as certain values of γ(G,K) and κ(G,K, r), as we show later in this paper.

There is one interesting situation for which it is possible to count the number of
min {s, t}-cuts without explicitly listing them. This occurs when G is an (s, t)-planar
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graph—that is, G has a plane layout with s and t lying on the exterior face. In this
case, the number of min {s, t}-cuts of G is equal to the number of shortest (s, t)-paths
in the (s, t)-planar dual graph of G. Using Lemma 2.1 we have the following.

Lemma 2.3. The number of min {s, t}-cuts in an (s, t)-planar graph G can be
computed using O(n) arithmetic operations.

2.2. Counting spanning and disconnecting sets. The value τ(G,V ) is sim-
ply the number of spanning trees in G and the computation of τ(G,V ) reduces by
the matrix tree theorem [9], [16] to computing the determinant of a (n− 1)× (n− 1)
matrix, giving us the following result.

Lemma 2.4. The number of spanning trees of G can be computed using O(n3)
arithmetic operations.

In spite of having a polynomial algorithm for computing κ(G,V, n−1) = τ(G,V ),
the complexity of computing even the value of κ(G,V, n) on general graphs is still an
open problem. When G is planar, however, the paper [10] gives a recursive formula
for computing the value of κ(G,V, n− 1 + d), starting with the matrix tree theorem.
Although the complexity of the recursion was not explicitly analyzed, it can be easily
derived, and results in the following lemma.

Lemma 2.5. For any planar graph G, κ(G,V, n − 1 + d) can be computed using
O(n3md) arithmetic operations.

Finally, the enumeration of “almost minimum cuts”—or, equivalently, the com-
putation of κ(G,V, r) for values of r close to m− c—is studied in [15]. In that paper
(s, t)-disconnecting sets of cardinality c + d are counted by a careful “factoring” on
the edges of G. The results are summarized in the following lemma.

Lemma 2.6. For any fixed d, the number κ = κ(G,V,m− c+ d) of disconnecting
sets of G of cardinality c+d can be computed in time O(mακ) = O(αmdnd+2), where
α is the time to find a min V -cut for G.

3. Counting min K -cuts. In this section we use the material in section 2 to
develop algorithms for computing γ(G,K). The essential features of the procedures
presented here were given in [1] for the case K = V . They are based on the fact
that a min K-cut in G is always a min {s, t}-cut for some pair s and t of vertices in
K. Hence the cardinality c of a min K-cut can be computed in polynomial time for
any graph by simply computing the cardinality of a min {s, t}-cut for each pair s, t
of elements of K and then taking the minimum over all these values. Further, the
set of min K-cuts is the union of the set of min {s, t}-cuts for all pairs s and t for
which the cardinality of a min {s, t}-cut is equal to c. What remains is to process
the collections of {s, t}-cuts for the appropriate pairs s, t in such a way as to avoid
repeating cuts over different pairs of s and t. This can be accomplished by using the
following result, whose proof is routine.

Lemma 3.1. Let c be the cardinality of a min K-cut in G, and let s and t be a
pair of elements of K for which the cardinality of a min {s, t}-cut in G is equal to
c. Let Ĝ be the graph obtained from G by identifying t with s and K̂ = K \ {t} the
corresponding terminal set. If the cardinality of a min K̂-cut in Ĝ is also c, then

γ(G,K) = γ(G, {s, t}) + γ(Ĝ, K̂),

otherwise γ(G,K) = γ(G, {s, t}).
Using Lemma 3.1 and the cut-listing result of Lemma 2.2, we have the following

theorem.
Theorem 3.2. For any graph G and terminal set K, the value of γ = γ(G,K)

can be computed in time O(mγ + kα), where α is the time to find a min {s, t}-cut.
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Fig. 1. Construction of Gt,S .

Again note that this does not constitute a polynomial time algorithm, since
γ(G,K) can grow exponentially in the size of G.

There are two interesting special instances when a polynomial bound on γ(G,K)
can be given. Bixby [2] proves that γ(G,V ) is at most

(
m
2

)
. We extend this results to

K-cuts by showing that K is “close to” V—in particular, if K differs from V by no
more than a fixed number—then we can also get a polynomial bound on γ(G,K) and
hence on the time to compute it. Begin by fixing an arbitrary element s ∈ K. Next, for
every t ∈ K, t 6= s and every subset S ⊆ V \K we define the graph Gt,S = (Vt,S , Et,S)
as the graph obtained from G by identifying the vertices of S with s and identifying
the vertices of V \ (K ∪ S) with t. Figure 1 illustrates the construction of Gt,S with
the solid vertices being the elements of K, and S and V \ (K ∪ S) as marked.

Now it is straightforward to show that if X is a K-disconnecting set of G, then
X is also Vt,S-disconnecting set in the graph Gt,S , where t ∈ K is some vertex in the
component of the subgraph (V,E \X) which does not contain s and S is the subset
of vertices of V \K which are in the same component as s. In particular, the set of
min K-cuts of G is contained in the union of the minimum cardinality Vt,S-cuts of
graphs Gt,S , taken over all choices of t and S ⊆ V \K. There are at most k2n−k such
graphs and by applying Bixby’s bound to each of these graphs we have the following.

Theorem 3.3. γ(G,K) ≤
(
m
2

)
k2n−k.

By applying Theorem 3.2 we obtain the following result.
Corollary 3.4. The value of γ(G,K) can be computed in time O(m3k2n−k +

kα), where α is the time to find a min {s, t}-cut. In particular, for fixed d, γ(G,K)
can be computed in polynomial time for any G = (V,E) and K with n− k ≤ d.

A min K-cut counting procedure based on Lemma 3.1 can also be implemented
in polynomial time in the case where the graph G is K-planar, that is, has a plane
layout with the elements of K lying entirely on the exterior boundary. In this case
if the pair s and t of Lemma 3.1 is chosen to be the closest pair of eligible terminals
with respect to their distance along the exterior boundary of G, then the graph Ĝ will
also be K̂-planar. In particular, the value of γ(G, {s, t}) required in Lemma 3.1 can
be computed in O(m) arithmetic operations by Lemma 2.3, since G is (s, t)-planar
for each of the intermediate graphs. We thus have Theorem 3.5.

Theorem 3.5. If G is a K-planar graph, then γ(G,K) can be computed using
O(km+ kα) arithmetic operations, where α is the time to find a min {s, t}-cut.

4. Counting Steiner trees in graphs. In this section, we consider the problem
of computing τ(G,K), the number of K-Steiner trees in G. The problem of counting
K-Steiner trees is NP-hard [17], and in fact even the problem of finding a K-Steiner
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tree is also NP-hard. There are several instances, however, where the Steiner tree
problem does have a polynomial time solution, and it turns out that in each of these
instances the algorithm for finding the Steiner tree can be modified to also count the
number of such trees.

4.1. The Hakimi method. The method given by Hakimi [8] finds K-Steiner
trees by essentially solving a series of spanning tree problems. It can be modified to
compute τ(G,K) in polynomial time for instances where almost all of the vertices
are terminal vertices. It is based on the fact that a K-Steiner tree T in G is simply
a spanning tree on its incident set of vertices. Thus one way to find the cardinality
l of a K-Steiner tree is to determine the minimum cardinality of a set of vertices S
containing K for which the subgraph GS induced by S is connected. That is,

l = min{|S| : K ⊆ S ⊆ V, GS connected}.

Further, for each such minimum cardinality S every spanning tree in GS is a K-Steiner
tree of G, and these are distinct for distinct S. We can therefore compute the number
of K-Steiner trees by the analogous formula

τ(G,K) =
∑

{τ(GS , V ) : K ⊆ S ⊆ V, |S| = l, GS connected}.

By applying the above formula, and using Lemma 2.4, we obtain the following result.

Theorem 4.1. τ(G,K) can be computed using O(n3 2n−k) arithmetic operations.
In particular, for any fixed d there exists a polynomial-time algorithm for computing
τ(G,K) over all G and K with n− k ≤ d.

4.2. The Dreyfus–Wagner method. The method of Dreyfus and Wagner [5]
builds K-Steiner trees by recursively constructing and “patching together” smaller
Steiner trees. The method can be applied to yield a polynomial time method of
finding the cardinality of K-Steiner trees when the terminal set is small and also
when G is K-planar. We give a more exacting version of their method which can be
modified to count the number of Steiner trees as well. For S ⊆ K and u ∈ V define

T (u, S) = {T : T is an (S + u)-Steiner tree},

and for S ⊆ K, |S| ≥ 2, and v ∈ V define

T2(v, S) =

{
T : T is a minimum cardinality (S+v)-connected set for which v
separates at least two vertices of S (including possibly v itself)

}
.

(Throughout this section we will use the notation S+v = S∪{v} and S−v = S\{v}.)
Also, for u, v ∈ V let P(u, v) be the collection of minimum cardinality (u, v)-paths in
G. Computing the cardinality and number of K-Steiner trees involves, respectively,
the recursive evaluation of the functions

cT (u, S) etc. = the cardinality of an element in T (u, S) etc.

#T (u, S) etc. = the number of elements in T (u, S) etc.
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Fig. 2. Steiner tree decompositions.

It follows that τ(G,K) = #T (s,K−s), where s is some arbitrarily chosen element
of K. The Dreyfus–Wagner method essentially computes cT (s,K− s); to extend this
method to counting the number of these sets, we need to first give a canonical way to
uniquely edge-partition an element of T (u, S) or T2(u, S) into smaller pieces, each of
which is recursively in one of these classes of sets. This will enable recursive equations
to be given for cT (u, S) and #T (u, S).

For the starting cases, note that if S consists of the single element v, then
T (u, S) = P(u, v). Assume then that S has at least two elements and arbitrarily
identify one of these elements tS as an “anchor” element. First let T be an element
of T (u, S). Starting at u, follow the unique path Γ in T from u until the first vertex
v is reached whose removal disconnects at least two elements of S. In particular, v
is the first vertex which is either in S itself or is adjacent to at least two distinct
edges on paths continuing to elements of S. Figure 2 gives examples of these two
cases; the solid vertices in the figure are the terminals in S. Note that v could be u
itself in the case where u is in S or has degree greater than 1. The vertex v therefore
partitions the edges of T uniquely into the path Γ ∈ P(u, v) and the remaining tree
T0, which must in turn be in T2(v, S). Next, let T be an element of T2(v, S). Note
that since T is an edge-minimal (S + v)-connected set, then there is a unique path
from v to each element of S and every edge out of v lies on a path from v to at least
one element of S. It follows that either v is tS itself or there exists a unique edge
(v, w) adjacent to v whose removal disconnects v from tS in T . In the first case we
have that T ∈ T (tS , S − tS). If v 6= tS , let T1 and T2 be the two trees obtained by
removing (v, w) from T , with v ∈ T1 and tS ∈ T2. Let S1 and S2 be the elements of
S lying in T1 and T2, respectively, and note that neither S1 nor S2 is empty. Thus T
has a unique partition as T1 ∪ T2 ∪ {(v, w)}, with T1 ∈ T (v, S1) and T2 ∈ T (w, S2).

From the above discussion we can determine the cardinality measures cT (u, S)
and cT2(v, S) as follows. Clearly, cT (u, {v}) = cP(u, v) = the length of a shortest
(u, v)-path. For |S| ≥ 2, the above discussion translates into the following set of
equations for cT (u, S) and cT2(v, S):
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cT (u, S) = min{cP(u, v) + cT2(v, S) : v ∈ V },(1)

cT2(v, S) =


cT (tS , S − tS) v = tS ,

min

cT (v, S1) + cT (w, S2) + 1:
(v, w) ∈ E, S1, S2 a nontrivial
partition of S with tS ∈ S2

 v 6= tS .
(2)

This results in the following procedure for computing the cardinality of a K-Steiner
tree.

K-Steiner tree procedure

compute cT (u, {v}) = cP(u, v) for all pairs u and v of vertices
for S ⊆ K of cardinality at least 2 in increasing order of cardinality do

compute cT2(u, S) for all u ∈ V using (2)
compute cT (v, S) for all v ∈ V using (1)

end for
The evaluation of equation (2) dominates the complexity, with the total number

of disjoint subset pairs S1 and S2 considered in all of the evaluations of equation (2)
being bounded above by 3k and used in turn with each of the n vertices. With O(n3)
being the complexity to compute all of the shortest path lengths cP(u, v), we have
the following result.

Theorem 4.2 (see [5]). The cardinality of a K-Steiner tree in any graph can be
computed using O(n3 + n3k) arithmetic operations.

From the previous argument, the actual collections T (u, S) and T2(u, S) can be
given the following characterizations:

T (u, S) = ∪̇{P(u, v)× T2(v, S) : v ∈ V s.t. cT (u, S) = cP(u, v) + cT2(v, S)},

T2(v, S) =


T (tS , S − tS) v = tS ,

∪̇

T (v, S1) × T (w, S2) × {(v, w)}: (v, w) ∈ E,
S1, S2 a nontrivial partition of S with tS ∈ S2,
and cT2(v, S) = cT (v, S1) + cT (w, S2) + 1

 v 6= tS ,

where ∪̇ = disjoint union and × = Cartesian product. From this characterization we
can immediately give the associated recursive equations for #T (v, S) and #T2(v, S)
by simply replacing T (v, S) by #T (v, S), T2(v, S) by #T2(v, S), ∪̇ by

∑
and × by ·

(standard multiplication). This leads to the following pair of recursive formulas:

#T (u, S)(3)

=
∑

{#P(u, v) ·#T2(v, S) : v ∈ V s.t. cT (u, S) = cP(u, v) + cT2(v, S)},

#T2(v, S) =


#T (tS , S − tS) v = tS ,

∑#T (v, S1) ·#T (w, S2): (v, w) ∈ E, S1, S2

a nontrivial partition of S with tS ∈ S2,
and cT2(v, S) = cT (v, S1)+ cT (w, S2)+1

 v 6= tS .
(4)

The equations above are processed exactly as in the K-Steiner Tree Procedure, with
equations (3) and (4) replacing equations (1) and (2). The complexity analysis is the
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same. The value of #P(u, v) = τ(G, {u, v}) can be computed using O(m) arithmetic
operations (Lemma 2.1) per initial vertex u, and so we summarize the computational
complexity of the counting version of the Dreyfus–Wagner method in the following
result.

Theorem 4.3. τ(G,K) can be computed using O(nm + m3k) arithmetic oper-
ations. In particular, for any fixed d, there exists a polynomial-time algorithm for
computing τ(G,K) over all G and K with k ≤ d.

4.3. Counting Steiner trees in K -planar graphs. It turns out that the
Dreyfus–Wagner method can be modified to give a polynomial algorithm for find-
ing a K-Steiner tree in any K-planar graph. This has been given in [6] and [12] and
follows closely the presentation given in the previous section.

Assume that G is biconnected, that is, contains no vertex whose removal discon-
nects G. (If not, then the collection of K-Steiner trees in G is the Cartesian product
of the collection of Steiner trees in each of the biconnected components of G, and
we can compute the cardinality and number of these trees in G from that of each of
the components.) We therefore have that the exterior boundary of G is a polygon
which contains every terminal. Define an interval to be the set of terminals found
in any path along the boundary of G. In [6] (Theorem 4), it was established that
removal of any edge of a K-tree results in two subtrees both of which span an interval
of the terminal set. This means that if S is an interval and the anchor element tS is
always chosen to be the clockwise-most element of S, then the tree partitioning given
in the section 4.2 for elements of T2(v, S), v 6= tS will result in terminal subsets S1

and S2 which are also intervals of K and the partition of elements of T2(v, S), v = tS
will likewise result in terminal sets which are intervals. Again, see Fig. 2, where the
dotted lines represent the boundary of G. Since the initial terminal set K − s is itself
an interval, then equations (1), (2), (3), and (4) need only be computed for intervals
of K − s. There are at most k2 such intervals (defined by their endpoints), so that
at most nk2 equations of each kind need to be evaluated, with equations (1) and (3)
requiring O(n) arithmetic computations to compute and (2) and (4) requiring O(nk)
arithmetic computations. We therefore have the following result.

Theorem 4.4. For G and K such that G is K-planar, τ(G,K) can be computed
using O(n2k3) arithmetic operations.

This is a factor of k greater than the complexity of the algorithms given in [6]
and [12] due to the more precise breakdown of the Steiner trees. It is an interesting
question as to whether an O(n2k2) algorithm is possible, as is obtained in those
papers.

5. Counting K-spanning sets. The problem of computing κ(G,K, r) for gen-
eral r is understandably more difficult than that of computing either τ(G,K) or
γ(G,K). Here we give two extensions of the results in sections 3 and 4 which allow
κ(G,K, r) to be computed for values of r close to either of its extreme values and
special instances of G and K. The first method extends the results of sections 3 and
the method in [15] to compute κ(G,K, r) for k close to n and r close to m − c. We
start by extending the results in [2] and [15] to provide an upper bound for κ(G,K, r).

Lemma 5.1. κ(G,K, r) ≤ kn22n−kmm−r−c.
Proof. We recall the definition of the graphs Gt,S in the discussion before The-

orem 3.3. The collection of K-disconnecting sets of cardinality r̄ = m − r (which
corresponds to the collection of K-connected sets of cardinality r) is contained in
the union of the Vt,S-disconnecting sets of cardinality r̄ in each of the graphs Gt,S =
(Vt,S , Et,S), taken over all S ⊆ V \ K and t ∈ K. This means that the number
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G
U

Fig. 3. A K-spanning set.

of K-disconnecting sets of cardinality r̄ in G is bounded above by k2n−k times the
maximum number of Vt,S-disconnecting sets of cardinality r̄ in a graph of the type
Gt,S . Using the bound γ(Gt,S , Vt,S) ≤ |Vt,S |2 given in [2] it is easy to see that
the number of Vt,S-disconnecting sets of Gt,S of cardinality r̄ is bounded above by
|Et,S |r̄−cγ(Gt,S , Vt,S) ≤ mm−r−cn2. The lemma follows.

Finally, we note that the algorithm given in [15] to determine κ(G,V,m− c+ d)
remains valid even when V is replaced by a general subset K. In particular, we have
that κ = κ(G,K, r) can be computed in time O(mακ), where α is the time to find a
min K-cut. This result in combination with Lemma 5.1 gives us the following.

Theorem 5.2. κ(G,K, r) can be computed using O(αkn22n−kmm−r−c+1) arith-
metic operations, where α is the time to find a min K-cut. In particular, for any
fixed d, there is a polynomial-time algorithm for computing κ(G,K, r) for G, K, and
r, with k ≥ n− d and r ≥ m− c− d.

The second case where κ(G,K, r) can be computed efficiently is where G is planar,
with r close to k. In this case we can use section 2.2 to count the appropriate spanning
sets of G to obtain κ(G,K, r). In particular, let S be a K-spanning set of cardinality
r. Then S has a unique connected component S0 which spans K. Let i = |S0|, let
U be the set of vertices spanned by S0, and let GU = (U,EU ) be the subgraph of G
spanned in turn by U . Figure 3 gives an example of this having r = 8 and i = 6,
with K represented by solid vertices and S by bold edges. Then GU is comprised
of the vertices and edges inside the circled region, with S0 the set of bold edges in
GU . It follows that S0 is a spanning set for GU and, further, no edge of S \ S0 is
incident to a vertex of GU . From this we get that the total number of K-spanning
sets of G of cardinality r whose K-spanning component has vertex set U and edge set
of cardinality n0 is κ(GU , U, i) ·

(
n̄
r−i
)
, where n̄ is the number of edges not incident to

a vertex of U . By summing the K-spanning sets of G whose K-spanning component
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is U , over all relevant component edge-cardinalities i and vertex sets U , we obtain
number of K-spanning sets of cardinality r in G. The details are given below.

K-spanning set counting procedure

set κ = 0
for K ⊆ U ⊆ V such that GU is connected set

κ = κ+
r∑

i=|U |−1

κ(GU , U, i)

(
n̄

r − i

)
,

where n̄ = the number of edges not incident to a vertex of U
return κ(G,K, r) = κ.

Theorem 5.3. For planar graph G and r = k − 1 + d, the K-Spanning Set
Counting Procedure computes κ(G,K, r) using O(mdnd+3) arithmetic operations. In
particular, for any fixed d there exists a polynomial time algorithm which computes
κ(G,K, r) for any planar graph G and terminal set K such that r ≤ k − 1 + d.

Proof. The value of each κ(GU , U, i) can computed using the method given in
section 2.2, with the following inequalities holding:

k ≤ |U | ≤ i+ 1 ≤ r + 1 ≤ k + d.

By Lemma 2.5, each such computation can be done in time O(|U |3|EU |i−|U |+1) =
O(n3md). Further, the sets U considered in the for loop must contain the set K, and
can contain no more than r+1 vertices. Thus there can be no more than

(
n−k

r+1−k
)
≤ nd

such sets. The total time for the K-Spanning Set Counting Procedure is therefore
O(mdnd+3).

As a final comment, we note that each of the index restrictions given in Theo-
rems 5.2 and 5.3 is necessary in that dropping any of them will render the associated
problem NP-hard. An interesting open problem here is the generalization of Theo-
rems 4.3 and 4.4 to computing almost min cardinality K-spanning sets when K is
small or G is K-planar. We leave this for future research.
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[9] G. Kirchoff, Über die auflösung der gleichungen auf welche man sei der untersuchung der

linearen verteilung galvanischer strome gefuhrt wind, Poggendorg’s Ann. Phys. Chem., 72
(1847), pp. 497–508 (in German). On the solution of equations obtained from the inves-
tigation of the linear distribution of galvanic currents, IRE Trans. Circuit Theory CT-5,
(1958), pp. 4–8 (in English).

[10] C. J. Liu and Y. Chow, On operator and formal sum methods for graph enumeration problems,
SIAM J. Alg. Discrete Methods, 5 (1984), pp. 384–406.



446 J. SCOTT PROVAN AND MANOJ K. CHARI

[11] J.-C. Picard and M. Queyranne, On the structure of all minimum cuts in a network and
applications, Math. Programming Study, 13 (1980), pp. 8–16.

[12] J. S. Provan, Convexity and the Steiner tree problem, Networks, 18 (1988), pp. 55–72.
[13] J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the proba-

bility that a graph is connected, SIAM J. Comput., 12 (1983), pp. 777–788.
[14] J. S. Provan and D. R. Shier, A paradigm for listing (s, t)-cuts in graphs, Algorithmica, 15

(1996), pp. 351–372.
[15] A. Ramanathan and C. J. Colbourn, Counting almost minimum cutsets with reliability

applications, Math. Programming, 39 (1987), pp. 253–261.
[16] W. T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge

Philos. Soc., 44 (1948), pp. 203–217.
[17] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(1979), pp. 410–421.



OPTIMAL CYCLE CODES CONSTRUCTED FROM RAMANUJAN
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Abstract. We aim here to show how some known Ramanujan Cayley graphs yield error-
correcting codes that are asymptotically optimal in the class of cycle codes of graphs.

The main reason why known constructions of Ramanujan graphs yield good cycle codes is that
the number of their cycles of a given length behaves essentially like that of random regular graphs.
More precisely, we show that for actual constructions of Ramanujan graphs of degree ∆ which are
bipartite, and for the double cover of known Ramanujan graphs which are not bipartite, the number
of cycles of length 2l is Oε(∆ − 1 + ε)2l (for every ε > 0), which is about what one could expect
from a random regular graph of degree ∆. Furthermore, it is possible to show that this property
guarantees the highest possible error probability p that the corresponding cycle codes can sustain,
among the class of cycle codes of ∆-regular graphs. This gives a constructive answer to an early
problem in coding theory, namely, determining what is asymptotically the best possible performance
of cycle codes of graphs when submitted to the binary symmetric channel.

Key words. Ramanujan graph, cycle code, error probability
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1. Cycle codes of graphs. Let F2 = {0, 1} denote the field on two elements.
For any set S denote by 2S the set of subsets of S. If x,y ∈ 2S , x + y will denote
the symmetric difference of x and y. 2S is in a natural correspondence with Fs

2 , the
vector space of binary s-tuples where s = #S, and we shall identify subsets of S with
their characteristic vectors in Fs

2 .
Let Γ be a finite graph. Denote by V and E the set of vertices and the set of edges

of Γ, respectively. Let v = #V and n = #E denote the cardinalities of V and E. An
edge of Γ is an element of 2V containing exactly two vertices. For any edge e ∈ E,
define its boundary ∂e ∈ 2V as the union of its endpoints. ∂ is naturally extended to
a mapping of 2E to 2V , where

∂ : x 7→
∑
e∈x

∂e.

A (homological) cycle is a set of edges with zero boundary. Its connected components
correspond to closed paths, and we refer to them as elementary cycles. The set of
cycles of Γ, denoted by C(Γ), is a linear code (i.e., a vector space) over F2 referred
to as the cycle code of Γ. If the graph Γ is connected, which we shall always suppose
in what follows, C(Γ) has dimension k = dim C(Γ) = n − v + 1. We shall consider
from now on only ∆-regular graphs, i.e., graphs such that every vertex has exactly
∆ neighbors. In this case, k = dim C(G) = n(1 − 2/∆) + 1. The size of the smallest
cycle in Γ is called the girth of Γ by graph theorists and is the minimum distance of
C(Γ) for coding theorists; denote it by d(Γ), or simply d.
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Error probabilities. We are interested in the probability fΓ(p) that a random
set of edges x contains half the edges of some cycle, when x is obtained by choosing
every edge independently with probability p. More precisely, define

[0, 1] → [0, 1],

p 7→ fΓ(p) =
∑
x∈W

p|x|(1− p)n−|x|,

where |x| denotes the weight (cardinality) of x and where

W = {x ∈ 2E | ∃c ∈ C(Γ), c 6= 0, |x ∩ c| ≥ |c|/2}.

In other words, W is the set of vectors that are closer, for the Hamming distance, to
some nonzero codeword (cycle) than to the origin.

From the coding point of view, we are submitting codewords of C(Γ) to the bi-
nary symmetric (communication) channel with error probability p. This means that
each transmitted binary symbol is transformed into the complementary symbol in-
dependently with probability p. One can assume, by linearity and without loss of
generality, that the submitted codeword is the 0 vector. The received vector is then
some random error vector x, which is decoded by choosing the codeword closest to it
for the Hamming distance. Whenever decoding produces a codeword different from
0, or a choice between 0 and one (or more) other closest codewords, we shall say that
a decoding (or residual) error occurs. The probability that a decoding error occurs is
therefore exactly the probability that x ∈W , i.e., equals fΓ(p).

Cycle codes of graphs were among the first families of graphs to be investigated
during the early days of coding theory; see, e.g., [10]. They quickly became obsolete
because of their poor minimal distance properties; namely, for growing n and fixed
rate k/n (equivalently for fixed degree ∆), d must be upperbounded by a logarithmic
function of n. However, they remain of theoretical interest because they can provide,
for fixed rate k/n, infinite families of codes for which fΓn(p) tends to 0 when n→∞,
for any p < p0, for some fixed p0. For instance, we have the following.

Proposition 1.1. If (Γn) is a family of ∆-regular graphs whose girths satisfy

d(Γn) ≥ c log∆−1 n,

then limn→∞ fΓn(p) = 0 for any p < p0, where

p0 =
1

2

(
1−

√
1− 1

(∆− 1)2(1+2/c)

)
.

Proof. Let Ωn be a subset of the edge set of Γn. If Ωn contains half the edges of
some cycle, then there must exist a vertex x of Γn and a path of length m = bd/2c
rooted at x with at least half its edges in Ωn. (To find such a vertex x, travel around
the cycle). Consider now that Ωn is obtained by choosing randomly each edge of Γn
with independent probability p < 1/2. We can upperbound the probability that Ωn

contains half the edges of a cycle by the probability that such a vertex x exists, so
that

fΓn(p) ≤ v∆(∆− 1)m−1
∑

m/2≤i≤m

(
m

i

)
pi(1− p)m−i,



CODES AND RAMANUJAN GRAPHS 449

which gives, since p < 1/2,

fΓn(p) ≤ Cn
[
2(∆− 1)

√
p(1− p)

]m
,

where C is a constant. It is now straightforward to check that fΓn(p) ≤ Cn−α for
some positive α whenever p < p0.

Infinite families of graphs (Γn) satisfying d ≥ c log∆−1 n were first constructed in
[16].

For a family G = (Γn) of ∆-regular graphs, denote by

θ(G) = sup{p | lim
n→∞ fΓn(p) = 0}.

Few constructive classes of codes that achieve vanishing residual error probability
for positive p are known. Besides constructions that use concatenation [7, 13], one
can quote essentially low-density parity check codes, a generalization of cycle codes
of graphs [8], taken up again in [20], and product-type codes originating in [6]. For
both these classes of codes it is a difficult problem to determine, for given rate k/n,
the largest p for which decoding error probability vanishing with n can be achieved.
Hence the motivation for solving one of the remaining open problems for cycle codes
of graphs, namely,

(i) determining the largest possible θ(G) for families of ∆-regular graphs G =
(Γn),

(ii) finding actual constructions of families G = (Γn) achieving this value of θ.
In [3] it is proved that for any family of ∆-regular graphs, one must have

θ ≤ 1

2

(
1−

√
1− 1

(∆− 1)2

)
.

In this paper we show that some families of known Ramanujan Cayley graphs
achieve the above value of θ and in this sense are optimal among the class of cycle
codes of graphs.

This will be ensured by estimating the number Ai of cycles of length i of the
graphs under consideration and using the following.

Proposition 1.2. If G = (Γn) is a family of ∆-regular graphs such that
1. limn→∞ d(Γn) = ∞;
2. for any ε > 0 there exists cε such that the number Ai of elementary cycles of

length i of any member of G satisfies

Ai ≤ cε(∆− 1 + ε)i,

then

θ(G) =
1

2

(
1−

√
1− 1

(∆− 1)2

)
.

Proof. Consider that Ωn is a subset of the edge set of Γn obtained by randomly
choosing each edge with independent probability p ≤ 1/2. Let Xn be the number of
subsets of edges of Ωn that consist of at least half the edges of a cycle. The expected
value of Xn is

Ep(Xn) =
∑

i≥d(Γn)

Ai

i∑
j=i/2

(
i

j

)
pj(1− p)i−j ,



450 JEAN-PIERRE TILLICH AND GILLES ZÉMOR

where Ai is the number of elementary cycles of length i. Hence,

Ep(Xn) ≤
∑

i≥d(Γn)

Ai2
i[p(1− p)]i/2

for any p ≤ 1/2. Therefore,

Ep(Xn) ≤ cε
∑

i≥d(Γn)

(
(∆− 1 + ε)2

√
p(1− p)

)i
.

It is routinely checked that whenever

p <
1

2

(
1−

√
1− 1

(∆− 1 + ε)2

)
,

then (∆− 1 + ε)2
√
p(1− p) < 1, so that limn→∞Ep(Xn) = 0 whenever d(Γn) →∞.

And necessarily, if limn→∞Ep(Xn) = 0, then limn→∞ fΓn(p) = 0.
Remark. It can be checked easily enough that the expected number of homolog-

ical cycles of length 2i of a randomly chosen ∆-regular bipartite graph is (∆− 1)2i.
Note that this means that random ∆-regular graphs have cycles of constant length.
This must be avoided to obtain the conclusion of Proposition 1.2. Hence condition 1
in the proposition, which is satisfied by the Ramanujan graphs we consider.

2. Ramanujan graphs. There are several ways to define the actual explicit
constructions of Ramanujan graphs (given in [1, 14, 15, 17, 18]). All these construc-
tions can be described as q + 1-regular Cayley graphs over PGL2(Fq′) or PSL2(Fq′),
where q and q′ are two prime powers, and Fq′ is the finite field with q′ elements.

For our purposes it will be more convenient to use the quaternion description
of these graphs. As a matter of fact, by using the latter description we can relate
the problem of counting the number of cycles of a given length to the problem of
estimating the number of solutions of some diophantine equation.

Basically, the construction of those Ramanujan graphs is done in two steps.
1. The first step consists of constructing the q + 1-regular infinite tree in an

arithmetic way by using quaternions.
2. One obtains finite Ramanujan graphs from this tree by taking suitable finite

quotients of this tree which do not create small cycles.
Let us see these constructions in more detail.

2.1. The construction of the infinite tree of degree q+1. The construction
of the infinite tree starts by considering the following set of quaternions: S = A1 +
Ai +Aj +Aij, where A is a Euclidean domain which will be either Z or Fq[X]. We
will denote by x the conjugate of the element x ∈ S and by N(x) = xx ∈ A the norm
of x. Then a prime π is chosen in A; this is a prime number equal to q when A = Z,
X when A = Fq[X] for odd q, and X + 1 for even q.

The basic step consists of setting up a set of q + 1 quaternions α1, α2, . . . , αq+1

of norm π such that
1. every quaternion α of norm πn has a unique factorization

α = uπrαi1αi2 · · ·αim ,
where u is a unit (an element of norm 1 here) and 2r+m = n, and where the product
of two consecutive terms of the product αij and αij+1 never belongs to A.
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[ α2 ]α [ α ]α

[ α2 ]α[ α ]α
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32 3

2

1 3

[1]

Fig. 2.1. The infinite tree.

2. for every αi, αi is equal to some ±αj .
We refer to [15, 17, 18, 19] to see how this set of quaternions is obtained. This

set now enables us to construct the infinite q+ 1 regular tree as a Cayley graph. The
group G from which this graph is constructed is just the set of quaternions generated
by the αis and we identify the quaternions which differ by a multiplication of some
±πi. Let us denote by [α] the equivalence class associated to α. This group is clearly
generated by the [αi]s and the inverse of [αi] is [αj ], where αj is the quaternion such
that αj = ±αi (since [αi][±αi] = [±αiαi] = [±π] = [1]). That the infinite Cayley
graph over G with generator set [α1], [α2], . . . , [αq+1] is indeed the q+1-regular infinite
tree is just a consequence of the fact that every quaternion of norm πn has a unique
factorization over the αis.

We have depicted such an example in Fig. 2.1, when there are three generators
[α1], [α2], [α3] and we have assumed that α1 = α2 and α3 = α3; in other words
[α1]

−1 = [α2] and [α3]
−1 = [α3].

2.2. The finite Cayley graph. We obtain our Ramanujan graph by taking
a finite quotient of this infinite tree and this quotient will be realized as a Cayley
graph by choosing a suitable normal subgroup H of G of finite index. One selects first
a prime ρ of A which satisfies certain conditions (for more details see the following
section). H is defined as the set of classes [α] = [a0 + a1i + a2j + a3ij] for which
a1, a2, a3 are multiples of ρ. This set is clearly a normal subgroup for it can be seen
as the kernel of the homomorphism φ

φ : G→ H(A/ρA)∗/Z,
[α] 7→ (α mod ρ)Z,

where H(A/ρA) denotes the ring of quaternions with entries in the field A/ρA,
H(A/ρA)∗, the invertible elements of this ring, and Z its central subgroup, which
is {a ∈ A/ρA |a 6= 0}.

One of the attractive features of this way of constructing a Cayley graph is that
the study of the number of cycles of a given length can now be expressed as a problem
in number theory.
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2.3. Counting cycles of a given length. In order to bound the number of
cycles of a given length in the finite Cayley graph which has been constructed, we can
observe the following facts.

Fact 1. The number of elementary cycles of length l in a graph is less than the
number of nonbacktracking closed walks of length l. In an undirected Cayley graph this
is less than the number of vertices v of the graph times the number of nonbacktracking
walks of length l which start at the identity of the group and which go back to this
vertex.

Fact 2. A nonbacktracking walk of length l corresponds in the case described
above to a sequence αi1αi2 · · ·αil such that the product of two consecutive terms never
belongs to A, and this nonbacktracking walk returns to its starting point (is closed) if
and only if the product [αi1 ][αi2 ] · · · [αil ] is an element of the normal subgroup H, or
what amounts to the same thing, iff the product αi1αi2 · · ·αil is of the form a0 +a1i+
a2j + a3ij, where a1, a2, a3 are multiples of the prime ρ which defines H.

Let us notice now that the norm is multiplicative and that this implies that the
norm of a product αi1αi2 · · ·αil is πl. Hence the following fact holds.

Fact 3. The number of nonbacktracking closed walks of length l is less than

v #
{
(a0, a1, a2, a3) ∈ A4|N(a0 + ρa1i + ρa2j + ρa3ij) = πl

}
.

The norm of a quaternion a0+a1i+a2j+a3ij is a quadratic form in (a0, a1, a2, a3),
and all that we need now is a tool bounding the number of solutions in A of a certain
quadratic equation. There are several methods which can be employed to estimate
the number of solutions of the quadratic equation which arises in our case. The
most precise one, which uses the work of Drinfeld, Eichler, and Igusa (see [4, 5, 12],
respectively) does not give enough information on the number of “small” cycles. We
use instead very simple (and classical) arguments (see [9], for example) to bound the
number of solutions of such equations, and this is obtained by the following lemma.

Lemma 2.1. Let A be the ring Z or Fq[X], R = A+Ai, where i is an algebraic
integer of degree 2 over A (i.e., i does not belong to A and satisfies an equation
i2 + ai + b = 0, with a, b ∈ A). Let i be the other solution of this equation and define
the following automorphism of R, by x+ yi = x+yi, and the multiplicative morphism
N “the norm” from R to A by N(x) = xx. If R is a unique factorization domain,
then the number of solutions of the equation N(x) = c (the unknown is x and c is a
given element of A) is Oδ(c

δ) if A = Z, and Oδ(q
δ deg c) if A = Fq[X], and this for

every δ > 0.
See the appendix for a proof.

2.4. The bipartite cover. Actually, for the graphs we consider, we are able
to give rather tight upper bounds on the cardinality of the set in Fact 3, i.e., on
the number of nonbacktracking closed walks, only when their length l is even. This
approach works well when the Cayley graph is bipartite because there are no odd
cycles. When this graph is not bipartite, we shall move around this difficulty by
considering its bipartite double cover.

Definition 2.2. Let Γ(V,E) be a graph with set of vertices V and set of edges

E. Its double cover Γ̂ is defined by the set of vertices V̂ = V × {0, 1} and the set of

edges Ê = {{(x, 0), (y, 1)} for {x, y} ∈ E}.
An attractive feature of this double cover is as follows.
Fact 4. The double cover of a graph Γ is

(i) connected iff Γ is connected and nonbipartite,
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Table 3.1

Constructions of Ramanujan graphs. There are some additional constraints on ρ which are not
given here. We refer to [15], [17], [18] for the missing details.

graphs constructed graphs constructed graphs constructed

in [15], [17] in [18] in [18]

A Z Fq [X], q = pn, F2n [X]

p odd prime

i2 = i + η,

H(A) i2 = j2 = (ij)2 = −1 i2 = η η is such that

= η is not a square in Fq X2 + X + η

A+Ai +Aj +Aij ij = −ji j2 = X − 1, ij = −ji is irreducible over F2n ,

j2 = X, ij = ji + j

α, a− bi− cj− dij a− bi− cj− dij (a + b) + bi + cj + dij

α = a + bi + cj + dij

N(α) a2 + b2 + c2 + d2 a2 − ηb2 a2 + ηb2 + ab

−(X − 1)(c2 − ηd2) +X(c2 + ηd2 + cd)

π odd prime number q X X + 1

ρ odd prime number p irreducible polynomial irreducible polynomial

g(X) ∈ Fq [X] g(X) ∈ F2n [X]

degree of the graph q + 1 q + 1 2n + 1

Number of vertices p(p2 − 1) if (qp) = −1 q3d − qd if (
X

g(X)
) = −1 23nd − 2nd

of the
p(p2−1)

2
if (qp) = 1 q3d−qd

2
if (

X

g(X)
) = 1 d = deg g(X)

Ramanujan graph d = deg g(X)

bipartite yes if (qp) = −1 yes if (
X

g(X)
) = −1 never

no if (qp) = 1 no if (
X

g(X)
) = 1

(ii) bipartite and has therefore only cycles of even length. Furthermore, the
projection

V̂ −→ V,

(x, i) 7→ x

for i = 0, 1 induces a two-to-one correspondence between the nonbacktracking closed
walks of Γ̂ and the nonbacktracking closed walks of even length of Γ.

By taking double covers if need be, we shall look therefore for graphs that satisfy
the conditions of Proposition 1.2 among bipartite graphs.

3. Estimation of the number of cycles in some Ramanujan graphs. We
are going to show in this section that some of the Ramanujan graphs constructed in
[15, 17, 18] meet the hypotheses of Proposition 1.2, which implies that the associated
families of cycle codes are optimal. We do not give all the steps involved in the
construction of these graphs, and merely refer to [15, 17, 18, 19] for further details.
A rough description in the spirit of the general presentation of section 2 will suffice
for our needs. The parameters of these graphs which are relevant to counting cycles
are gathered in Table 3.1.

3.1. The Ramanujan graphs constructed by Margulis and indepen-
dently by Lubotzky, Philipps, and Sarnak. They correspond to the choice
A = Z. We denote these graphs by X p,q, where q denotes the odd prime number



454 JEAN-PIERRE TILLICH AND GILLES ZÉMOR

chosen for π and p the odd prime number chosen for ρ. Now, upperbounding the
number of vertices v by p3, Fact 3 translates to the following fact.

Fact 3′. The number of nonbacktracking closed walks of length l in X p,q is less
than

p3 #{(a0, a1, a2, a3) ∈ Z4|a2
0 + p2a2

1 + p2a2
2 + p2a2

3 = ql}.

By using Lemma 2.1 it is straightforward to obtain a rather tight upper bound
on the number of solutions of this diophantine equation when the length of the cycles
is even.

Lemma 3.1. The number of nonbacktracking closed walks of length 2l in X p,q is
Oε(q + ε)2l for every ε > 0.

Proof. Assume that a2
0 + p2a2

1 + p2a2
2 + p2a2

3 = q2l; then a2
0 ≡ q2l mod p2 and

thus a0 ≡ ±ql mod p2. Therefore there are at most d4ql/p2e choices for a0. Since
p2a2

1 < q2l, there are at most d2ql/pe choices for a1.
For fixed a0, a1, the number of choices we have for the couple (a2, a3) is not very

large because a2
2 + a2

3 should be equal to (q2l − a2
0 − p2a2

1)/p
2, which is a number

smaller than q2l/p2, and from Lemma 2.1 the number of couples (a2, a3) which satisfy
this inequality is Oε(q

2l/p2)ε.
Therefore, the total number of solutions is less than

d4ql/p2ed2ql/peOε(q
2l/p2)ε =

1

p3
Oε(q

2l(1+ε)).

We conclude by applying Fact 3′.
Those graphs X p,q are bipartite if and only if q is not a quadratic residue modulo

p and have in this case only cycles of even length whose numbers can be bounded
with the previous lemma. Moreover, in this case the graphs X p,q have a very large
girth which is 4

3 logq(p(p
2 − 1)) + O(1). When q is a quadratic residue modulo p

the graph is not bipartite, but its double cover X̂ p,q
has still a large girth, namely,

4
3 logq(p(p

2 − 1)) +O(1).
Remarks.

1. The key fact in Lemma 3.1 has been observed in another setting by Davidoff
and Sarnak (see [2]).

2. We wish to emphasize here that the results on the girth of X p,q in the
nonbipartite case, which can be found in the literature, give only the lower bound
2
3 logq(p(p

2 − 1)), so the result we invoke here shows that in some sense we can sub-
stantially “improve” these graphs by taking their double cover. We justify this by the
fact that the double cover has only cycles of even length and that these project on
X p,q to either cycles of the same even length or to cycles of odd length half as long.
The point is that the proof used in [15], for example, to show that the girth in the
bipartite case is bigger than 4

3 logq(p(p
2 − 1)) depends only on the fact that a cycle

of even length cannot be shorter than this quantity and therefore also gives a lower
bound on the length of the shortest cycle of even length when the graph is not bipar-
tite. That the girth is indeed 4

3 logq(p(p
2 − 1)) +O(1) follows from a straightforward

generalization of results given in [17].
This leads to the following result by applying Fact 1 and using the discussion

given in section 2.4 together with Proposition 1.2.
Theorem 3.2. Let q be a fixed odd prime. Let X q = (X p,q) be the family of

those X p,q for which
(
q
p

)
= −1. Let X̂ q = (X̂ p,q

) be the family of those X̂ p,q
for which
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q
p

)
= 1. Then

θ(X q) = θ(X̂ q) =
1

2

(
1−

√
1− 1

q2

)
.

3.2. The case A = Fq[X], q odd prime power. The corresponding Ramanu-
jan graphs have been constructed by Morgenstern (see [18]) and are regular of degree
q + 1. From now on, we consider such a graph obtained by choosing ρ = g(X) an
irreducible polynomial of degree k.

By using Fact 3 given in section 2.3 and by using the fact that the groups over
which these finite Cayley graphs are defined have less than q3k elements, we obtain
that the number N2l of nonbacktracking closed walks of length 2l satisfies

N2l ≤ q3k#
{
(a, b, c, d) ∈ (Fq[X])4|N(a+ gbi + gcj + gdij) = X2l

}
≤ q3k#

{
(a, b, c, d) ∈ (Fq[X])4|a2 − ηb2g2 + (X − 1)g2(ηd2 − c2) = X2l

}
.

To obtain an estimation of the number of solutions of this equation, we use an
upper bound on the number of solutions in Fq[X] of the equation a2−ηb2 = P , where
the unknowns are a, b, and P is a given polynomial of degree l. For that purpose we
use the classical method which consists of studying the ring R = Fq[X]+Fq[X]i. The
crucial property of this ring follows in Lemma 3.3.

Lemma 3.3. R = Fq[X] + iFq[X] is a Euclidean domain.
Proof. Let φ(a+ bi) = deg

(
(a+ bi)(a+ bi)

)
= deg(a2 − ηb2). Since a2 − b2η = 0

implies a = b = 0, for a, b ∈ Fq[X], we deduce that φ(α) is nonnegative for all α 6= 0,
and this combined with the relation φ(αβ) = φ(α) + φ(β) shows that R is a domain.
To show that R is Euclidean it remains to prove that for all α and β in R such that
φ(α) ≥ φ(β), there exists a γ in R such that φ(α− γβ) < φ(β) or α = βγ.

Let a + bi = αβ and t = ββ. Carry out the usual Euclidean division over Fq[X]
of a and b by t : a = q1t+ r1, b = q2t+ r2, with deg(r1), deg(r2) < deg(t). We claim
that we can choose γ = q1 + q2i. This follows from

φ(α− βγ) + φ(β) = φ(αβ − ββγ)

= φ(a+ bi− t(q1 + q2i))

= φ(r1 + r2i)

< 2 deg(t) = φ(β) + φ(β).

Hence φ(α − βγ) < φ(β). This calculation is valid as long as either r1 or r2 is
different from 0. We handle the case r1 = r2 = 0 by noticing that in such a case
αβ = a+ bi = tγ = (ββ)γ = (βγ)β. Therefore α = βγ.

The ring R is therefore a unique factorization domain. The units of R are exactly
the invertible elements of R, which is the set I = Fq + Fqi − {0}. By using Lemma
2.1 we obtain that, for a given polynomial P of Fq[X],

#{(x, y) ∈ Fq[X]× Fq[X] | x2 − ηy2 = P} = Oε(q
ε degP ).(3.1)

From this we can give an upper bound on the number of solutions (a, b, c, d) of

a2 − ηb2g2 + (X − 1)g2(ηd2 − c2) = X2l

by noticing that
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1. deg
(
a2 − ηb2g2 + (X − 1)g2(ηd2 − c2)

)
= max (2 deg a, 2(k + deg b),

2(k + deg c) + 1, 2(k + deg d) + 1), and so l − k ≥ deg(b), there are no more than
ql−k+1 choices for b. The equality on the degree makes use of

x2 − ηy2 = 0 iff x = y = 0

for x, y ∈ Fq and therefore deg(a2 − b2η) = 2 max(deg a, deg b) for a, b ∈ Fq[X].
2. a2 ≡ x2l (mod g2) and therefore a ≡ ±X l (mod g2); thus a cannot take on

more than 2ql−2k+1 different values (a is of degree l at most).
3. Once a and b are chosen, ηd2 − c2 has to be equal to some polynomial of

degree at most 2l − 2− 2k and from (3.1) we deduce that the number of choices left
for (c, d) is Oε(q

ε(2l−2−2k)).
This yields that the number of nonbacktracking closed walks of length 2l of our

Ramanujan graph is Oε(q + ε)2l (for every ε > 0). We now have to treat two cases
separately as follows:

(i) Either our graph is bipartite (this is if X is not a quadratic residue modulo
g(X)). The girth of our graph is in this case larger than

4

3
logq

(
q3 deg(g) − qdeg(g)

2

)
+ 1

(see Theorem 4.13 of [18]).
(ii) or our graph is not bipartite (if X is a quadratic residue modulo g(X)).

Then one can prove easily (by using the argument given in the proof of the lower
bound on the girth of these graphs, in Theorem 4.13 in [18]) that the bipartite cover
of our graphs has a girth which is greater than 4/3 logq

(
(q3k − qk)/2

)
+ 1 too.

We can now conclude by using Proposition 1.2.
Theorem 3.4. Let X g,q be the Ramanujan graph of degree q + 1 considered in

this section obtained from the choice ρ = g(X). Let X q be the family of graphs X g,q

which are bipartite and Yq be the family of double covers X̂ g,q
of all graphs X g,q which

are not bipartite.

θ(X q) = θ(Yq) =
1

2

(
1−

√
1− 1

q2

)
.

3.3. The case of A = F2n [X]. The corresponding Ramanujan graphs have
been constructed by Morgenstern (see [18]) and are regular of degree 2n + 1. From
now on we consider such a graph obtained by choosing ρ = g(X) an irreducible
polynomial of degree k. We let q = 2n and we denote this graph by X g,q.

By using Fact 3 given in section 2 we see that the number N2l of nonbacktracking
closed walks of length 2l of these graphs X g,q verifies

N2l ≤ q3k #
{
(a, b, c, d) ∈ (Fq[X])4|N(a + gbi + gcj + gdij) = (X + 1)2l

}
≤ q3k #

{
(a, b, c, d) ∈ (Fq[X])4|a2 + gab + ηb2g2 + Xg2(c2 + cd + ηd2) = (X + 1)2l

}
.

We proceed as for the graphs of odd degrees. We obtain first an estimation of the
number of solutions in Fq[X] of the equation a2 + b2η+ ab = P , where the unknowns
are a, b, and P is a given polynomial. It can be shown in a similar way as Lemma 3.3
that R = Fq[X] + iFq[X] is a Euclidean domain (the only difference being that this
time we use the remark a2 + ηb2 + ab = 0 iff a = b = 0 for a, b ∈ F2n [X]). Hence by
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Lemma 2.1 the number of solutions of the aforementioned equation is Oε(q
ε deg(P ))

for all ε > 0. This yields the upper bound which holds for every ε > 0,

N 2l < Oε

(
(q + ε)2l

)
.

It can be shown that the girth of the bipartite cover X̂ g,q
is not less than

4
3 logq(q

3 deg(g) − qdeg(g)) (by using the same proof technique as in Theorem 4.13 of
[18] and by using the fact that there are only cycles of even length). We conclude as
before.

Theorem 3.5. If Ŷq is the family Ŷq = (X̂ g,q
), then

θ(Ŷq) =
1

2

(
1−

√
1− 1

q2

)
.

Appendix. Proof of the main lemma. In this section we prove Lemma 2.1.
Recall here a few facts about unique factorization domains.
—There exists a subset E of the unique factorization domain R, called the units,

which is the set of elements of R which divide every other element of the domain. In
our case this coincides with the set of elements of R of norm a unit of A. These units
define an equivalence relation over the domain. Two elements x and y are said to be
associated if and only if there exists a unit u such that x = yu.

—There exists a subset Π of elements of the domain called the primes, i.e., the
subset of elements not in E which are not a product of two nonunits elements. The
set of associated elements to a prime is a set of prime elements and let us choose
for each such class a representative element in an arbitrary way. In this case every
element of the unique factorization domain can be written uniquely (up to reordering
the factors) as

upα1
1 pα2

2 · · · pαnn ,

where the pis are representative elements of primes and u is a unit.
Furthermore, we will distinguish between sets of associated primes which contain

conjugate pairs of primes and sets of associated primes which do not contain such
conjugate pairs of primes. In what follows:

(i) u will always denote a unit,
(ii) qi will always denote a representative of a set of associated primes which

contains a conjugate pair of primes, and
(iii) pi a representative of a set of associated primes which does not contain

conjugate pairs of prime. We will choose the pis such that every pi is a representative
prime of a set of associated primes too.

Let us factorize

c = upα1
1 pα2

2 · · · pαmm p1
β1p2

β2 · · · pmβmqγ1

1 qγ2

2 · · · qγnn
(where some of the powers can be 0). Since c is in A, c is in A, and by the unicity of
factorization into primes we get that αi = βi, for every i. If there exists x ∈ R such
that xx = c, then we can factorize x and x by using the same primes pis, the pis and
the qis.

x = u′pα
′
1

1 p
α′

2
2 · · · pα′

m
m p1

β′
1p2

β′
2 · · · pmβ′

mq
γ′
1

1 q
γ′
2

2 · · · qγ′
n

n ,
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and therefore

x = u′′p1
α′

1p2
α′

2 · · · pmα′
mp

β′
1

1 p
β′
2

2 · · · pβ′
m

m q
γ′
1

1 q
γ′
2

2 · · · qγ′
n

n .

Due to the unicity of factorization into primes, we obtain that for every i

α′i + β′i = αi and γi = 2γ′i.(A.1)

Hence the number of solutions of the equation xx = c is equal to the number of
ways of choosing an x whose factorization satisfies the conditions (A.1); the only
choice is, in fact, the choice of u and the choice of the α′i in {0, 1, . . . , αi}. In order
to get an upper bound on this number, let c′ = pα1

1 pα2
2 · · · pαmm p1

β1p2
β2 · · · pmβm =

(p1p1)
α1(p2p2)

α2 · · · (pmpm)αm and let us notice that the number of choices for the
α′is is exactly the number of ways of choosing y = (p1p1)

α′
1(p2p2)

α′
2 · · · (pmpm)αm

which divide c′. Since c′ and y are in A this coincides with the number of divisors (in
A) of the element c′—where we do not distinguish between divisors which differ by a
multiplication of an invertible element of A. This number of divisors is d(c′) in the
case A = Z, that is, the number of positive integers dividing c′, and is equal to the
number of polynomials whose leading coefficient is 1 which divide c′ when A = Fq[X].
From Theorem 315 in chapter 18 of [11] we get an upper bound on d(c′) of the form
Oδ(c

′δ), for all δ > 0, and we deduce from that the number of solutions s of the
equation xx verifies (for every δ > 0)

s = #E d(c′)
= 4d(c′)
= Oδ(c

δ).

We have similar results when A = Fq[X]. In this case, E = {u+ iv|u, v ∈ Fq, (u, v) 6=
(0, 0)}, therefore #E = q2 − 1 and the number of divisors of c′ is Oδ(q

δ deg c′). This
is obtained by the following straightforward generalization of Theorem 316 in [11] to
polynomials.

If a multiplicative function f : Fq[X] 7→ R satisfies f(pm) → 0 for every irreducible
polynomial p when m deg(p) →∞, then f(a) → 0 when deg(a) →∞.

We let f(x) = q−δ deg(x)d(x) which is clearly multiplicative and satisfies f(pm) =
(m+1)q−δm deg p → 0 as m deg p→∞, for an irreducible polynomial p. We can there-
fore apply the aforementioned generalization and deduce f(a) = O(1) and therefore
d(a) = Oδ(q

δ deg(a)).
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Abstract. It has been shown that (t,m, s)-nets in base b can be characterized by combinatorial
objects known as generalized orthogonal arrays. In this paper, a new construction for generalized
orthogonal arrays leads to new (t,m, s)-nets in base q, q a prime power. The basic building block
for the construction is an array of elements over Fq in which certain collections of rows are linearly
independent. It is shown that if there exists an [n, n−m, d] q-ary code with d ≥ 6 + 2p, where p ≥ 0
is an integer, then there exists a (t,m, s)-net in base q with t = m− (4 + 2p) and s = bn−1

1+p
c.

Key words. (t,m, s)-nets, generalized orthogonal arrays, linear codes
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1. Introduction. Finite multisets of points in the unit n-cube with low discrep-
ancy have been used in developing pseudorandom number generators and quasi-Monte
Carlo integration methods (see [4], [5], [6], [12]). In [13], Niederreiter introduces the
notion of (t,m, s)-nets in base b as a class of low-discrepancy point sets, defined as
follows. Fix integers s ≥ 1 and b ≥ 2. We denote by Is = [0, 1)s the set of all points
(x1, x2, . . . , xs) in <s with 0 ≤ xi < 1 for i = 1, 2, . . . , s. An elementary interval in
base b of Is is a subset J of Is of the form

J =
s∏

i=1

[
ai
bdi

,
ai + 1

bdi

)
,

where di and ai are nonnegative integers with ai < bdi for i = 1, 2, . . . , s. The volume
of J , vol(J), is

∏s
i=1

1
bdi

. Let t and m be integers with 0 ≤ t ≤ m. A (t,m, s)-net in
base b is a multiset P of bm points in Is such that every elementary interval J in base
b with vol(J) = 1

bm−t contains exactly bt points of P . A fundamental problem is to
construct (t,m, s)-nets in base b with the largest possible value of s given t,m, and b.
Additional work on (t,m, s)-nets is contained in [7], [8], [10], [11], [14], [15], [16], and
[17].

In [13], Niederreiter recognizes necessary combinatorial constraints on the param-
eters of (t,m, s)-nets. This observation is generalized by Mullen and Whittle [11] in the
language of orthogonal hypercubes. Niederreiter [16] then notes a connection between
(t,m, s)-nets and combinatorial objects known as orthogonal arrays. An (N, s, b, t)
orthogonal array of index λ is an s × N matrix A with entries from a b-element set
such that each possible t× 1 column occurs exactly λ times in each t×N submatrix
of A. It follows from the definition that N = btλ. Basic properties and constructions
of orthogonal arrays can be found in [19].

In [7], Lawrence defines generalized orthogonal arrays (GOAs) and uses these
combinatorial objects to characterize (t,m, s)-nets. His construction of GOAs gives
rise to new families of (t,m, s)-nets. We note that an equivalent characterization of
(t,m, s)-nets appears in [20].
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In section 2, we give a new construction for GOAs, obtaining new families of
(t,m, s)-nets in base q, where q is a prime power. The basic building block for the
construction is an array of elements over a finite field in which certain collections of
rows are linearly independent. These arrays act as linear generators for GOAs. In
section 3, we describe a construction of such arrays from the parity check matrices
of linear codes. In section 4, we illustrate the techniques developed in sections 2
and 3 by building (t,m, s)-nets in base 2 with values of s larger than those currently
appearing in the literature. We conclude by presenting an open problem related to
our constructions.

2. A construction for GOAs. We begin this section with Lawrence’s definition
of a GOA. Let s,N , and l be positive integers. Consider the s×N×l array A = (aijk).
For 1 ≤ i ≤ s, 1 ≤ k ≤ l we define the (i, k)th row of A to be the 1×N vector

Ai,k = (ai1k, ai2k, ai3k, . . . , aiNk).

Consider a collection C of d rows from A. We call C a qualifying collection of d rows
provided that whenever Ai,k is in C, we also have Ai,k′ in C for 1 ≤ k′ < k. Let d
be a positive integer with d ≤ sl. The s × N × l array A = (aijk) with entries from
a b-element set (b ≥ 2) is an (N, s, l, b, d) GOA of size N , s constraints, height l, b
levels, strength d, and index λ if every qualifying collection of d rows when viewed as
a d×N matrix forms an orthogonal array with parameters (N, d, b, d) of index λ.

In [7, Theorem 5.4.1], Lawrence states and proves the following beautiful combi-
natorial characterization of (t,m, s)-nets.

Theorem 2.1. Let s ≥ 1, b ≥ 2, t ≥ 0, and m be integers and assume that
m ≥ t+ 1 to avoid degeneracy. Then there exists a (t,m, s)-net in base b if and only
if there exists a (bm, s,m− t, b,m− t) GOA of index bt.

His proof is constructive; thus, construction of a (t,m, s)-net in base b is equivalent
to constructing the corresponding GOA. In [7, Theorem 6.2.1], Lawrence provides a
construction of GOAs using orthogonal arrays and is therefore able to construct new
families of (t,m, s)-nets in base b. The construction requires that one have in hand an
orthogonal array with parameters (bm, k, b,m − t) of index bt, m − t ≥ 2. The value
of s is determined by k and m− t.

One method of constructing orthogonal arrays is given by a theorem of Bose and
Bush, which first appears in [1]. For completeness we restate their theorem here with
slight modifications in notation.

Theorem 2.2. Let q be a prime power and t ≥ 2 an integer, and let C be a
k × m matrix with entries in Fq. Assume that any t of the rows of C are linearly
independent as elements of the Fq-vector space Fm

q or, equivalently, that every partial
matrix obtained by taking any t rows of C is of rank t. Then there exists a (qm, k, q, t)
orthogonal array of index qm−t.

A similar linear construction exists for GOAs. Consider an sl × m array with
entries from Fq. Partition this array into l blocks, B(1), . . . , B(l), a block consisting
of s consecutive rows of the array. A set of t rows will be called a qualifying collection
of rows if whenever the ith row of the block B(k) belongs to the collection, then so
must the ith rows of the blocks B(k′) for 1 ≤ k′ < k. We now define an M(s, l,m, q, t)
array to be an sl×m array with entries from Fq such that every qualifying collection
of t rows are linearly independent as elements of the vector space Fm

q .

An easy generalization of Theorem 2.2 yields a linear construction of GOAs
over Fq.
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Theorem 2.3. Let s, m, l, and t be positive integers with t ≤ min{m, sl}.
Assume there is an M(s, l,m, q, t) array. Then there exists a (qm, s, l, q, t) GOA of
index qm−t.

Proof. Let C be an M(s, l,m, q, t) array and let A be an m × qm array over Fq

in which each vector of Fm
q occurs exactly once as a column of A. Let B = CA.

Partition B into l blocks, each of s consecutive rows, and let B′ be the s × qm × l
array whose (i, k)th row is the ith row of the kth block. We claim that B′ is the
desired GOA.

To see this, let B be any qualifying collection of t rows from B. There is a
corresponding qualifying collection of rows C from C, where the rth row of B belongs
to B if and only if the rth row of C belongs to C. The rows of B, written as a t× qm

matrix over Fq, can be expressed as the product C ′A, where C ′ is the t ×m matrix
of the corresponding rows of C. The matrix C ′ is of rank t, and thus the dimension of
the column space of C ′ is t and the right null space is of dimension m− t. Hence, the
matrix C ′ induces a linear transformation from Fm

q to F t
q , which is a qm−t to 1 and

surjective map. It follows that each element of F t
q occurs as a column of C ′A exactly

qm−t times. Since every qualifying collection of t rows of B′ can be so described, it
follows that B′ is the desired GOA.

We conclude this section with the following remarks.
An n× (n− k) matrix over Fq in which every d− 1 row is linearly independent,

but some d rows are linearly dependent, is a (transposed) parity check matrix of an
[n, k, d] q-ary linear code. In [2], linear codes are generalized to poset codes. In that
setting, an M(s, l,m, q, t) array is a parity check matrix of an [sl, sl−m, d] q-ary poset
code, d ≥ t+ 1, for a poset consisting of s disjoint chains, each of length l.

Of special interest are those GOAs which characterize (t,m, s)-nets. The (t,m, s)-
nets constructed from M(s, l,m, q, t) arrays via Theorems 2.1 and 2.3 are equivalent
to the nets constructed by Niederreiter in [13] taking the ring R in his construction
to be the field Fq. These nets are now referred to as digital nets.

3. A new class of (t,m, s)-nets in base q. In this section we offer two con-
structions for (t,m, s)-nets in base q, q a prime power. Construction I yields (t,m, s)-
nets with m− t = 4. Construction II is a generalization of Construction I and yields
(t,m, s)-nets with m − t ≥ 4 and even. Both constructions depend on the existence
of linear codes over Fq with the appropriate parameters.

Construction I: We construct an (m−4,m, s)-net in base q using the parity check
matrix of a linear code. The values of m and s will be determined by the code. By
Theorems 2.1 and 2.3 it suffices to construct an M(s, 4,m, q, 4) array C. Assume
there is an [n, n −m, d] q-ary linear code with d ≥ 6 and let V be an n ×m parity
check matrix of the code. Let vi denote the ith row of V . Set s = n − 1 and let
C(1), . . . , C(4) denote the four blocks of C. Order the indices 1, 2, . . . , n− 1 cyclically.
Set

C
(1)
i = vi,

C
(2)
i = vi+1 + vn,

C
(3)
i = vi+2 + vn,

C
(4)
i = vi+1,

where C
(k)
i denotes the ith row of the block C(k) for 1 ≤ i ≤ s. Following Theorem 3.1

we will establish that C is an M(n− 1, 4,m, q, 4) array. This finishes our description
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of Construction I.
For fixed values of m ≥ 5 and prime power q, Construction I yields the largest

values for s when we take V to be the parity check matrix of an [n, n −m, 6] q-ary
code with n as large as possible. In section 4 we illustrate both Constructions I and
II by computing the values of s obtained when q = 2 and for selected values of t and
m. To compute these values we used the tables in [3] of minimum-distance bounds
for binary linear codes. The computed values of s exceed those reported in [7] and
[9].

We motivate the next theorem and Construction II with the following observation.
The M(n − 1, 4,m, q, 4) array C constructed above using rows of the n ×m matrix
V can be factored as C = HV , where H is the relatively sparse M(n − 1, 4, n, q, 4)
array over Fq whose kth blocks, 1 ≤ k ≤ 4, are given below:

(3.1) H(1) =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0
0 0 0 0 · · · 1 0

 ,

H(2) =



0 1 0 0 · · · 0 1
0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 1
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1
1 0 0 0 · · · 0 1

 ,

H(3) =



0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 1
0 0 0 0 · · · 0 1
...

...
...

...
. . .

...
...

1 0 0 0 · · · 0 1
0 1 0 0 · · · 0 1

 ,

H(4) =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
1 0 0 0 · · · 0 0

 .

We claim that any qualifying collection of four rows of H forms a linearly inde-
pendent set. Let (ei|x) denote a 1 × n vector where in the first n − 1 components
there is a 1 in the ith position, 0’s elsewhere, and in the nth position x = 0 or x = 1.
Order the indices 1, 2, . . . , n − 1 cyclically. Then a qualifying collection of four rows
belongs to exactly one of the following cases.

Case 1: (ei|0), (ej |0), (ek|0), (el|0), with i, j, k, l distinct.
Case 2: (ei|0), (ei+1|1), (ej |0), (ek|0), with i, j, k distinct.
Case 3: (ei|0), (ei+1|1), (ej |0), (ej+1|1), with i, j distinct.
Case 4: (ei|0), (ei+1|1), (ei+2|1), (ej |0), with i, j distinct.
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Case 5: (ei|0), (ei+1|1), (ei+2|1), (ei+1|0).

It is easy to verify that in each case the collections of vectors formed are linearly
independent.

Consider an M(s, l,m, q, t) array C. By the support of a row, we mean the set
of coordinates for which the row has a nonzero entry. The weight of the row is the
cardinality of its support. A qualifying subspace is a subspace of Fm

q generated by a
qualifying collection of rows. The (generalized) weight of a qualifying subspace is the
cardinality of the set of coordinates which occur in the support of at least one vector
in the space. Note that the weight of any qualifying subspace generated by the rows
of C is at least t.

The following notation will be used in the proof of the theorem below. Given
an m × n matrix A and a set α ⊆ {1, 2, . . . ,m}, let A[α, :] denote the submatrix of
A whose rows are the rows of A indexed by the set α. Similarly define A[:, β] given
β ⊆ {1, 2, . . . , n}, where β indexes a set of columns of A.

Theorem 3.1. Assume there is an M(s, l, n, q, t) array, all of whose qualifying
subspaces have weight at most δ, and an [n, n −m, d] q-ary linear code, with d > δ.
Then there is an M(s, l,m, q, t) array.

Proof. Let H be the M(s, l, n, q, t) array and V an n×m parity check matrix of
the code. We claim that C = HV is the desired M(s, l,m, q, t) array. To see this we
must show that any qualifying collection of t rows of C is linearly independent. Such
a set of rows may be written as a t×m matrix C ′ = H ′V , where H ′ is the t×n matrix
of the corresponding set of rows of H. Let α be the set of indices of the support of
the qualifying subspace generated by the rows of H ′. Then C ′ = H ′[:, α]V [α, :]. Since
|α| ≤ δ < d, the rows of V [α, :] are linearly independent. It follows that the dimension
of the row space of C ′ is equal to the dimension of the column space of H ′. Thus,
rank C ′ = rank H ′[:, α]. Since the rows of H ′ are the rows of a qualifying collection
of rows of H and α indexes the union of the supports of these rows, rank H ′[:, α] = t.
It follows that the rows of C ′ are linearly independent.

Now consider the factorization C = HV of one of the arrays produced in Con-
struction I. We have already seen that H is an M(n − 1, 4, n, q, 4) array. We claim
that the maximum weight of any qualifying subspace of H is 5. Observe that each
row of H has weight 1 or 2. Only those rows in H(2) and H(3) have weight 2, and any
two such rows have common support in their nth component. Further, a qualifying
collection of four rows of H can have at most two rows in H(2) and H(3). Thus, any
qualifying subspace has weight at most 5. Since the qualifying collections in case 3
with i, i+1, j, and j+1 distinct have support size 5, we conclude that the maximum
weight of any qualifying subspace of H is 5. By Theorem 3.1, H together with an
[n, n−m, d] q-ary linear code, d > 5, yields the desired M(n−1, 4,m, q, 4) array. This
establishes the validity of Construction I.

Families of (t,m, s)-nets in base q with “large” values of s may be constructed
from the parity check matrices of good [n, n−m, d] q-ary linear codes provided there
exist M(s,m− t, n, q,m− t) arrays, all of whose qualifying subspaces have weight at
most d− 1. We now describe the construction of such a family of arrays.

Construction II: Given an integer s ≥ 4, let Is represent the s× s identity matrix
and Ws the s×s (0, 1) matrix with 1’s in positions (1, 2), (2, 3), . . . , (s−1, s) and (s, 1).
We define the sequence of arrays {Hs,p}∞p=0 recursively. Let Hs,0 be an M(s, 4, s +
1, q, 4) array of the form described in (3.1). For p ≥ 1, define Hs,p to be the (4 +
2p)s× ((p+ 1)s+ 1) array whose kth blocks, 1 ≤ k ≤ 4 + 2p, are given below:
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(3.2)

H(1)
s,p =

 0 · · · 0
Is

...
. . .

...
0 · · · 0

 ,
H(k)

s,p =

 0 · · · 0
...
. . .

... H
(k−1)
s,p−1

0 · · · 0

 , 2 ≤ k ≤ 3 + 2p,

H(4+2p)
s,p =

 0 · · · 0
Ws

...
. . .

...
0 · · · 0

 .
It will be established below that Hs,p is an M(s, 4 + 2p, (p + 1)s + 1, q, 4 + 2p)

array and that the maximum weight of any qualifying subspace is 5+2p for all p ≥ 0.
Assuming this to be the case, fix integers m, p, and t with p ≥ 0, m ≥ 5 + 2p, and
m− t = 4+2p. Assume there exists an [n, n−m, d] q-ary linear code, d > 5+2p. Set
s = bn−1

1+p c and let Hs,p be an M(s, 4 + 2p, (p + 1)s + 1, q, 4 + 2p) array of the form

(3.2). Taking any (p + 1)s + 1 rows of a parity check matrix for the code, together
with Hs,p, Theorem 3.1 implies that we may construct an M(s, 4 + 2p,m, q, 4 + 2p)
array. The existence of an M(s, 4 + 2p,m, q, 4 + 2p) array and Theorem 2.3 allow
us to construct a (qm, s, 4 + 2p, q, 4 + 2p) GOA of index qm−(4+2p), and by Theorem
2.1 this is equivalent to constructing an (m− (4 + 2p),m, bn−1

1+p c)-net in base q. This
finishes our description of Construction II.

Note that in the initial case, p = 0, this is equivalent to Construction I. As in
Construction I, the largest values for s are obtained when we construct V using a
parity check matrix for an [n, n −m, 6 + 2p] q-ary code with n as large as possible.
Given an [n, n −m, 6 + 2p] q-ary code, the Singleton bound (see, for example, [18])
implies that m ≥ 5+2p, as required in the construction. We now show that the arrays
Hs,p are M(s, 4 + 2p, (p+ 1)s+ 1, q, 4 + 2p) arrays, as claimed.

Let H′ be a qualifying collection of 4 + 2p rows of Hs,p. Observe that the rows of

Hs,p each have weight 1 or 2. Only those rows in H
(2+p)
s,p and H

(3+p)
s,p have weight 2,

and any two such rows have common support in their last component. Since H′ can

have at most two rows from blocks H
(2+p)
s,p and H

(3+p)
s,p , the weight of the qualifying

subspace generated by H′ is at most 5 + 2p. Since H′={rows 1 and 3 from each of

the blocks H
(k)
s,p , 1 ≤ k ≤ 2 + p} generates a subspace of weight 5 + 2p, we conclude

that the maximum weight of any qualifying subspace is 5 + 2p.
The assertion about linear independence of any qualifying collection of rows fol-

lows from the proposition below.
Proposition 3.2. Let H be any M(s, l, n, q, l) array. Then the (l+2)s× (n+ s)

array H ′ over Fq whose rows are partitioned into the l+2 blocks below is an M(s, l+
2, n+ s, q, l + 2) array:

H ′(1) =

 0 · · · 0
Is

...
. . .

...
0 · · · 0

 ,
H ′(k) =

 0 · · · 0
...
. . .

... H(k−1)

0 · · · 0

 , 2 ≤ k ≤ l + 1,
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H ′(l+2) =

 0 · · · 0
Ws

...
. . .

...
0 · · · 0

 .
Proof. Let H′ be a qualifying collection of l+2 rows of H ′. The rows of H′ belong-

ing to blocks 2 through l+ 1, when restricted to their last n components, correspond
to a qualifying collection of at most l rows of H and hence form a linearly indepen-
dent set. It is clear that any set of distinct rows of H ′(1) forms a linearly independent
set and that any nonzero linear combination of rows of H ′(1) is independent of any
nonzero linear combination of rows from blocks 2 through l+ 1. Thus, if H′ contains
no row from H ′(l+2), then H′ is a linearly independent set. If H′ contains a row from
H ′(l+2), then H′ necessarily consists of the ith row from each of blocks 1 through l+2
for some fixed index i. This is the same set which occurs in the qualifying collection
consisting of the ith row from each of blocks 1 through l+1, together with the (i+1)st
row of block 1 (assuming a cyclic ordering of the indices). As demonstrated above,
this is a linearly independent set. Thus, H′ is a linearly independent set.

In summary, given an [n, n−m, d] q-ary linear code with d ≥ 6+2p, where p ≥ 0
is an integer, we set s = bn−1

1+p c and construct the M(s, 4 + 2p,m, q, 4 + 2p) array

C = Hs,pV , where V is a ((p+ 1)s+ 1)×m array of rows from a parity check matrix
for the code. Using Theorem 2.3, C yields a (qm, s, 4 + 2p, q, 4 + 2p) GOA which can
be used to construct the corresponding (t,m, s)-net in base q, m− t = 4 + 2p. Using
the results of this and the previous section, we have proved the following theorem.

Theorem 3.3. Suppose there exists an [n, n −m, d] q-ary linear code with d ≥
6 + 2p, where p ≥ 0 is an integer. Then there exists a (t,m, s)-net in base q with
t = m− (4 + 2p) and s = bn−1

1+p c.
4. Examples and concluding remarks. To illustrate our results, we construct

a (3, 7, s)-net in base 2. Since m = 7 and t = 3, we have p = 0. We seek an [n, n−7, 6]
binary linear code with n as large as possible. In [3] we see that there exists a
[9, 2, 6] binary linear code, so by Theorem 3.3 there exists a (3, 7, 8)-net in base 2. To
construct such a net, we take H8,0 to be the M(8, 4, 9, 2, 4) array described in (3.2)
and V to be a 9× 7 parity check matrix of the code. By Theorem 3.1, C = H8,0V is
an M(8, 4, 7, 2, 4) array. By Theorem 2.3, C yields a (27, 8, 4, 2, 4) GOA A of index 23

which determines a (3, 7, 8)-net in base 2: call this point set P . Following the proof

of Theorem 2.1 [7, Theorem 5.4.1], we construct the set P = {xj}27

j=1 ⊂ I8, where

xj = (xj1, x
j
2, . . . , x

j
8), by setting xji =

∑4
k=1 Aijk2

−k for 1 ≤ j ≤ 27 and 1 ≤ i ≤ 8.
In the following tables, for q = 2 and some small values of t and m, we compare

the values of s achieved using Theorem 3.3 with those appearing in [7].
Note that as m − t increases, the difference between the two values for s tends

to decrease. In fact, for m − t = 8, using Lawrence’s construction we can produce a
(20, 28, 32)-net in base 2, whereas our construction yields a value of s = 30 for the
same t and m. For m− t ≥ 4 and even, our construction requires an [n, n−m, d] q-ary
linear code with d ≥ m − t + 2, yielding a value of s = b 2n−2

m−t−2c. The construction
described in [7, Theorem 6.2.1] requires that one have in hand an orthogonal array in
order to build a GOA. In the event that a linear code is used to produce the requisite
orthogonal array, then an [n′, n′ −m, d′] q-ary linear code with d ≥ m − t + 1 yields

a value of s = b 2n′
m−tc when m− t ≥ 4 and even. Thus, as m− t increases, we expect

our construction to yield values of s comparable to those produced in Lawrence’s
construction when linear codes are employed to construct the required orthogonal
arrays.
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Table 1

t m Value of s from Thm. 3.3 Value of s from [7]
m− t = 4 3 7 8 7

4 8 11 8
5 9 17 11
6 10 23 16
7 11 33 31
8 12 47 32
9 13 65 40
10 14 81 64

Table 2

t m Value of s from Thm. 3.3 Value of s from [7]
m− t = 6 6 12 11 8

7 13 12 9
8 14 13 10
9 15 15 12
10 16 18 15
11 17 23 21
12 18 31 22
13 19 34 29
14 20 44 31
15 21 47 42

Table 3

t m Value of s from Thm. 3.3 Value of s from [7]
m− t = 8 16 24 18 16

17 25 21 17
18 26 22 19
19 27 25 22

We pose the following open problem. The strength of Theorem 3.3 depends on
the existence of an M(s,m − t, n, q,m − t) array with s as large as possible and
the maximum weight of any qualifying subspace as small as possible. With the goal
of constructing (t,m, s)-nets in base q with large values of s, we propose as an open
problem the construction of M(s,m−t, n, q,m−t) arrays with n/s and the maximum
weight of any qualifying subspace simultaneously as small as possible.

Since the submission of this paper, we have become aware of a manuscript submit-
ted to Acta Arithmetica by W. Ch. Schmid and R. Wolf, in which they demonstrate
the existence of (t, t + 4, s)-nets in base q with values of s which sometimes exceed
those obtained by our constructions.

Acknowledgments. The authors wish to thank the anonymous referee for sev-
eral insightful comments which helped improve the paper.
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Abstract. Let λ(N ) denote the weight of a minimum cut in an edge-weighted undirected
network N , and n and m denote the numbers of vertices and edges, respectively. It is known that
O(n2k) is an upper bound on the number of cuts with weights less than kλ(N ), where k ≥ 1 is a
given constant. This paper first shows that all cuts of weights less than kλ(N ) can be enumerated in
O(m2n+n2km) time without using the maximum flow algorithm. The paper then proves for k < 4

3

that
(
n
2

)
is a tight upper bound on the number of cuts of weights less than kλ(N ), and that all those

cuts can be enumerated in O(m2n+mn2 logn) time.

Key words. minimum cuts, graphs, edge-splitting, polynomial algorithm
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1. Introduction. Let N stand for an undirected network with its edges be-
ing weighted by nonnegative real numbers. Counting the number of cuts with small
weights and deriving upper and lower bounds on their numbers play an important
role in the reliability analysis of probabilistic networks whose edges are subject to
failure [2], the graph augmentation problem, i.e., the problem of increasing the edge-
connectivity by adding the smallest number of edges to a graph [15], and other
problems.

Let λ(N ) denote the weight of a minimum cut in N , and let n and m be the
numbers of vertices and edges, respectively. It is known that an upper bound on the
number of minimum cuts is

(
n
2

)
= n

2 (n − 1), which is achievable when N is a ring
consisting of n edges with weight λ(N )/2 [1], [3].

Recently, Vazirani and Yannakakis [17] showed that cuts of weights no more than
the rth minimum weight can be enumerated by O(r+n) maximum flow computations.
Based on a probabilistic analysis, on the other hand, Karger [10] derived for arbitrary
k ≥ 1 an upper bound O(n2k) on the number of cuts of weights no more than kλ(N ).

In this paper, for arbitrary k > 1, we enumerate all cuts with weights no more than
kλ(N ) without relying on the maximum flow algorithm. Our enumeration algorithm
makes use of the edge splitting operation (see section 4) to reduce the number of
vertices by one while preserving the edge-connectivity. We repeatedly apply the edge-
splitting operation until the network has only two vertices and obtain a sequence of
such networks Ni with i vertices, i = n, n − 1, . . . , 2. After enumerating all small
cuts (of weights no more than kλ(N)) in N2, the set of small cuts in Ni+1 are then
computed from the set of those cuts in Ni in the order of i = 3, 4, . . . , n − 1. We
can show that the entire running time of this algorithm is O(m2n+ n2km). Thus, if
there are Θ(n2k) such cuts, each cut is found in linear time. We then prove that the
number of cuts with weights less than 4

3λ(N ) is at most
(
n
2

)
(i.e., the upper bound on

the number of minimum cuts), that this bound is tight for any number n of vertices,
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and that 4
3 is best possible for

(
n
2

)
to be an upper bound. The time of our algorithm

to enumerate all the cuts with weights less than 4
3λ(N ) becomes O(m2n+mn2 logn).

Recently, Henzinger and Williamson [9] extended the above argument to prove
an O(n2) upper bound on the number of cuts with weights less than 3

2λ(N ).

The remainder of this paper is organized as follows. Section 2 describes basic
definitions and notations. Before presenting an algorithm to compute all small cuts,
we review in sections 3–5 the concepts of s-connectivity, weighted edge-splitting, and
vertex isolation, and discuss how to compute them. Based on these, section 6 gives
the algorithm to compute all small cuts. Finally, section 7 derives an upper bound on
the number of small cuts with weights less than 4

3λ(N ) and applies this to evaluate
the time complexity of the above algorithm.

2. Preliminaries. Let N = (V,E, c) be an undirected network with a set V of
vertices and a set E of edges weighted by c : E 7→ R+, where R+ is the set of non-
negative real numbers. Throughout the paper, we assume, for notational convenience,
that (V,E) forms a simple complete graph, and denote by Ec ⊆ E the set of edges
with positive weights (from the computational point of view, we only have to maintain
graph (V,Ec)). An edge e with its end vertices u and v is denoted by (u, v) or (v, u),
and its weight c((u, v)) (= c((v, u))) is written by c(u, v) (= c(v, u)), unless confusion
arises. A vertex adjacent to a vertex v ∈ V by an edge with positive weight is called
a neighbor of v. Let NB(v;N ) = {w ∈ V | (v, w) ∈ Ec} denote the set of neighbors
of a vertex v.

A singleton set {x}may be simply written as x, and “ ⊂ ” implies proper inclusion
while “ ⊆ ” means “ ⊂ ” or “ = ”.

For two disjoint subsets X,Y ⊂ V of a network N , E(X,Y ;N ) denotes the set of
edges one of whose end vertices is in X and the other is in Y and c (X,Y ;N ) denotes
the sum of edge weights in E(X,Y ;N ). E(X,Y ;N ) and c(X,Y ;N ) may be written
as E(X,Y ) and c(X,Y ), respectively, if N is clear from context.

A cut is defined as a subset X of V with ∅ 6= X 6= V . We say that a cut
X separates two disjoint subsets Y and Y ′ of V if Y ⊆ X and Y ′ ⊆ V − X (or
Y ⊆ V −X and Y ′ ⊆ X) hold. The weight of a cut X is defined by c (X,V −X;N ),
which may be written as c (X;N ) or c (X). A cut is called an α-cut if it has weight
α. Clearly, a cut X and its complement V −X (which is also a cut) have the same
weight c (X) = c (V − X). For this reason, we often do not distinguish two cuts X
and V −X. In particular, in generating small cuts, we want to generate only one of
X and V −X.

A cut X crosses another cut Y if X ∩ Y 6= ∅, X − Y 6= ∅, Y − X 6= ∅ and
V −X − Y 6= ∅. For two crossing cuts X,Y , we can easily see the following identity
(see Fig. 1).

c(X) + c(Y ) = c(X − Y ) + c(Y −X) + 2c(X ∩ Y, V − (X ∪ Y )).(2.1)

The local edge-connectivity λ(x, y;N ) for two vertices x, y ∈ V is defined to be the
minimum weight of a cut that separates x and y (we define λ(x, y;N ) = +∞ if x = y).
A cut X is a minimum cut if c (X;N ) is minimum among all cuts in N . The weight
of a minimum cut is called the global edge-connectivity of N and denoted by λ(N ) (we
define λ(N ) = +∞ if |V | = 1). In other words, λ(N ) = min{λ(x, y;N ) | x, y ∈ V }.
Throughout this paper, we assume λ(N ) > 0 (i.e., graph (V,Ec) is connected).

3. Computing s-connectivity λs(N ). For a network N , choose a vertex s
as a designated vertex. A cut X is called s-proper if ∅ 6= X ⊂ V − s (recall that
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Fig. 1. Illustration of two crossing cuts X and Y .

⊂ denotes proper inclusion). The s-connectivity λs(N ) is the weight of a minimum
s-proper cut (we define λs(N ) = +∞ if |V | ≤ 2). In other words,

λs(N ) = min{λ(x, y;N ) | x, y ∈ V − s}

(hence, λ(N ) = min{λs(N ), c(s;N )}). An s-proper cutX is called s-tight if c(X;N ) =
λs(N ).

Lemma 3.1. For a network N = (V,E, c) with a designated vertex s ∈ V , the
s-connectivity λs(N ) and an s-tight cut T can be computed in O(n(m+n logn)) time.

Proof. Assume n ≥ 3. We use the O(m+ n logn) time graph traversal algorithm
[13] that visits every vertex exactly once in the following max-adjacency order: (i) it
first visits s and (ii) it chooses the ith vertex vi from the unvisited vertices so that
c({v1, v2, . . . , vi−1}, vi;N ) is maximized, where v1 = s, v2, . . . , vi−1 are the vertices
visited so far. It is known [13] that the resulting order v1, . . . , vn of vertices satisfies

λ(vn−1, vn;N ) = c(vn;N )(3.1)

(only positive capacities are handled in [13], but (3.1) follows from [13] by allowing
capacities to take zero. See [6], [7], [14], [16] for simpler proofs of this property).
Clearly, s 6= vn−1, vn. Let Nn := N and Nn−1 be the network obtained from N by
contracting vn−1 and vn into a single vertex. Any cut that separates vn−1 and vn
is s-proper, and hence the minimum weight of such a cut is c(vn;Nn) by (3.1). Any
s-proper cut that does not separates vn−1 and vn remains in the contracted network
Nn−1. Thus, we have

λs(Nn) = min{c(vn;Nn), λs(Nn−1)}.

Therefore, by repeating this traversal and contraction procedure until the network
has three vertices, λs(N ) is equal to

c(v′p;Np) = min{c(v′n;Nn), c(v′n−1;Nn−1), . . . , c(v
′
3;N3)},

where v′i is the last vertex in Ni in the above traversal procedure. An s-tight cut
in N can be obtained as the set of vertices in V that are contracted into the vertex
v′p.



472 H. NAGAMOCHI, K. NISHIMURA, AND T. IBARAKI

Fig. 2. Illustration of edge-splitting (s, u) and (s, v) of weight δ.

4. Weighted edge-splitting. Edge-splitting is one of the most useful opera-
tions, which reduces the size of a graph while preserving edge-connectivity [4], [5],
[11], [12]. This section defines the operation of weighted edge-splitting and derives
some key lemmas.

Given a network N = (V,E, c), a designated vertex s ∈ V , vertices u, v ∈
NB(s;N ) (possibly u = v), and a nonnegative real δ ≤ δmax, where

δmax = min{c(s, u), c(s, v)},

we construct the following network N ′ = (V,E, c′):
c′(s, u) := c(s, u)−δ, c′(s, v) := c(s, v)−δ, c′(u, v) := c(u, v)+δ,
c′(x, y) := c(x, y) for (x, y) ∈ E − {(s, u), (s, v), (u, v)}

(in case of u = v, we interpret c′(s, u) := c(s, u) − 2δ, c′(x, y) := c(x, y) for (x, y) ∈
E − (s, u)). We say that N ′ is obtained from N by edge-splitting (s, u) and (s, v) of
weight δ and denote the resulting network N ′ by N/(u, v, δ). (see Fig. 2.) Clearly,
for any cut X,

c(X;N/(u, v, δ)) =

{
c(X;N )− 2δ if cut X separates {s} and {u, v},
c(X;N ) otherwise,

(4.1)

and hence λs(N/(u, v, δ)) ≤ λs(N ) holds for any δ ≤ δmax. Let δs(u, v;N ) denote
the maximum δ such that δ ≤ δmax and λs(N/(u, v, δ)) = λs(N ); i.e.,

δs(u, v;N ) = min

{
δmax,

1

2
[min{c(X;N ) | {u, v} ⊆ X ⊆ V − s} − λs(N )]

}
.(4.2)

Any s-tight cut in N remains s-tight in network N/(u, v, ε) for 0 ≤ ε ≤ δs(u, v;N ).
Lemma 4.1. For a network N = (V,E, c) with a designated s ∈ V and two

distinct u, v ∈ NB(s;N ), let N ′ = (V,E′, c′) denote the network N/(u, v, δ) with
δ = δs(u, v;N ). Then the following properties hold.

(i) δs(u, v;N ) can be computed in O(n(m+ n logn)) time.
(ii) If c′(s, u) > 0 and c′(s, v) > 0 (i.e., {u, v} ⊆ NB(s;N ′)), then N ′ has an

s-tight cut T such that {u, v} ⊆ T . Furthermore, such T can be found in
O(n(m+ n logn)) time.
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Proof. We show that δs(u, v;N ) can be determined by computing how much
N loses the s-connectivity by the edge splitting (s, u) and (s, v) of weight δmax =
min{c(s, u), c(s, v)}. Let Nmax = N/(u, v, δmax). Clearly, λs(Nmax) = λs(N ) implies
δs(u, v;N ) = δmax. If λs(Nmax) < λs(N ), then we see from (4.1) that any s-tight cut
T in Nmax separates s and {u, v}. Then λs(Nmax) = c(T ;Nmax) = min{c(X;N ) −
2δmax | {u, v} ⊆ X ⊆ V − s} = min{c(X;N ) | {u, v} ⊆ X ⊆ V − s} − 2δmax.
Therefore, from (4.2), we have

δs(u, v;N ) = δmax −
1

2
[λs(N )− λs(Nmax)].

By Lemma 3.1, λs(N ), λs(Nmax) and an s-tight cut T in Nmax can be determined
in O(n(m+ n logn)) time, respectively. This proves (i).

Let N ′ = N/(u, v, δ) for δ = δs(u, v;N ). If λs(N ′) > λs(Nmax), then c′(s, u) > 0
and c′(s, v) > 0 hold in N ′. Also the above cut T in Nmax satisfies {u, v} ⊆ T by
λs(N ′) > λs(Nmax), and hence it is also s-tight in N ′, proving (ii).

Call a weighted edge-splitting of (s, u) and (s, v) by δ to be safe if δ ≤ δs(u, v;N ).
Notice that (u, u, c(s, u)/2) is a safe edge-splitting if |NB(s;N )| = 1 because any s-
proper cut X that separates s and u satisfies c(X;N ) = c(X̃;N ) + c(s, u) ≥ λs(N ) +
c(s, u), where X̃ = V − (X ∪ {s}) is an s-proper cut. We will show in the next
section that safe weighted edge-splittings at s can be repeated for various u and v in
NB(s;N ) until the resulting network N ′ has no neighbor of s (i.e., all edges (s, u),
u ∈ V , have weight c′(s, u) = 0). We say that such N ′ is obtained by isolating s from
N . It is known in [4] that such N ′ always exists.

However, it is not trivial to show that any designated vertex s can be isolated
after finite number of safe weighted edge-splittings. Frank [4] first proved that any
vertex s can be isolated by repeating safe weighted edge-splittings at s at most O(n)
times. On the other hand, the new algorithm proposed in the next section executes
safe weighted edge-splittings at most |NB(s;N )| times, not just O(|V |) times (this
fact will be crucial to the time complexity of our final algorithm for enumerating small
cuts in section 6).

The next two lemmas describe some properties of the network obtained by isolat-
ing s, and s-tight cuts, which will be used to validate the new algorithm in the next
section.

Lemma 4.2. For a network N = (V,E, c) with a designated vertex s ∈ V , let
N ′ be the network obtained from N by isolating s and let Ns = (V − s, E′, c′) be the
network obtained from N ′ by eliminating s. Then the following properties hold.

(a) For every nonempty X ⊂ V − s, c(X;Ns) = c(X;N ′) ≤ c(X;N ).
(b) λ(Ns) = λs(N ′) = λs(N ) ≥ λ(N ).
Proof. The proof is immediate from the definition.
Lemma 4.3. For a network N = (V,E, c) with a designated vertex s ∈ V , the

following properties hold.
(i) NB(s;N )− T 6= ∅ for any s-tight cut T in N .
(ii) For two u, v ∈ NB(s;N ), let T ′ and T be two s-tight cuts in N such that

{u, v} ∩ T ′ = {u} and {u, v} ∩ T = {u, v}. Then T ′ ∪ {v} ⊆ T holds.
Proof. (i) Assume that an s-tight cut T satisfies NB(s;N ) ⊆ T . Since T is

s-proper, V − s − T 6= ∅ and hence R = V − s − T is also an s-proper cut. Clearly,
c(T ) = c(s, T )+ c(R, T ) and c(s, T ) > 0, where c(R, T ) = c(R) by NB(s;N )∩R = ∅.
Therefore, we have c(T ) > c(R), contradicting the s-tightness of c(T ).

(ii) Assume that T ′ ∪ {v} 6⊆ T , i.e., T ′ − T 6= ∅. We see that two cuts T ′ and T
cross each other since u ∈ T ′∩T 6= ∅, T ′−T 6= ∅, v ∈ T−T ′ 6= ∅ and s ∈ V −T−T ′ 6= ∅
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hold. Now c(T ′) = c(T ) = λs(N ), c(T ′ − T ) ≥ λs(N ), and c(T − T ′) ≥ λs(N ) since
cuts T ′ − T and T − T ′ are s-proper. Since (s, u) ∈ E(T ′ ∩ T, V − (T ′ ∪ T )) has a
positive weight, c(T ′ ∩ T, V − (T ′ ∪ T )) > 0. From (2.1), however,

2λs(N ) = c(T ′) + c(T ) = c(T ′ − T ) + c(T − T ′) + 2c(T ′ ∩ T, V − (T ′ ∪ T )) > 2λs(N )

is a contradiction.

5. Algorithm to isolate vertex s. Based on the properties discussed so far,
we will show that the next algorithm isolates s by repeating weighted edge-splitting
at s O(n) times.

Procedure ISOLATE

Input: a network N = (V,E, c) and a designated vertex s ∈ V ;
Output: a network Ns = (V − s, E′, c′) satisfying Lemma 4.2 and a set Qs of trip-
lets (u, v, δ) that are used to isolate s;

1 begin
2 N ∗ := N ; T ∗ := Qs := ∅;
3 while |NB(s;N ∗)| ≥ 2 do
4 begin
5 if T ∗ ∩NB(s;N ∗) = ∅ then T ∗ := {u} for a u ∈ NB(s;N ∗) endif;
6 Choose a u ∈ NB(s;N ∗) ∩ T ∗ and a v ∈ NB(s;N ∗)− T ∗;
7 Compute δ = δs(u, v;N ∗);
8 N ∗ := N ∗/(u, v, δ) (edge-splitting);
9 Qs := Qs ∪ {(u, v, δ)};

10 if {u, v} ⊆ NB(s;N ∗) then
11 Find an s-tight cut T with {u, v} ⊆ T in N ∗;
12 T ∗ := T
13 endif
14 end;
15 if |NB(s;N ∗)| = 1 then
16 N ∗ := N ∗/(u, u, c∗(s, u)/2) and Qs := Qs ∪ {(u, u, c∗(s, u)/2)} for the

u ∈ NB(s;N ∗)
17 endif;
18 Let Ns be the N ∗ from which s is removed
19 end.

Theorem 5.1. Algorithm ISOLATE correctly isolates s ∈ V of a network
N = (V,E, c) after repeating edge-splitting at most |NB(s;N )| times, and runs in
O(|NB(s;N )|n(m + n logn)) time, where n = |V | and m = |Ec|. Moreover, the
resulting network Ns has no more edges with positive weights than N .

Proof. To prove the correctness of ISOLATE, we first note that lines 5, 6, and
11 of ISOLATE are always possible to perform (clearly any other lines can be carried
out). Since |NB(s;N ∗)| ≥ 2 holds in the while loop, we can choose a u ∈ NB(s;N ) in
line 5. During the while loop, T ∗ is set to be either a single vertex u ∈ NB(s;N ∗) or
an s-tight cut T in the current networkN ′. If T ∗ is a single vertex, line 6 can be clearly
performed. Furthermore, Lemma 4.3(i) guarantees that line 6 can be performed if T ∗

is an s-tight cut in N ∗. As to the s-tight cut T in line 11, Lemma 4.1(ii) guarantees
that it always exists and can be found in O(n(m+ n logn)) time.

Next we show that the while loop terminates after a finite number of iterations.
For this, we prove that |NB(s;N ∗)− T ∗| decreases at least by 1 after each execution
of the while loop, which implies that the while loop of lines 3–14 is repeated at most
|NB(s;N )|−1 times (until |NB(s;N ∗)| < 2 holds). First note that |NB(s;N ∗)−T ∗|
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decreases by 1 if line 5 is executed. If line 10 holds, we see that the s-tight cut T in
line 11 contains the previous T ∗ and vertex v ∈ NB(s;N ∗), because Lemma 4.3(ii)
applies if T ∗ is s-tight in the current network and T ∗ = {u} ⊂ {u, v} ⊆ T if T ∗ consists
of a single vertex u. Thus, |NB(s;N ∗) − T ∗| decreases at least by 1. If line 10 does
not hold, |NB(s;N ∗)| again decreases at least by 1 since one of u and v is no longer
a neighbor of s, while T ∗ remains unchanged. Therefore, |NB(s;N ∗)− T ∗| decreases
at least by 1 after each execution of the while loop. This proves the correctness.

As shown in the above, the while loop is repeated at most n time. Since lines 7 and
11 can be carried out in O(n(m+n logn)) time by Lemma 4.1(i) and (ii), respectively,
and the time for other lines in the while loop is minor, the entire running time is
O(n(m+ n logn)).

Finally note that |NB(s;N )| edges with positive weights incident to s are removed
in the resulting network Ns. Furthermore, since at most |NB(s;N )| edge-splittings,
including the one in line 16, are applied in ISOLATE, at most |NB(s;N )| − 1 new
edges with positive weights are created in Ns. This shows the last statement of the
lemma.

Recently, Gabow [8] developed an O(n2m log(n2/m)) time algorithm for isolating
a vertex s independently of us. Our algorithm ISOLATE repeats a modification of the
O(mn+ n2 logn) time minimum cut algorithm of [13] O(n) times, while Gabow’s al-
gorithm applies Hao and Orlin’s O(nm log(n2/m)) time minimum cut algorithm O(n)
times. Our algorithm provides a slightly better bound, although Gabow’s algorithm
is also valid for a directed multigraph.

6. Enumerating all small cuts. For a given α > 0, let C<α(N ) denote the set
of all β-cuts in N satisfying β < α. In this case, we do not distinguish cut X from its
complement V −X. To avoid the duplication of X and V −X, therefore, we choose
an arbitrary vertex r ∈ V as a reference vertex, and denote by C<αr (N ) the set of all
β-cuts X ∈ C<α(N ) with r 6∈ X. Note that |C<α(N )| = |C<αr (N )| by definition, and
in what follows, we compute C<αr (N ) to avoid confusion.

Fig. 3. Illustration of three cuts X,Y, and Z.

We first give outline of our algorithm for enumerating small cuts. Now, given
a network N = (V,E, c) and ordered set V = {v1, v2, . . . , vn}, define a sequence of
networks Ni, i = n, n − 1, . . . , 2 as follows. Let Nn = N , and let Ni−1, i = n, . . . , 3,
be the network obtained from Ni by isolating vertex vi. Set Vi = {v1, v2, . . . , vi}
denotes the vertices in Ni. In what follows, we explain a relation between networks
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Ni and Ni−1. Any cut X with {vi} 6= X 6= Vi − vi in Ni is also a cut in Ni−1, and
c(X;Ni) ≥ c(X;Ni−1) holds by Lemma 4.2(a). Also, note that two cuts X and X ′ in
Ni such that vi 6∈ X and X ′ = X ∪ {vi} becomes the same cut in Ni−1 (see Fig. 3).

Choose v1 as the reference vertex r. From the above observation, we see that any
cut X ∈ C<αr (Ni) appears in exactly one of the three sets: C<αr (Ni−1), {X ∪ {vi} |
X ∈ C<αr (Ni−1)}, or {{vi}}.

In other words,

C+vi [C<αr (Ni−1)] = C<αr (Ni−1) ∪ {X ∪ {vi} | X ∈ C<αr (Ni−1)} ∪ {{vi}}(6.1)

contains C<αr (Ni) and hence

C<αr (Ni) = {X ∈ C+vi [C<αr (Ni−1)] | c(X;Ni) < α}.(6.2)

Suppose that we have weights of cuts {c(X;Ni−1) | X ∈ C<αr (Ni−1)} and set Qvi

of triplets (u, v, δ) that are used to isolate vi in Ni. These are obtained by ISOLATE.
For each Y ∈ C+vi [C<αr (Ni−1)], its weight c(Y ;Ni) can be easily computed from
C<αr (Ni−1) and Qvi as follows. If Y = {vi}, then clearly

c(Y ;Ni) = 2
∑

(u,v,δ)∈Qvi

δ.

If Y ∈ C<αr (Ni−1), then we have

c(Y ;Ni) = c(Y ;Ni−1) + 2
∑

{δ | (u, v, δ) ∈ Qvi such that {u, v} ⊆ Y },

since c(Y ;Ni−1) decreases by 2δ at each edge-splitting (u, v, δ) ∈ Qvi such that Y sep-
arates {vi} and {u, v}, by (4.1). Analogously, if Y = Y ′ ∪ {vi} for a Y ′ ∈ C<αr (Ni−1),
then

c(Y ;Ni) = c(Y ′;Ni−1) + 2
∑

{δ | (u, v, δ) ∈ Qvi such that {u, v} ∩ Y ′ = ∅}.

To compute c(Y ;Ni) efficiently, we use a data structure that enables us to check if
w ∈ Y in O(1) time, e.g., by preparing a membership mapping fY : V 7→ {0, 1} with
fY (v) = 1 (v ∈ Y ) and fY (v) = 0 (v ∈ V − Y ). Then from |Qvi | ≤ |NB(vi;Ni)| by
Lemma 5.1, each c(Y ;Ni) can be computed in |Qvi | = O(|NB(vi;Ni)|) time by using
{c(X;Ni−1) | X ∈ C<αr (Ni−1)}, Qvi and a membership mapping fY .

Consequently, all cuts in C<kλ(N )(N ) can be enumerated in the following manner.
Procedure ENUMERATE

Input: a network N = (V,E, c) with V = {v1, . . . , vn} and a positive real k > 1;
Output: C<kλ(N )(N );

1 begin
2 Compute λ(N ); α := kλ(N ); Nn := N ;
3 for i = n, n− 1, . . . , 2 do
4 begin
5 Let vi be the vertex v in Ni that minimizes |NB(v;Ni)|;
6 Isolate vi in Ni by applying procedure ISOLATE;
7 Let Qvi be the set of triplets (u, v, δ) obtained by ISOLATE;
8 Denote the resulting network by Ni−1

9 end;
10 Let r := v1 (reference vertex);
11 C<αr (N1) := ∅;
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12 for j = 2, 3, . . . , n do
13 begin
14 c({vj};Nj) := 2

∑
{δ | (u, v, δ) ∈ Qvj};

15 for each X ∈ C<αr (Nj−1) begin
16 c(X;Nj) := c(X;Nj−1) + 2

∑
{δ | (u, v, δ) ∈ Qvj such that {u, v} ⊆ X};

17 c(X ∪ {vj};Nj) := c(X;Nj−1) + 2
∑
{δ | (u, v, δ) ∈ Qvj such that {u, v}

∩X = ∅};
18 endfor;
19 C+vj [C<αr (Nj−1)] := C<αr (Nj−1) ∪ {X ∪ {vj} | X ∈ C<αr (Nj−1)} ∪ {{vj}};
20 C<αr (Nj) := {X ∈ C+vj [C<αr (Nj−1)] | c(X;Nj) < α}
21 end;
22 output C<kλ(N )(N ) := C<αr (Nn)
23 end.

Theorem 6.1. For a network N = (V,E, c) and a real number k > 1, ENU-
MERATE computes C<kλ(N )(N ) correctly and runs in O(m2n + n2km) time, where
n = |V | and m = |Ec|.

Proof. The correctness of ENUMERATE follows from the discussion so far, in par-
ticular from (6.1) and (6.2). In line 2, λ(N ) can be computed in O(nm+n2 logn) time
[13]. Let mi denote the number of edges with positive weights in Ni, i = 2, . . . , n.
By Theorem 5.1, mi ≤ m holds for all i. First consider how many times the op-
eration of weighted edge-splitting is executed in ISOLATE throughout ENUMER-
ATE. Since each vertex vi to be isolated minimizes |NB(v;Ni)| in Ni, we have
|Qvi | ≤ |NB(vi;Ni)| ≤ 2mi

i by Theorem 5.1. Therefore, all Nis in the first loop
of lines 3–9 can be constructed in

O

(
2m

n
n(m+ n logn) +

2m

n− 1
(n− 1)(m+ n logn) + . . .+

2m

1
(1)(m+ n logn)

)

= O(mn(m+ n logn))

time. Now we consider the time required for the second for loop of lines 12–21. By
Lemma 4.2(b)

λ(Nn) ≤ λ(Nn−1) ≤ · · · ≤ λ(N2)

holds for the networks Ni obtained by ISOLATE. Updating the membership mapping
fX for a cut X requires O(|X|) = O(|V |) time. It is known [10] that for any network
N ∗ with i vertices and a real k ≥ 1 the number of cuts with weights less than kλ(N ∗)
is O(i2k). Hence, |C<αr (Ni)| ≤ |C<kλ(Ni)

r (Ni)| = O(i2k), i = 2, 3, . . . , n. As discussed
before the description of ENUMERATE, each c(X;Ni) for a cut X ∈ C+vi [C<αr (Ni−1)]
can be updated from c(X;Ni−1) in O(|Qvi |) time. Then, updating C<αr (Ni) for all i
requires

n∑
i=2

(|C<kλ(Ni)
r (Ni)||Qvi |) = O

(
n∑
i=2

(i2k|Qvi |)
)

= O

(
n∑
i=2

(i2k−1m)

)
= O(n2km)

time. Therefore, the entire running time of ENUMERATE is O(mn(m + n logn) +
n2km) = O(m2n+ n2km).

7. New bound on the number of small cuts. The objective of this sec-
tion is to improve the upper bound O(n2k) on |C<kλ(N )(N )| obtained by Karger
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[10] to
(
n
2

)
for k ≤ 4

3 . This also improves the time complexity of ENUMERATE to
O(m2n+mn2 logn) for such k.

Theorem 7.1. For any network N = (V,E, c), it holds |C< 4
3λ(N )(N )| ≤

(
n
2

)
.

The proof of this theorem will be given in the latter half of this section. Here
we note that this bound

(
n
2

)
is also known as a tight upper bound on the number of

minimum cuts in N [1], [3]. In fact, |C< 4
3λ(N )(N )| =

(
n
2

)
is actually attained by a

ring network consisting of n ≥ 2 vertices in which λ(N ) = 2 holds. In this network,
there are

(
n
2

)
minimum cuts and all other cuts X satisfy c(X) ≥ 4 > 4

3λ(N ). We also

see that coefficient k = 4
3 of α = 4

3λ(N ) is the largest possible for
(
n
2

)
to be an upper

bound. For this, consider a complete network K4 with four vertices, where each edge
is weighted 1. Clearly, λ(Kn) = 3, and K4 has four 3-cuts and three 4-cuts, indicating

|C<( 4
3+ε)λ(Kn)(Kn)| ≥ 7 >

(
4
2

)
(= 6) for any ε > 0.

Corollary 7.2. For a network N = (V,E, c) and 1 < k ≤ 4
3 , C<kλ(N )(N ) can

be computed in O(m2n+mn2 logn) time.
Proof. From the proof of Theorem 6.1, we see that the running time of ENUMER-

ATE is O(m2n+mn2 logn+
∑n

i=2(|C
<kλ(Ni)
r (Ni)||Qvi |)). Therefore, by Theorem 7.1,

ENUMERATE runs in O(m2n + mn2 logn +
∑n

i=2(
(
i
2

)
m/i)) = O(m2n + mn2 logn)

time for 1 < k ≤ 4
3 .

Now we prove Theorem 7.1 via several lemmas.
For a network N = (V,E, c) with a designated vertex s ∈ V and an α > 0, if two

cuts X and X ′ = X ∪{s} both belong to C<α(N ), then we call {X,X ′} a pair of twin
cuts with respect to (s, α). Let r ∈ V − s be a reference vertex, and define

T C<αr,s (N ) ≡
{
X
∣∣∣ X ⊆ V − {s, r}, and X,X ∪ {s} ∈ C<αr (N )

}
.

From (6.1), we have

|C<αr (N )| ≤ |C<αr (Ns)|+ |T C<αr,s (N )|+ 1.(7.1)

Based on this inequality, we prove Theorem 7.1 by induction on n = |V |. The
theorem clearly holds for n = 2. Assume here that Theorem 7.1 holds for any network
with less than n vertices. If we can show

|T C<
4
3λ(N )

r,s (N )| ≤ n− 2,(7.2)

then we have from (7.1) that∣∣∣C< 4
3λ(N )

r (N )
∣∣∣ ≤ |C<

4
3λ(N )

r (Ns)|+ |T C<
4
3λ(N )

r,s (N )|+ 1

≤ |C<
4
3λ(Ns)

r (Ns)|+ |T C<
4
3λ(N )

r,s (N )|+ 1

(from λ(Ns) ≥ λ(N ) (Lemma 4.2(b)))

≤
(
n− 1

2

)
+ (n− 2) + 1 (induction hypothesis and (7.2))

=

(
n

2

)
.(7.3)

Therefore, property (7.2) proves Theorem 7.1. The proof of (7.2) will be given in
Lemmas 7.3–7.7.

Lemma 7.3. For a network N = (V,E, c) with a reference vertex r ∈ V , let

X,Y, and Z be three distinct cuts in C<
4
3λ(N )

r (N ) and define a partition Wi,W
′
i (i =
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Fig. 4. Illustration of three cuts X,Y, and Z.

1, 2, 3, 4) of V as follows (see Fig. 4).

W1 = X ∩ Y ∩ Z, W2 = X ∩ Y ∩ Z, W3 = X ∩ Y ∩ Z, W4 = X ∩ Y ∩ Z,
W ′

1 = X ∩ Y ∩ Z, W ′
2 = X ∩ Y ∩ Z, W ′

3 = X ∩ Y ∩ Z, W ′
4 = X ∩ Y ∩ Z.(7.4)

Then at least one of W1,W2,W3, and W4 is empty, and at least one of W ′
1,W

′
2, and

W ′
3 is also empty.

Proof. If none of W1,W2,W3, and W4 is empty, then we would have

3× 4

3
λ(N ) > c (X) + c (Y ) + c (Z)

≥ c (W1) + c (W2) + c (W3) + c (W4) ≥ 4λ(N ),

which is a contradiction. Analogously, since r ∈W ′
4 6= ∅, one of W ′

1,W
′
2, and W ′

3 must
be empty.

Lemma 7.4. Let N = (V,E, c) be a network, and let s ∈ V and r ∈ V − s. If

no two cuts in T C<
4
3λ(N )

r,s (N ) cross each other, then there are two disjoint nonempty

subsets XA, XB ⊂ V − {s, r} such that every cut in T C<
4
3λ(N )

r,s (N ) separates XA and
XB.

Proof. For a cut X ∈ T C<
4
3λ(N )

r,s (N ), s-proper cut X̃ = V − s−X satisfies

4

3
λ(N ) > c(X̃) = c(X)− c({s}, X) + c({s}, X̃)

≤ λ(N )− c({s}, X) + c({s}, X̃, ),

from which

c({s}, X)− c({s}, X̃) > −1

3
λ(N ).

From this and c ({s}, X) + c ({s}, X̃) = c ({s}) ≥ λ(N ), we obtain

c ({s}, X) >
1

3
c ({s}) .(7.5)
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Take XA ∈ T C
< 4

3λ(N )
r,s (N ) with the smallest cardinality, i.e.,

|XA| = min
{
|X| | X ∈ T C<

4
3λ(N )

r,s (N )
}
.

For any other cut X ∈ T C<
4
3λ(N )

r,s (N ), X and XA do not cross each other by the
assumption. Then, from the minimality of |XA|, we see

X ⊇ XA or X ∩XA = ∅ for any X ∈ T C<
4
3λ(N )

r,s (N ).

Define T CA = {X ∈ T C<
4
3λ(N )

r,s (N ) | X ⊇ XA} and T CA = {X ∈ T C<
4
3λ(N )

r,s (N ) |
X ∩XA = ∅}. We next choose XB ∈ T CA such that

|XB | = min{|X| | X ∈ T CA}.

Then, analogously to the above, we can show that

X ⊇ XB or X ∩XB = ∅ for any X ∈ T C<
4
3λ(N )

r,s (N ).

In particular, this implies XA ∩XB = ∅.
Finally, we see that there is no cut Y ∈ T C<

4
3λ(N )

r,s (N ) such that Y ⊆ V −XA−XB ,
because, otherwise, c ({s}, Y ) + c ({s}, XA) + c ({s}, XB) > c ({s}) would follow from

(7.5), which is a contradiction. Therefore, any cut X ∈ T C<
4
3λ(N )

r,s (N ) must separate
XA and XB . It is also clear that XA ∪XB ⊆ V − {s, r}.

If two cuts Xi and Xj do not cross each other and both separate XA and XB ,
then (i) Xi ⊆ Xj or Xi ⊇ Xj or (ii) Xi ∩ Xj = ∅, XA ⊆ Xi, and XB ⊆ Xj (or
Xi ∩Xj = ∅, XB ⊆ Xi, and XA ⊆ Xj).

Lemma 7.5. If no two cuts in T C<
4
3λ(N )

r,s (N ) cross each other, then |T C<
4
3λ(N )

r,s

(N )| ≤ n− 2.

Proof. Recall that X ⊆ V − {s, r} for X ∈ T C<
4
3λ(N )

r,s (N ) from the definition of

T Cr. In this case, by Lemma 7.4, any cut X in T C<
4
3λ(N )

r,s (N ) satisfies XA ⊆ X ⊆
V − s −XB or XB ⊆ X ⊆ V − s −XA. Therefore, all cuts in T C<

4
3λ(N )

r,s N ) can be
numbered as X1, X2, . . . , Xp so that

XA ⊆ X1 ⊂ X2 ⊂ · · · ⊂ Xk, XB ⊆ Xp ⊂ Xp−1 ⊂ · · · ⊂ Xk+1,

where Xk ∩ Xk+1 = ∅ and {s, r} ⊆ V − (Xk ∪ Xk+1) hold. From this, we see that
p ≤ n− 2.

Lemma 7.6. For a network N = (V,E, c), let s ∈ V and r ∈ V − s and let X,Y,

and Z be three cuts in T C<
4
3λ(N )

r,s (N ). Define Wi and W ′
i (i = 1, 2, 3, 4) as in (7.4).

Then at least two of W1,W2,W3, and W4 are empty, and at least two of W ′
1,W

′
2 and

W ′
3, are also empty.

Proof. Since no cut in T C<
4
3λ(N )

r,s (N ) contains r, it holds r ∈ W ′
4 − s. By

Lemma 7.3, one of Wi(i = 1, 2, 3, 4), say W1, is empty (other cases can be treated

analogously). Then consider X ′ = X ∪ {s} ∈ C<
4
3λ(N )

r (N ), where X and X ′ are a
pair of twin cuts. Again by applying Lemma 7.3 to three cuts X ′, Y and Z, we see
that one of W1 ∪ {s},W2,W3, and W4 must be empty. Since W1 ∪ {s} 6= ∅, one of
W2,W3, and W4 is also empty. Similar argument also proves the result for subsets
W ′

i (i = 1, 2, 3).
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Lemma 7.7. If there are two cuts in T C<
4
3λ(N )

r,s (N ) which cross each other, then

|T C<
4
3λ(N )

r,s (N )| = 2.

Proof. Suppose that two cuts X and Y in T C<
4
3λ(N )

r,s (N ) cross each other. In this

case, if T C<
4
3λ(N )

r,s (N ) contains other cut (say Z), then Lemma 7.6 applies to Wi and
W ′

i (i = 1, 2, 3, 4). However, this is impossible since two crossing cuts X and Y have
already produced four nonempty subsets among Wi’s and W ′

i ’s. Hence, the third cut

Z cannot exist. Thus, |T C<
4
3λ(N )

r,s (N )| = 2 follows.
Lemmas 7.5 and 7.7 prove property (7.2), which also completes the proof of

Theorem 7.1.
Acknowledgments. The authors are grateful to Professor A. Frank of Eötvös

University for his valuable comments, based on which Lemma 3.1 is established.
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IMAG, Université J. Fourier, Grenoble, March, 1994.
[7] S. Fujishige, A note on Nagamochi and Ibaraki’s min-cut algorithm and its simple proofs by

Stoer, Wagner and Frank, manuscript, Forschungsinstitut für Diskrete Mathematik, Uni-
versität Bonn, June, 1994.

[8] H. N. Gabow, Efficient splitting off algorithms for graphs, in Proceedings of the 26th ACM
Symposium on Theory of Computing, Montreal, Quebec, 1994, pp. 696–705.

[9] M. R. Henzinger and D. Williamson, On the number of small cuts, Inform. Process. Lett., 59
(1996), pp. 41–44.

[10] D. R. Karger, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm,
in Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993,
pp. 21–30.

[11] L. Lovász, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
[12] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978),

pp. 145–164.
[13] H. Nagamochi and T. Ibaraki, Computing the edge-connectivity of multigraphs and capaci-

tated graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.
[14] H. Nagamochi, T. Ishii, and T. Ibaraki, A Simple and Constructive Proof of a Minimum

Cut Algorithm, Technical Report 96001, Department of Applied Mathematics and Physics,
Kyoto University, 1996.

[15] D. Naor, D. Gusfield, and C. Martel, A fast algorithm for optimally increasing the edge con-
nectivity, in Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, St. Louis, MO, 1990, pp. 698–707.

[16] M. Stoer and F. Wagner, A simple min cut algorithm, Lecture Notes in Comput. Sci., 855
(1994), pp. 141–147.

[17] V. V. Vazirani and M. Yannakakis, Suboptimal cuts: Their enumeration, weight, and number,
Lecture Notes in Comput. Sci., 623 (1992), pp. 366–377.



A THRESHOLD FUNCTION FOR HARMONIC UPDATE∗

SHAO C. FANG† AND SANTOSH S. VENKATESH†

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 3, pp. 482–498, August 1997 012

Abstract. Harmonic update is a randomized on-line algorithm which, given a random m-set of
vertices U(m) ⊆ {−1, 1}n in the n-dimensional cube, generates a random vertex w ∈ {−1, 1}n as
a putative solution to the system of linear inequalities:

∑n

i=1
wiui ≥ 0 for each u ∈ U(m). Using

tools from large deviation multivariate normal approximation and Poisson approximation, we show

that
√
n
/√

logn is a threshold function for the property that the vertex w generated by harmonic

update has positive inner product with each vertex in U(m). More explicitly, let P (n,m) denote the
probability that

∑n

i=1
wiui ≥ 0 for each u ∈ U(m). Then, as n → ∞, P (n,m) → 0 or 1 according

to whether m = mn varies with n such that m � √
n
/√

logn or m � √
n
/√

logn, respectively.

The analysis also exposes the fine structure of the threshold function.

Key words. polytopes, threshold function, randomized algorithm, harmonic update, binary
integer programming, neural networks, large deviations, normal approximation, Poisson approxima-
tion
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1. Information and finite memory. How much information can a single bit
of memory updated on-line retain about a Bernoulli sequence? More specifically, the
following problem was posed by J. Komlós. Write B , {−1, 1} and let

{
u(t), t ≥ 1

}
be a sequence of symmetric Bernoulli trials, where

u(t) =

{
−1 with probability 1/2,

+1 with probability 1/2.

Suppose a single bit of memory w ∈ B is available to record this sequence; write w(t) ∈
B for the state of the one-bit memory at epoch t (with w(1) ∈ B being an arbitrary
initial state of memory). We suppose that input bits u(t) arrive sequentially in time
and memory updates

(
w(t), u(t)

) 7→ w(t+1) proceed on-line governed by a sequence{
f (t) : B × B → B

∣∣ t ≥ 1
}

of (possibly random) Boolean functions of two Boolean

variables: w(t+1) = f (t)
(
w(t), u(t)

)
. After m epochs, input bits u(1), . . . , u(m) have

been presented sequentially in time leading to the current state of memory w(m+1) ∈
B, which now constitutes the sole “record” (insofar as a single bit may be said to
constitute a record) of the entire past, i.e., the sequence of bits u(1), . . . , u(m). One
measure of the efficacy of the update sequence

{
f (t)

}
in storing information up to this

moment in the one-bit memory is the minimum covariance min1≤t≤m E
(
w(m+1)u(t)

)
:

a minimum covariance of zero implies that there is at least one bit in the past about
which the one-bit memory carries no information; a positive minimum covariance,
on the other hand, indicates that the single bit of memory carries information about
every one of the inputs in the past. In this context, Komlós posed the following
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problem: what is Im , maxf(1),...,f(m) min1≤t≤m E
(
w(m+1)u(t)

)
? The quantity Im

may be taken as an intrinsic measure of the amount of information that a single bit
of memory updated on-line can retain about each past input.

In [12], Venkatesh and Franklin provide comprehensive answers to this and related
questions. In particular, they show that

1
m ≤ Im < 2

m ,

whence Im = Θ
(
m−1

)
. Their results also directly imply that any sequence of deter-

ministic update rules
{
f (t)

}
yields exponentially small (in m) minimum covariances

at best and hence that the optimal sequence of update rules
{
f

(t)
opt

}
is necessarily

randomized.
Consider an application of this notion of on-line information storage to the follow-

ing classical problem in mathematical programming. Let Bn = {−1, 1}n denote the
vertices of a cube in n dimensions and let U(m) =

{
u(t), 1 ≤ t ≤ m} be a random m-

set of vertices in Bn obtained by independent sampling from the uniform distribution

on Bn. Write u(t) =
(
u

(t)
1 , . . . , u

(t)
n

)
. Does there exist a vertex w = (w1, . . . , wn) ∈ Bn

for which the inequalities

w1u
(1)
1 + w2u

(1)
2 + · · ·+ wnu

(1)
n ≥ 0

w1u
(2)
1 + w2u

(2)
2 + · · ·+ wnu

(2)
n ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w1u
(m)
1 + w2u

(m)
2 + · · ·+ wnu

(m)
n ≥ 0

(1.1)

are simultaneously satisfied? Let 〈·, ·〉 denote the usual inner product in Euclidean
n-space Rn. Then each point w in Rn determines a positive half-space defined by
H+(w) = {u ∈ Rn : 〈w,u〉 ≥ 0 }. Geometrically speaking, our question is equivalent
to asking whether there exists a vertex w ∈ Bn such that the convex hull of U(m) is
contained in the positive half-space determined by w.1

If w is allowed to range over Rn \ {0}, the problem is just an instance of linear
programming and a solution to the system of inequalities (1.1), if one exists, can be
found in polynomial time using interior point methods (cf. Karmarkar [6]). When,
however, w is restricted to the vertices of the n-dimensional cube, the decision problem
becomes NP-complete as an instance of binary integer programming (cf. Garey and
Johnson [5], Pitt and Valiant [7]).

Consider an on-line programming scenario in which the random examples u(t)

comprising U(m) arrive in sequence at epochs t = 1, . . . ,m. In the information storage
analogy, we are provided with n bits of memory and access to a sequence of memory
update rules

{
f (t) : Bn×Bn → Bn

∣∣ t ≥ 1
}
. Starting from an arbitrary initial memory

state w(1) ∈ Bn, we then recursively generate memory states w(t+1) = f (t)
(
w(t),u(t)

)
for t ≥ 1. The on-line procedure is successful if, after presentation of the mth example
u(m), the vertex (“memory state”) w , w(m+1) generated by the algorithm satisfies
the system of linear inequalities (1.1).

In [11], a sequence of randomized update rules
{
f (t)

}
, dubbed harmonic update,

is constructed starting from the following trivial observations: (i) for each t, the sum∑n
i=1 wiu

(t)
i is more likely to be positive if the individual summands wiu

(t)
i are likely

1The above mathematical programming problem can also be formulated as a learning problem
in a formal model of a neuron or perceptron (cf. Fang and Venkatesh [1]).
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to be positive, i.e., if the random element wi , w
(m+1)
i is positively correlated with

u
(t)
i , and (ii) the smallest of the inner products

〈
w,u(t)

〉
must be nonnegative if (1.1)

is to hold. Looking at the ith column (1 ≤ i ≤ n) in (1.1), these considerations

suggest that the update rules be chosen so that min1≤t≤m E
(
wiu

(t)
i

)
is maximized.

The optimal update rules for Komlós’s problem would do very nicely here if they could
be determined explicitly; applying the optimal one-bit memory update rules n times,
once for every component, will maximize the smallest expectation of the summands
in each column, as desired. Harmonic update uses auxiliary randomization in an
attempt to achieve this desideratum.

Harmonic update. Given examples u(t) =
(
u

(t)
1 , . . . , u

(t)
n

) ∈ Bn presented se-
quentially at epochs t = 1, . . . ,m, the algorithm recursively generates a sequence of

n-bit memory states w(t+1) =
(
w

(t+1)
1 , . . . , w

(t+1)
n

) ∈ Bn, where w(t+1) is a random

function of w(t) and u(t) only. After m epochs, the algorithm returns the final n-bit
memory state w , w(m+1) as a putative vertex solution to the system of inequali-
ties (1.1).

H1. [Initialize.] Set w(1) =
(
w

(1)
1 , . . . , w

(1)
n

)
to be an arbitrary vertex in Bn. Set

t← 1.
H2. [New example.] Obtain example u(t).
H3. [Reinitialize component index.] Set i← 1.

H4. [Update memory components.] If w
(t)
i = u

(t)
i , set w

(t+1)
i = w

(t)
i ; else if w

(t)
i =

−u(t)
i , set

w
(t+1)
i =

{
−w(t)

i with probability 1/t,

+w
(t)
i with probability 1− 1/t.

H5. [Iterate.] Set i ← i + 1. If i ≤ n, go back to step H4; otherwise set t ← t + 1.
If t ≤ m go back to step H2; otherwise set w = w(m+1) and terminate the
algorithm.

Remarks.
Computation. While the actual memory updates in step H4 are done in place, it

is convenient to keep the notation w(t) to identify the state of the memory at epoch
t for purposes of later analysis.

Probability space. It is assumed implicitly that the auxiliary randomization in
step H4 is independent across i and t; in particular, we can assume that a biased coin
with the appropriate success probability is tossed independently each time step H4 is
encountered.

The intuition behind the algorithm is as follows: at epoch t, the current state

w
(t)
i of the ith memory component presumably contains information about the ith

components of the first t−1 examples. No problem arises in updating the state of the

ith bit of memory if the ith component u
(t)
i of the current example has the same sign

as the current state w
(t)
i of the ith memory component; setting w

(t+1)
i = w

(t)
i adds u

(t)
i

to the knowledge base at no cost to the previously stored components. Complications

arise, however, if w
(t)
i and u

(t)
i have opposite signs. In this case, retaining the sign of

w
(t)
i results in all information about u

(t)
i being irrevocably lost; conversely, changing

the sign of w
(t)
i results in a loss of information about u

(1)
i , . . . , u

(t−1)
i . The solution

in this case is to change the sign of the ith bit of memory probabilistically—and
with increasing reluctance as time passes (when there is presumably considerable
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past history stored in the bit of memory). The exact measure of this reluctance to
change the sign of the memory bit with increasing time is given probabilistically by
the harmonic sequence2 1/t. The effect of this randomized update rule is to ensure
that each component of memory retains an equal amount of information about the
corresponding component of every example.

As m increases, the probability that there exists any solution for the system of
inequalities (1.1) decreases monotonically, and for large enough m the random vertex
set U(m) will fail to be linearly separable (in the sense that there is no solution
for (1.1)) with high probability. In what follows we allowm = mn to depend implicitly
on the dimensionality n. Our goal is to determine the “largest” rate of increase of m
with n for which the system of inequalities (1.1) is satisfied with asymptotically high
probability as n→∞. In the language of random graphs (cf. Spencer [10]), we wish
to determine a threshold function for the property that (1.1) is satisfied.

Indeed, Füredi [4] showed that 2n is a threshold function for the property that
there exists a real vector w ∈ Rn \ {0} satisfying (1.1). (Equivalently, 2n is a thresh-
old function for the property that the convex hull of the random vertex set U(m)
contains the origin.) When restricted to vertex solutions for (1.1), we may expect the
probability that there exists a solution w ∈ Bn satisfying (1.1) to decay rather faster
with m. In fact, a trite application of Boole’s inequality readily establishes n as an
upper bound for the rate of growth of m for any algorithm if we are to hold out hopes
for a solution in Bn for (1.1). Informally, if m grows faster than n, then (1.1) admits
no solution in Bn with probability 1 − o(1). Much sharper results can be shown for
harmonic update, and the following theorem, which is our main result, exposes the
fine structure of a threshold function for the algorithm.

Let w ∈ Bn be the vertex generated by harmonic update and write H−(w) =
{u ∈ Rn : 〈w,u〉 < 0 } for the negative half-space determined by w. Let Z = Zn,m ,∣∣U(m) ∩ H−(w)

∣∣ denote the number of u(t) (1 ≤ t ≤ m) that fall into the negative
half-space determined by the vector w generated by harmonic update. Our main
theorem shows that for a suitable rate of growth of m = mn with n, the random
variable Zn,mn has a limiting Poisson distribution as n → ∞. A sharp threshold for
the event of interest {Zn,m = 0} that w has positive inner product with each vertex
in the random m-set U(m) follows immediately.

Main Theorem. Let λ > 0 be any fixed positive number and suppose that m =
mn grows with n such that

mn =

√
n

logn

{
1 +

log log n+ log
(
λ
√

2π
)

logn
+O

(
log log n

(logn)2

)}
.(1.2)

Then Zn,mn
tends in distribution to Po(λ), the Poisson distribution with parameter

λ, as n→∞. In particular, for each fixed k,

P{Zn,mn = k} → λk

k!
e−λ

as n→∞.
Corollary. Write P (n,m) = P{Zn,m = 0} for the probability that the vertex

w ∈ Bn generated by harmonic update satisfies the system of inequalities (1.1). Then,
with m = mn as in (1.2), P (n,m) → e−λ as n → ∞. In particular, for every fixed
ε > 0, the following assertions hold:

2Hence we have the name harmonic update.
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(a) if m varies with n such that m ≤ (1− ε)
√

n
log n then P (n,m)→ 1 as n→∞,

(b) if m varies with n such that m ≥ (1+ ε)
√

n
log n then P (n,m)→ 0 as n→∞.

In other words,
√
n
/√

logn is a threshold function for the attribute that the binary
vector w generated by harmonic update satisfies the system of linear inequalities (1.1).

Remark. The Main Theorem provides a lower bound for the rate of growth of
m with n for which a vertex solution exists for the system of inequalities (1.1). At
this point, it is natural to wonder if the gap between the lower bound

√
n
/√

logn and
the upper bound n can be reduced by increasing the computational complexity of the
memory update rule. Indeed, substantial improvements in information storage can
accrue if off-line procedures are permitted or the examples are recycled infinitely often
in an on-line scenario [11, 12]. For instance, the majority rule algorithm introduced
in [11] is an off-line procedure which, given the random m-set of examples U(m),
selects a vertex closest to the centroid of U(m) as a putative solution to (1.1). In
a companion exposition [2], we established a threshold function for majority rule at
n

π log n .
The rest of the paper is devoted to a proof of the Main Theorem. The main

technical tools used in the proof are multivariate normal approximation and Poisson
approximation, the former via a multivariate integral limit theorem for large devia-
tions and the latter in the form of a probabilistic sieve. These technical results are
collected in the next section for ease of later reference. The proof follows.

2. Preliminaries.
Notation. As already indicated, we use B to denote the set {−1, 1}, with Bn =

{−1, 1}n the vertices of the cube in n dimensions. The set of all integers is de-
noted by Z, with Zn denoting the corresponding set of lattice points in n dimensions.
Also, we denote the real line by R, with Rn denoting n-dimensional Euclidean space
equipped with the usual inner product 〈x,y〉 =

∑n
i=1 xiyi and the induced norm

‖x‖ = 〈x,x〉1/2. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are points in Rn, the vector
inequality x ≥ y means that the scalar inequalities xi ≥ yi hold for each i = 1, . . . , n;
likewise, the vector inequality x > y means that the corresponding componentwise
inequalities are strict: xi > yi (1 ≤ i ≤ n). We write 0 for the vector (0, . . . , 0)
with all components identically 0 and 1 for the vector (1, . . . , 1) with all components
identically 1. Superscripts r, s, and t and subscripts i and j are employed exclusively
to index vectors and their components, respectively.

For purposes of definiteness in vector–matrix operations we assume that all vectors
are row vectors; a prime (′) denotes vector and matrix transpose. We also reuse the
notation |V | to denote the determinant of a square matrix V as well as the cardinality
of a set V . The usage will be clear from the context.

Throughout, P stands for probability measure on the underlying probability space,
E denotes expectation, Var denotes variance, and Cov denotes covariance. For any
integer k ≥ 1, if X = (X1, . . . , Xk) is a Gaussian (row) vector with zero mean,
EX = 0, and nondegenerate covariance matrix K = Cov(X) = E

(
X′X

)
, |K| > 0, we

write

φK(x) , 1

(2π)k/2|K|1/2 e
− 1

2xK−1x′

for the multivariate Gaussian density, and likewise

ΦK(x) ,
∫
u≤x

φK(u) du
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for the multivariate Gaussian distribution function. For the univariate case we simply
write φ(x) and Φ(x) for the standard N (0, 1) Gaussian density and distribution,
respectively.

All logarithms are to base e.
We use standard asymptotic order notation with the following caveats: if {hn}

and {gn} denote real sequences, by hn = O(gn) we mean that |hn|/|gn| is bounded
above; in particular, sign information is explicitly jettisoned in our use of the “big-oh”
notation. In addition, we will find it expedient to occasionally use the more graphic
hn � gn and hn � gn to mean hn = o(gn) and hn = ω(gn), respectively.

In what follows we will be concerned with asymptotics as n → ∞, and we will
allow the number of elements m in the random vertex set U(m) to depend on n. As
a notational convention, however, we shall frequently write simply m instead of the
more explicit mn, while keeping in mind that m is to be thought of as a function of
n.

Technical lemmas. The method of proof of the Main Theorem is to reduce the
problem to the study of a random walk Sn where, for each n, Sn is the row sum of
a triangular array of lattice variables. The principal result that will be needed is a
sharp estimate for the probability of large deviations of the walk Sn. The setup is as
follows.

Let k be a fixed positive integer and consider a triangular array of k-dimensional
lattice random vectors

Xni =
(
X

(1)
ni , . . . , X

(k)
ni

)
(i = 1, . . . , n; n = 1, 2, . . . ),

where, for each n, the random vectors Xn1, . . . ,Xnn comprising the nth row of the
array are independent, identically distributed lattice random vectors with probability
one support in {0, 1}k and with common distribution pn(x) = P

{
Xni = x

}
, where

pn(0) > 0 and pn(eν) > 0 for each of the canonical unit vectors eν ∈ {0, 1}k (1 ≤
ν ≤ k).3 Observe that the distribution of Xni has minimal lattice Zk. Write µn =(
µ

(1)
n , . . . , µ

(k)
n

)
, E

(
Xni

)
for the mean vector and Vn , Cov

(
Xni

)
= E

(
X′
niXni

) −
µ′nµn for the covariance matrix.

Specializing to the case of interest, we assume that there exists a discrete prob-
ability distribution p(x) with probability one support in the vertices of the cube
x ∈ {0, 1}k such that pn(x)→ p(x) as n→∞ for each x ∈ {0, 1}k. We suppose that,
for each n,

Cov
(
X

(t)
ni , X

(s)
ni

)
= E

{(
X

(t)
ni − µ(t)

n

)(
X

(s)
ni − µ(s)

n

)}
=

{
σ2
n if t = s,

ψn if t 6= s,

whence the covariance matrix of Xni is of the form

Vn = Cov
(
Xni

)
=


σ2
n ψn ψn . . . ψn
ψn σ2

n ψn . . . ψn
. . . . . . . . . . . . . . . . . . . . . . .
ψn ψn ψn . . . σ2

n

 .
We will suppose that, as n→∞, ψn → 0 and σ2

n → σ2 for some positive constant σ2.
In particular, observe that Vn is nonsingular for sufficiently large n and |Vn| → σ2k

as n→∞.

3For k > 1 we can dispense with the condition pn(0) > 0.
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For each n, form the lattice random vector Sn as the row sum

Sn =

n∑
i=1

Xni.

We are interested in the tails of the random walk Sn in Zk. Write

S∗n =
Sn − nµn√

n

for the normalized row sum. The following result is a global version of an extension
of a large deviation local limit theorem for sums of independent random vectors due
to Richter [8, Theorem 2] to row sums of triangular arrays. The proof of the result
follows easily along the lines of Richter’s proof and is sketched in [2]. We omit the
derivation here.

Lemma 2.1 (large deviation global limit theorem). Suppose ξn =
(
ξ
(1)
n , . . . , ξ

(k)
n

)
is any sequence of positive real vectors whose components satisfy 1 � ξ

(t)
n � n1/6

(1 ≤ t ≤ k) as n→∞. Then under the previous assumptions

P{S∗n > ξn} ∼ ΦVn(−ξn) and likewise P{S∗n < −ξn} ∼ ΦVn(−ξn)

as n→∞.
Remark. Observe that asymptotic normality persists for deviations of Sn from

the mean as large as o
(
n2/3

)
, which admits of deviations much larger than the O(√n )

deviations, which are the province of the standard central limit theorem.
It will be convenient in the analysis to find an elementary estimate of the multi-

variate Gaussian tail in Lemma 2.1. For the univariate case, the classical estimate of
the tail Φ(−x) of the Gaussian can be expressed in terms of Mill’s ratio in the form

Φ(−x)
φ(x)

∼ x−1 (x→∞).

(See Feller [3, Lemma VII.1.2], for example.) The following specialization of a result
of Ruben yields an analogous result for the multivariate case. We refer the reader to
Ruben’s paper [9] for the proof.

Lemma 2.2 (multivariate Mill’s ratio). Let {A(ρn)} be a sequence of k × k
covariance matrices, where A(ρn) has unity as its diagonal elements and ρn as its
off-diagonal elements, and suppose ρn → 0 as n → ∞. Let {xn} be any positive
sequence satisfying xn →∞ as n→∞. Then, writing 1 ∈ Rk for the vector with all
components identically 1, we have the asymptotic estimate

ΦA(ρn)(−xn1) ∼ x−kn φA(ρn)(xn1)

as n→∞.
Observe that the classical estimate for the tail of the univariate Gaussian follows

directly with k = 1 and K = [1].
The final technical result that will be needed is a probabilistic sieve. Suppose{

B
(t)
n

}
is a triangular array of events in a probability space with mn events (1 ≤

t ≤ mn) in the nth row, and let
{
z
(t)
n

}
denote the corresponding triangular array

of indicator random variables for these events. Let Zn,mn
=
∑mn

t=1 z
(t)
n denote the
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number of events that occur simultaneously in the nth row. We will be interested in
the limiting distribution of the row sums Zn,mn

.
Additionally, for each k = 1, . . . ,mn and each n = 1, 2, . . . , define

S(k)
n,mn

=
∑

P
{
B(t1)
n ∩ · · · ∩B(tk)

n

}
=
∑

E
(
z(t1)n . . . z(tk)n

)
,

where the sum is over all subsets {t1, . . . , tk} of cardinality k drawn from {1, . . . ,mn}.
Observe that S

(1)
n,mn = EZn,mn , while, in general, S

(k)
n,mn = E

(
Z

[k]
n,mn

/
k!
)
, where Z

[k]
n,mn

denotes the number of ordered k-sets of events (no repetition) in the nth row for which
all k events occur simultaneously.

Lemma 2.3 (Poisson tendency). Suppose there is a constant λ such that, for

every fixed k, S
(k)
n,mn → λk/k! as n → ∞. Then Zn,mn

converges in distribution to
Po(λ), the Poisson distribution with parameter λ. In particular, for every fixed k,

P{Zn,mn = k} → λk

k!
e−λ

as n→∞.
The proof follows directly from inclusion and exclusion by use of Bonferroni’s

inequalities to bound on both sides the probability P{Zn,mn
= k} that exactly k of

the events in the nth row occur simultaneously (cf. Feller [3, Theorem IV.3.1], for
instance). We omit the standard proof.

3. Proof of Main Theorem. We are interested in the probability

P (n,m) = P
{ m⋂
t=1

{〈w,u(t)〉 ≥ 0
}}

= 1− P
{ m⋃
t=1

{〈w,u(t)〉 < 0
}}

of the event that w = w(m+1) has positive inner product with each vertex in U(m).
The following gives a thumbnail sketch of the principal ideas involved in the estima-
tion of P (n,m). We begin by showing via elementary arguments that the random

summands Y
(t)
i , wiu

(t)
i (1 ≤ t ≤ m) are exchangeable and then evaluate the first

two mixed moments. Invoking Lemma 2.1, we then proceed to show that the events{〈w,u(t)〉 < 0
}

are governed asymptotically by a normal law even though the tail
probabilities of interest correspond to deviations from the mean rather larger than
the O(√n ) deviations that fall under the usual province of the central limit theorem.
Direct calculations of the relevant probabilities are still difficult, however, because
of insidious statistical dependencies, albeit somewhat weak, evinced in the events{〈w,u(t)〉 < 0

}
. The next stage in the proof involves quelling these dependencies with

a firm hand using Lemma 2.2 to conclude that the events of interest are “asymptoti-
cally independent.” The method of inclusion and exclusion embodied in Lemma 2.3
then allows us to conclude that, in the range of interest, the distribution of errors{〈w,u(t)〉 < 0

}
approaches a Poisson distribution asymptotically. The final stage of

the calculation is a relatively straightforward bootstrap which rapidly produces an
estimate of the critical sample size m by successive approximation.

A. Exchangeable random variables. Since the m-set of examples U(m) ={
u(1), . . . ,u(m)

}
is generated by independent sampling from the uniform distribution

on the vertices Bn, it follows that the example components
{
u

(t)
i , 1 ≤ t ≤ m, 1 ≤

i ≤ n
}

are independent, identically distributed random variables taking values −1
and +1 only, each with probability 1/2. Now, for each i, the ith memory component
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wi = w
(m+1)
i is a (random) function solely of u

(1)
i , . . . , u

(m)
i . It is clear by symmetry

that for every sample path which results in wi = +1 there exists a sample path of equal
probability (its reflection) which results in wi = −1, and vice versa. Consequently, wi
is a symmetric Bernoulli random variable taking values −1 and +1 only, each with

probability 1/2. Furthermore, as i runs through 1 to n, the sets
{
u

(1)
i , . . . , u

(m)
i

}
par-

tition the set of mn example components
{
u

(t)
i

}
into n disjoint, identically distributed

subsets. It follows that the memory components {wi, 1 ≤ i ≤ n } are independent,
identically distributed symmetric binary random variables.

We begin with a preliminary result. Fix the index i and recall that w
(r)
i ∈ B

represents the state of the ith bit of memory following the presentation of the (r−1)th
example u(r−1). Write

pr;t1,...,tk , P
{
w

(r)
i = u

(t1)
i = · · · = u

(tk)
i

}
for every choice of epochs t1, . . . , tk, r.

Assertion 1. Let k and r be any fixed integers in the range 1 ≤ k < r ≤ m+ 1.
Then

pr;t1,...,tk = 2−k
(
1 + k

r−1

)
for every selection of k distinct epochs t1, . . . , tk satisfying 1 ≤ tj ≤ r−1 (1 ≤ j ≤ k).

Proof. To keep the notation unencumbered, suppress the subscript i and simply

write w(r) and u(t) instead of the explicit w
(r)
i and u

(t)
i . We may also assume without

loss of generality that the indices are so ordered that 1 ≤ t1 < t2 < · · · < tk ≤ r − 1
as pr;t1,...,tk is invariant with respect to the permutation of the indices t1, . . . , tk. The
proof of the assertion is by induction over r, k, and t1, . . . , tk.

Induction base: With k = 1, t1 = 1, and r = 2, we have

p2;1 = P
{
w(2) = u(1)

}
= 1 = 1

2 (1 + 1).

Induction hypothesis: For some 2 ≤ r ≤ m, suppose that

pr;t1,...,tk = 2−k
(
1 + k

r−1

)
(1 ≤ k ≤ r − 1; 1 ≤ t1 < · · · < tk ≤ r − 1).

Now consider pr+1;t1,...,tk . We break the induction into two cases.

Case 1: 1 ≤ k ≤ r−1, 1 ≤ t1 < · · · < tk ≤ r−1. Conditioning on w(r), we obtain

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
= P

{
w(r+1) = 1

∣∣ w(r) = 1
}

P
{
w(r) = u(t1) = · · · = u(tk) = 1

}
+ P

{
w(r+1) = 1

∣∣ w(r) = −1
}

P
{
w(r) = −1, u(t1) = · · · = u(tk) = 1

}
as w(r+1) is conditionally independent of u(t1), . . . , u(tk) given w(r) for 1 ≤ t1 < · · · <
tk ≤ r− 1. The conditional probabilities are readily evaluated: condition on u(r) and
exploit the independence of u(r) and w(r) to obtain

P
{
w(r+1) = 1

∣∣ w(r) = 1
}

= 1
2 P
{
w(r+1) = 1

∣∣ w(r) = 1, u(r) = 1
}

+ 1
2 P
{
w(r+1) = 1

∣∣ w(r) = 1, u(r) = −1
}

= 1
2 + 1

2

(
1− 1

r

)
= 1− 1

2r .(3.1)
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The reflection principle shows that the random variables
{
w(r), 2 ≤ r ≤ m+ 1

}
have

symmetric marginal distributions

P
{
w(r) = −1

}
= P

{
w(r) = +1

}
= 1

2 (2 ≤ r ≤ m+ 1).

A simple application of Bayes’s rule hence yields

P
{
w(r+1) = 1

∣∣ w(r) = −1
}

= P
{
w(r) = −1

∣∣ w(r+1) = 1
}

= 1− P
{
w(r) = 1

∣∣ w(r+1) = 1
}

= 1− P
{
w(r+1) = 1

∣∣ w(r) = 1
}

= 1
2r ,

the last step following from (3.1). It follows that

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
=
(
1− 1

2r

)
P
{
w(r) = u(t1) = · · · = u(tk) = 1

}
+ 1

2r P
{
w(r) = −1, u(t1) = · · · = u(tk) = 1

}
.

Now observe that

P
{
w(r) = −1, u(t1) = · · · = u(tk) = 1

}
= 2−k − P

{
w(r) = u(t1) = · · · = u(tk) = 1

}
,

whence

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
= 2−k

2r +
(
1− 1

r

)
P
{
w(r) = u(t1) = · · · = u(tk) = 1

}
.

Likewise,

P
{
w(r+1) = u(t1) = · · · = u(tk) = −1

}
= 2−k

2r +
(
1− 1

r

)
P
{
w(r) = u(t1) = · · · = u(tk) = −1

}
.

It follows that for 1 ≤ k ≤ r − 1 and 1 ≤ t1 < · · · < tk ≤ r − 1

pr+1;t1,...,tk = 2−k
r +

(
1− 1

r

)
pr;t1,...,tk = 2−k

(
1 + k

r

)
by the induction hypothesis.

Case 2: 1 ≤ k ≤ r, 1 ≤ t1 < · · · < tk = r. Conditioning on w(r) again, we obtain

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
= P

{
w(r+1) = u(t1) = · · · = u(tk−1) = u(r) = 1

}
= 1

2 P
{
w(r+1) = 1

∣∣ w(r) = −1, u(r) = 1
}

P
{
w(r) = −1, u(t1) = · · · = u(tk−1) = 1

}
+ 1

2 P
{
w(r+1) = 1

∣∣ w(r) = u(r) = 1
}

P
{
w(r) = u(t1) = · · · = u(tk−1) = 1

}
as w(r+1) is conditionally independent of u(t1), . . . , u(tk−1) given w(r) and u(r), and
u(r) is independent of w(r) and u(t1), . . . , u(tk−1).4 The conditional probabilities above
are completely determined by the auxiliary randomization in the algorithm. Hence

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
= 1

2 P
{
w(r) = u(t1) = · · · = u(tk−1) = 1

}
+ 1

2r P
{
w(r) = −1, u(t1) = · · · = u(tk−1) = 1

}
.

Now observe that

P
{
w(r) = −1, u(t1) = · · · = u(tk−1) = 1

}
= 2−(k−1) − P

{
w(r) = u(t1) = · · · = u(tk−1) = 1

}
,

4As usual, we identify the joint event
⋂k−1

j=1

{
u(tj) = 1

}
with the certain event if k = 1.
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whence

P
{
w(r+1) = u(t1) = · · · = u(tk) = 1

}
= 2−k

r +
(

1
2 − 1

2r

)
P
{
w(r) = u(t1) = · · · = u(tk−1) = 1

}
.

A completely analogous argument gives

P
{
w(r+1) = u(t1) = . . . = u(tk−1) = u(r) = −1

}
= 2−k

r +
(

1
2 − 1

2r

)
P
{
w(r) = u(t1) = · · · = u(tk−1) = −1

}
.

It follows that

pr+1;t1,...,tk−1,r = 2−k+1

r + 1
2

(
1− 1

r

)
pr;t1,...,tk−1

.

Applying the induction hypothesis, it follows that

pr+1;t1,...,tk = 2−k
(
1 + k

r

)
(1 ≤ k ≤ r; 1 ≤ t1 < · · · < tk−1 < tk = r),

as was to be shown. The two cases taken together completes the induction.
Now define the random variables

Y
(t)
i , wiu

(t)
i (1 ≤ t ≤ m; 1 ≤ i ≤ n).

Observe that, for each t,
〈
w,u(t)

〉
=
∑n
i=1 Y

(t)
i is a sum of independent, identically

distributed ±1 random variables, i.e., a random walk on the line. The walk is asym-
metric with a positive drift, as we shall see shortly.

In what follows it will be slightly more convenient to consider the related (0, 1)
random variables

X
(t)
i = 1

2

(
1 + Y

(t)
i

)
(1 ≤ t ≤ m; 1 ≤ i ≤ n),

whence
〈
w,u(t)

〉
= 2

∑n
i=1X

(t)
i −n. Consider the random set Xi ,

{
X

(1)
i , . . . , X

(m)
i

}
.

Since wi is a function only of u
(1)
i , . . . , u

(m)
i , it follows that Xi is also determined

only by u
(1)
i , . . . , u

(m)
i . Consequently, the random sets X1, . . . ,Xn are statistically

independent and have identical (joint) distributions. Assertion 1 now allows us to
explicitly characterize the joint distribution of the random set Xi.

For every choice of epochs t1, . . . , th, th+1, . . . , th+k, write

qm;t1,...,th;th+1,...,th+k
, P

{
X

(t1)
i = 1, . . . , X

(th)
i = 1, X

(th+1)
i = 0, . . . , X

(th+k)
i = 0

}
.

It will also be convenient to define

fm(h, k) , 2−(h+k)
(
1 + h−k

m

)
.

Observe that pm+1;t1,...,tk = fm(k, 0) by Assertion 1. As an immediate consequence,
we have the following.

Assertion 2. The (0, 1) random variables X
(1)
i , . . . , X

(m)
i are exchangeable. In

particular,

qm;t1,...,th;th+1,...,th+k
= fm(h, k)(3.2)

for every pair of nonnegative integers h and k with h+ k ≤ m and h+ k distinct indices
t1, . . . , th+k in {1, . . . ,m}.
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Remark. In accordance with usual convention, we identify the joint event

h⋂
j=1

{
X

(tj)
i = 1

} ∩ h+k⋂
j=h+1

{
X

(tj)
i = 0

}
with the certain event if h = k = 0. The assertion then holds when h = k = 0 as well
when the desired probability is identically fm(0, 0) = 1.

Proof. The result follows quickly by induction on k.
Induction base: When k = 0, it follows immediately that for every 0 ≤ h ≤ m,

qm;t1,...,th = P
{
X

(t1)
i = 1, . . . , X

(th)
i = 1

}
= pm+1;t1,...,th = 2−h

(
1 + h

m

)
= fm(h, 0)

depends only on h and m and is independent of the choice of (distinct) indices
t1, . . . , th. The proof is completed by induction over k.

Induction hypothesis: Suppose that for some choice of k ≥ 0, (3.2) holds for
every h ≥ 0 with h + k ≤ m and every choice of h + k distinct indices t1, . . . , th,
th+1, . . . , th+k in {1, . . . ,m}. It follows that, for every h ≥ 0 with h + k + 1 ≤ m
and every distinct collection of h + k + 1 indices t1, . . . , th, th+1, th+2, . . . , th+k+1 in
{1, . . . ,m},
qm;t1,...,th;th+1,th+2,...,th+k+1

= qm;t1,...,th;th+2,...,th+k+1
− qm;t1,...,th,th+1;th+2,...,th+k+1

= fm(h, k)− fm(h + 1, k)

= fm(h, k + 1),

the penultimate step following from the induction hypothesis and the last step fol-
lowing by the definition of fm. This completes the induction.

The moments of the random variablesX
(1)
i , . . . , X

(m)
i are now readily determined.

In particular,

µ , E
(
X

(t)
i

)
= fm(1, 0) = 1

2 + 1
2m ,

σ2 , Var
(
X

(t)
i

)
= fm(1, 0)− fm(1, 0)2 = 1

4 − 1
4m2 ,

ψ , Cov
(
X

(s)
i , X

(t)
i

)
= fm(2, 0)− fm(1, 0)2 = − 1

4m2 (s 6= t),

ρ , ψ
σ2 = − 1

m2−1 = O(m−2
)
.

B. Normal tendency. Now consider the random walks

〈
w,u(t)

〉
=

n∑
i=1

wiu
(t)
i = 2

n∑
i=1

X
(t)
i − n (1 ≤ t ≤ m).

Recall that the n random sets Xi =
{
X

(1)
i , . . . , X

(m)
i

}
(1 ≤ i ≤ n) are mutually

independent with identical joint distributions. It now follows as a consequence of
Assertion 2 that the random variables

〈
w,u(1)

〉
, . . . ,

〈
w,u(m)

〉
are exchangeable.

Let k be any fixed positive integer and consider any distinct set of k indices
t1, . . . , tk in {1, . . . ,m}. Write

Pn,m(k) , P
{〈

w,u(t1)
〉
< 0, . . . ,

〈
w,u(tk)

〉
< 0

}
.

Note that Pn,m(k) is just the probability that any given k inequalities in (1.1) are
violated, where the random w is determined by harmonic update. Since the random
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walks
〈
w,u(t)

〉
(1 ≤ t ≤ m) are exchangeable random variables, Pn,m(k) does not

depend on the specific choice of indices tj and we may suppose without any loss of
generality that tj = j (1 ≤ j ≤ k). Thus,

Pn,m(k) = P
{〈

w,u(1)
〉
< 0, . . . ,

〈
w,u(k)

〉
< 0

}
= P

{ n∑
i=1

X
(1)
i < n

2 , . . . ,
n∑
i=1

X
(k)
i < n

2

}
.

Let us now explicitly allow m = mn to vary with n and acknowledge this depen-
dence on n by writing,

X
(t)
i = X

(t)
ni = 1

2

(
1 + wiu

(t)
i

)
(1 ≤ t ≤ mn; 1 ≤ i ≤ n),

where u
(t)
i = u

(t)
ni (1 ≤ t ≤ mn; 1 ≤ i ≤ n) are the components of the random examples

and wi = wni (1 ≤ i ≤ n) are the components of the memory state determined by
harmonic update. Now consider the triangular array of k-dimensional lattice random
vectors

Xni =
(
X

(1)
ni , . . . , X

(k)
ni

)
(i = 1, . . . , n; n = 1, 2, . . . ).

For each n, the random vectors Xn1, . . . ,Xnn comprising the nth row of the array
are independent, identically distributed lattice random vectors with probability one
support in {0, 1}k. Let pn(x) = P

{
Xni = x

}
(x ∈ {0, 1}k) denote the distribution

of Xni. Write |x| for the number of components of x ∈ {0, 1}k that take value one
(this is just the L1 vector norm in this case). Observe then, as a consequence of
Assertion 2, that

pn(x) = fmn

(|x|, k − |x|) =
1

2k

(
1 +

2|x| − k
mn

) (
x ∈ {0, 1}k).

Suppose mn → ∞ as n → ∞. Then, for sufficiently large n, pn(x) > 0 for every
x ∈ {0, 1}k; in particular, Xni takes values 0, e1, . . . , ek (where eν (1 ≤ ν ≤ k)
denotes the canonical unit vectors in {0, 1}k) with positive probability. Furthermore,
pn(x)→ 2−k (uniformly) for all x ∈ {0, 1}k, whence the distribution of Xni becomes
uniform over {0, 1}k in the limit.

Let us also explicitly write

µ = µn = 1
2 + 1

2mn
,

σ2 = σ2
n = 1

4 − 1
4m2

n
,

ρ = ρn = − 1
m2
n−1 = O(m−2

n

)
for the mean, variance, and correlation coefficient, respectively, of the (0, 1) random

variables X
(t)
ni (1 ≤ t ≤ mn). We then have

E
(
Xni

)
= µn = µn1,

Cov
(
Xni

)
= Vn = σ2

nA(ρn),

where, as before, A(ρn) denotes a k × k covariance matrix which has unity as its
diagonal elements and ρn as its off-diagonal elements. Observe that µn → 1

2 , σ2
n → 1

4 ,
and ρn → 0 if mn � 1 as n→∞.

Everything is now set for an application of Lemma 2.1.
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Assertion 3. If m = mn increases with n in such a way that n1/3 � mn � n1/2

then, for every fixed positive integer k,

Pn,mn
(k) ∼ ΦA(ρn)

(
−

√
n

mn
1
)

as n→∞.
Proof. Form the row sums and the corresponding normalized row sums

Sn =
n∑
i=1

Xni, S∗n =
1√
n

n∑
i=1

(
Xni − µn

)
,

and define the sequence

ξn ,
(
µn − 1

2

)√
n =

√
n

2mn
.

We then obtain

Pn,mn(k) = P
{
Sn <

n
2 1
}

= P
{
S∗n < −ξn1

}
.

Observe that in the range n1/3 � mn � n1/2 we have 1 � ξn � n1/6 as n → ∞.
Applying Lemma 2.1, we hence obtain

Pn,mn(k) ∼ ΦVn

(
−√n
2mn

1
)

= ΦA(ρn)

(
−√n

2σnmn
1
)

(n→∞).

Now observe that
√
n

2σnmn
=

√
n

mn

(
1−m−2

n

)−1/2
=

√
n

mn

[
1 +O(m−2

n

)]
=

√
n

mn
+O(√nm3

n

)
=

√
n

mn
+ o(1)

when mn � n1/3. Furthermore, ρn → 0 as n → ∞, whence the covariance matrix
A(ρn) and its inverse converge componentwise to the identity matrix. Consequently,

Pn,mn
(k) ∼ ΦA(ρn)

(−√n
mn

1
)

as n→∞.
We can parlay the asymptotic normality of finite sets of the random variables〈

w,u(t)
〉

into a statement about the distribution of errors. This follows next.

C. Poisson tendency. We begin by exploiting the fact that the covariances

between the random variables X
(t)
i (1 ≤ t ≤ mn) vanish asymptotically. Coupling

this with the exchangeability of the events
{〈

w,u(t)
〉
< 0

}
, we will indeed be able to

show that, for a suitable rate of increase of m = mn with n, the distribution of errors〈
w,u(t)

〉
< 0 is asymptotically Poisson. This will suffice to complete the proof of the

Main Theorem.
It will be convenient to first define the double sequence

Qn,m , m√
2πn

exp

{
− n

2m2

}
before launching into the result.

Assertion 4. Suppose m = mn increases with n such that n1/3 � mn � n1/2.
Then, for every fixed positive integer k, Pn,mn

(k) ∼ Pn,mn
(1)k ∼ Qk

n,mn
as n→∞.

Proof. Write xn , m−1
n

√
n. Note that xn → ∞ as n → ∞ for the given rate

of growth of mn with n. Applying Assertion 3 to the case k = 1 yields Pn,mn
(1) ∼

Φ(−xn), while Lemma 2.2 shows that the right-hand side is asymptotic to Qn,mn
as
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n→∞. Now suppose k is any fixed positive integer. Recall that ρn = O(m−2
n

)
= o(1)

as mn � 1. We may hence apply Lemma 2.2 again to obtain

Pn,mn
(k) ∼ ΦA(ρn)(−xn1) ∼ x−kn φA(ρn)(xn1)

= (2π)−k/2x−kn |A(ρn)|−1/2e−
1
2x

2
n1A(ρn)−11′ .

Induction on k readily yields explicit expressions for the determinant and inverse of
the covariance matrix A(ρn),

|A(ρn)| =
(
1 + (k − 1)ρn

)
(1− ρn)k−1,

A(ρn)
−1 = anA(bn),

where an and bn are specified by

an =
1 + (k − 2)ρn

(1− ρn)[1 + (k − 1)ρn]
and bn =

−ρn
1 + (k − 2)ρn

.

We hence have

Pn,mn(k) ∼ (2π)−k/2(1− ρn)−(k−1)/2
(
1 + (k − 1)ρn

)−1/2
x−kn e−kx

2
n/2{1+(k−1)ρn}

= (2π)−k/2(1− ρn)−(k−1)/2
(
1 + (k − 1)ρn

)−1/2
x−kn e−

1
2kx

2
n+O(x2

nρn)

= (2π)−k/2x−kn e−
1
2kx

2
n
{
1 +O(ρn) +O(x2

nρn)
}

= Qk
n,mn

{
1 +O(m−2

n

)
+O(nm−4

n

)}
.

All order terms on the right-hand side approach zero asymptotically for the given rate
of growth of mn, whence Pn,mn

(k) ∼ Qk
n,mn

as n→∞.

In slightly imprecise language—the events
{〈

w,u(t)
〉
< 0

}
are asymptotically

independent.
All the pieces are now in place. We complete the proof of the Main Theorem by

invoking Lemma 2.3.

For each n, suppose m = mn random vertices u(t) = u
(t)
n (1 ≤ t ≤ mn) are

generated by independent sampling from the uniform distribution on Bn and let w =
wn ∈ Bn be the corresponding vertex generated by harmonic update. Consider the
triangular array of “error” events

B(t)
n =

{〈
wn,u

(t)
n

〉
< 0

}
(t = 1, . . . ,mn; n = 1, 2, . . . ),

where the nth row has m = mn elements, and let
{
z
(t)
n

}
be the corresponding trian-

gular array of indicator random variables for these events. Thus,

z(t)n =

{
0 if

〈
wn,u

(t)
n

〉 ≥ 0,

1 if
〈
wn,u

(t)
n

〉
< 0.

Form the row sums Zn,mn
=
∑mn

t=1 z
(t)
n . For each n, Zn,mn

is just the number of

examples u(t) = u
(t)
n (1 ≤ t ≤ mn) which fall into the negative half-space determined

by the vector w = wn generated by harmonic update. Alternatively, for given n,

Zn,mn is the number of examples u(t) = u
(t)
n for which the corresponding inequality

in (1.1) is violated. For each k = 1, . . . ,mn and each n = 1, 2, . . . , define

S(k)
n,mn

=
∑

E
(
z(t1)n . . . z(tk)n

)
=
∑

P
{
B(t1)
n ∩ · · · ∩B(tk)

n

}
,
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where the sum is over all subsets {t1, . . . , tk} of cardinality k drawn from {1, . . . ,mn}.
For each n, the events B

(t)
n (1 ≤ t ≤ mn) are exchangeable, so that each of the

summands above is just Pn,mn(k). We hence obtain

S(k)
n,mn

=

(
mn

k

)
Pn,mn

(k)

for every choice of k and n.
Let us now fix the rate of growth of m = mn with n. Let λ denote any fixed

positive quantity and suppose

mn =

√
n

logn

{
1 +

log log n+ log
(
λ
√

2π
)

logn
+O

(
log log n

(logn)2

)}
.(3.3)

Clearly, mn satisfies the conditions n1/3 � mn � n1/2 as n → ∞. Invoking Asser-
tion 4, it is now simple to verify that

S(1)
n,mn

= mnPn,mn(1) ∼ mnQn,mn =
m2
n√

2πn
exp

{
− n

2m2
n

}
→ λ

as n → ∞. Now, fix any value of k and allow mn to grow as in (3.3). Observe that(
mn

k

) ∼ mk
n

k! as n → ∞. Invoking Assertion 4 again, we hence obtain the asymptotic
estimate

S(k)
n,mn

∼
(
mn

k

)
Qk
n,mn

∼ (mnQn,mn
)k

k!
→ λk

k!
(n→∞).

We can now directly apply Lemma 2.3 to conclude that Zn,mn converges in distribution
to the Poisson distribution with parameter λ. This completes the proof of the Main
Theorem.

Finally, for the rate of growth given in (3.3), P (n,mn) = P{Zn,mn = 0} → e−λ

as n→∞. Now, for any choice of λ > 0, however small, and any choice of 1 > ε > 0,
a sample size of m ≤ (1 − ε)√n/√logn will be eventually dominated by the right-
hand side of (3.3), so that P (n,m) will approach one as n → ∞ by monotonicity.
Conversely, for any choice of λ < ∞, however large, and any choice of 1 > ε > 0, a
sample size of m ≥ (1 + ε)

√
n
/√

logn will eventually dominate the right-hand side
of (3.3), so that, by analogous reasoning, P (n,m) will approach zero as n→∞. This
establishes the corollary to the Main Theorem.
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Abstract. We consider problems in the enumeration of sequences suggested by the problem of
determining the number of ways of performing a piano composition (Klavierstück XI) by Karlheinz
Stockhausen. An explicit formula and a combinatorial proof for the general problem are given.

Key words. Stockhausen, sequences, bijections, sign-reversing involution, Gray codes

AMS subject classification. 05A19

PII. S0895480195288741

The score of the piano work nr. 7 Klavierstück XI by Karlheinz Stockhausen
(1957) [S] consists of 19 fragments of music. The performer is instructed to choose at
random one of these fragments and play it, then choose another, different, fragment
and play that, and so on. If a fragment is chosen that has already been played
twice, the performance ends. It is natural to ask how many different ways there
are of performing this piece and what the expected length of a performance is. The
enumerative results for this problem and some generalizations are given in [RY]; we
show here combinatorial proofs for the generalized Stockhausen numbers.

DEFINITION. An r-Stockhausen sequence is a sequence of symbols from Nn =
{1, 2, . . . , n} such that

(1) adjacent symbols are distinct,
(2) the terminal symbol occurs exactly r times,
(3) all other symbols occur at most r − 1 times.

Let sr(n) be the number of such sequences.
The generating series for cr(n, k), the number of r-Stockhausen sequences of length

k on n symbols, is (see [Y])

Φr(z, u) = uzrL(r−1)
w Θw exp

(
u[tr−1]

1

1− t
ewt/(1+t)

)
,

where u is the exponential marker for the number of available symbols, z is the ordinary
marker for the length of the string, and

L(r)
w f :=

1

r!

∂rf

∂wr

∣∣∣∣
w=1

, Θw wk 7→ k!wk.

Therefore,

(1) sr(n) =

[
un

n!

]
Φr(1, u) = nL(r−1)

w Θw

(
[tr−1]

1

1− t
ewt/(1+t)

)n−1

.

Let the coefficients aj be given by

(2) [tr−1]
1

1− t
ewt/(1+t) = a0 + a1w + a2

w2

2!
+ · · ·+ ar−1

wr−1

(r − 1)!
=: f(w).
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Then

(3) sr(n) = n
∑

b1,b2,...,br−1

(
n− 1

b1, b2, . . . , br−1, n− 1−∑ bi

)

×
r−1∑

j=1

jbj

!

r−1∏
j=1

(ajj!)
bj

(∑r−1
j=1 jbj
r − 1

)

by direct computation. In the case a1 = 0, the multinomial expression does not contain
b1, and the product

∏
(
aj
j! )

bj is over j = 2, 3, . . . , r − 1.
Remarks.
(i) The classical generating function of the Laguerre polynomial sequence is

∑
n≥0

Ln(x)tn =
1

1− t
exp

( −xt
1− t

)
.

Thus, (1) can be expressed in terms of Laguerre polynomials to yield an explicit
expression for aj ’s defined in (2). However, we will derive the explicit expression for
aj ’s from first principles that shed light on the steps leading to a combinatorial proof
for r-Stockhausen numbers.

(ii) About rn terms are in (3).
(iii) Though for each fixed j, aj depends on r, we use only one subscript because

r is clear from the context.
The idea of the proof is first to identify a (multi-) set of sequences on {1, 2, . . . , n}

enumerated by

s+
r (n) = n

∑
b1,b2,...,br−1

(
n− 1

b1, b2, . . . , br−1, n− 1−∑ bi

)r−1∑
j=1

jbj

!

×
r−1∏
j=1

(|aj |j!)bj
(∑r−1

j=1 jbj
r − 1

)
,

the expression obtained from sr(n) by taking |aj | instead of aj . To account for the
negative signs in sr(n), we establish a sign-reversing involution by way of assigning
signs to the objects enumerated by s+

r (n), then establish a bijection between some of
the + objects and all of the − objects. The last step is to identify the + objects that
are fixed by the involution as r-Stockhausen sequences via a simple mapping.

We illustrate the ideas of the proof in the first two Stockhausen numbers.
Proposition 0.1. The number of 3-Stockhausen sequences is

(4) s3(n) = n
n−1∑
j=0

(
n− 1

j

)
(2j)!

2j

(
2j

2

)
.

Proof. Given n symbols, there are n ways of choosing a symbol to be the terminal
symbol that occurs three times. For the remaining n − 1 symbols, there are

(
n−1
j

)
ways of choosing j symbols to use in making (2j)!/2j strings such that each of the
j symbols appears twice with no adjacency restrictions, and

(
2j
2

)
ways of marking

two positions on each such string. The terminal symbol is placed immediately before
the two marked positions and of course at the terminal position of the string, thus
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making n
∑

j

(
n−1
j

)(
2j
2

) (2j)!
2j . By replacing any repeated symbols yy by a single symbol

y, we obtain strings whose adjacent symbols are all distinct, and the correspondence
is one-to-one.

Proposition 0.2. The number of 4-Stockhausen sequences is

(5) s4(n) = n

i+j+k=n−1∑
i,j,k=0

(
n− 1

i, j, k, n− 1− i− j − k

)(
3i + 2j + k

3

)
(3i + 2j + k)!

(3!)i(−2)j
.

Proof. The number of sequences on n symbols such that the terminal symbol
occurs four times nonadjacently and all the other symbols occur at most thrice with
no adjacency restrictions is

n
∑
i,j,k

(
n− 1

i, j, k, n− 1− i− j − k

)
(3i + 2j + k)!

(3!)i(2!)j

(
3i + 2j + k

3

)
.

Let A denote the set of such sequences. We partition A into A+ and A− and
define a sign-reversing involution φ on the elements ofA. We call a sequence σ negative
if

(−1)number of twice repeated symbols in σ

is negative, and A−(⊂ A) contains only the negative sequences. We show that |A+|−
|A−| = {σ|φ(σ) = σ} = s4(n).

Let φ be a map from A onto A. For sequences σ such that nonterminal symbols of
σ occur once or thrice in the form X . . .X . . .X or X . . .XX, φ(σ) = σ. Otherwise σ
has at least one nonterminal symbol that occurs twice or thrice as XXX or XX . . .X.
In order of appearance of such symbols, assign 1 and 0 for twice- and thrice-repeated
symbols, respectively, thus obtaining a k-digit binary number where k is the number
of symbols that are twice repeated or thrice repeated with the patterns XXX and
XX . . .X. According to the ordering of reflected Gray codes, φ takes the binary
number associated with a given sequence σ and maps the 2nth (respectively, (2n +
1)th) binary number to the (2n + 1)th (respectively, 2nth) binary number. For the
entry in the binary number where a change takes place, use the scheme for 0↔ 1

XXX ↔ XX, XX . . .X ↔ X . . .X

to replace the occurrence of the symbol corresponding to the change of the digit in
the binary number. Clearly φ is a sign-reversing involution. Hence |A+| − |A−| =
{σ|φ(σ) = σ}. Since the fixed points of φ are the sequences where nonterminal
symbols occur once or thrice in X . . .X . . .X or X . . .XX, the identification of XX
to X yields all 4-Stockhausen sequences.

The ideas common to both proofs are first the grouping of ordered partitions of
1, 2, . . . , r with the same number of parts, and the identification of blocks of the same
symbol to one occurrence of the symbol after cancellation of positive and negative
objects. The properties of a1, a2, . . . , ar guarantee that after grouping the partitions of
1, 2, . . . , r which have the same number of parts, exactly one partition of every number
of parts with multiplicity 1 remains. We put the properties for the ais together in the
lemma following the definition.

DEFINITION. Let Mr (respectively, M−
r ) be the r×r upper triangular matrix such

that the (i, j)th entry is
(
j
i

)
(respectively, (−1)i+j

(
j
i

)
).
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Note that MrM
−
r = M−

r Mr = I(r×r) [R, Chapter 1].

Lemma 0.3. Let a0 + a1w + a2
w2

2! + · · ·+ ar
wr

r! = [tr] 1
1−te

wt/(1+t). Then a0 = 1,

(6) M−
r


1
1
...
1

 =


a1

a2

...
ar

 , and Mr


a1

a2

...
ar

 =


1
1
...
1

 .

The first part of (6) yields

ai =
r∑

j=0

(−1)i+j

(
j

i

)
, (i = 1, 2, . . . , r),

a more explicit expression than the original definition of ai.
Proof. Since [tr] 1

1−te
wt/(1+t) is the sum of the coefficients of t0, t1, . . . , tr in the

expression ewt/(1+t), and

ewt/(1+t) = 1 + w

(
t

1 + t

)
+

w2

2!

(
t

1 + t

)2

+ · · ·

= 1 + w(t− t2 + t3 − · · · ) +
w2

2!
(t2 − 2t3 + 3t4 − · · · ) + · · · ,

the first result follows upon expanding ( t
1+t )

k. The second equation follows from the

fact that Mr and M−
r are inverses of each other.

Hence, after grouping ordered partitions according to the number of parts and
taking signed multiplicity (a1, a2, . . . , ar) into consideration, we get exactly one repre-
sentative of every number of parts. Thus the number sr(n) of r-Stockhausen sequences
is the number of sequences such that the final symbol occurs r times in nonadjacent
places, and all other symbols occur in the fashion prescribed by what remains after
grouping. Replacing maximal blocks of repeated symbols by one symbol gives the
desired Stockhausen sequences.

In the proof for s4(n), reflected Gray code listing is used to match + and −
sequences. In the next example, a proof of s5(n) uses Gray codes with subscripts to
account for the multiplicity. We show the grouping for proving s6(n) and sketch the
proof.

Proposition 0.4. The number of 5-Stockhausen sequences is

(7) s5(n) = n

i+j+k=n−1∑
i,j,k=0

(
n− 1

i, j, k, n− 1− i− j − k

)
× (4i + 3j + 2k)!

4!i

(−2

3!

)j (
2

2!

)k (
4i + 3j + 2k

4

)
.

Proof. Let M be a multiset of sequences on n symbols such that
(1) the terminal symbol occurs 5 times nonadjacently,
(2) all other symbols occur 0, 2, 3, or 4 times without adjacency restrictions,
(3) the multiplicity of a sequence is

2number of twice and thrice repeated symbols.
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Then the cardinality ofM is s+
5 (n). DefineMab ⊂M to be the multiset of sequences

such that at least one symbol occurs with a pattern in

Π = {(2), (1, 1), (3), (2, 1), (1, 2), (1, 1, 1), (2, 2), (1, 3), (1, 2, 1), (1, 1, 2)}.
For each sequence inMab of multiplicity 2k where l(≥ k) symbols occur with patterns
in Π, associate a subscripted binary number for each copy of the sequence as follows:
assign from left to right according to the occurrence of a symbol 1 to thrice occurring
symbols and 0 to the others with patterns in Π, and subscripts a and b to 1 and 0
according to the scheme

µ :=


(2) 7→ 0a and 0b,

(1, 1) 7→ 0a and 0b,

(3) 7→ 1a and 1b,

(2, 1) 7→ 1a and 1b,

(1, 2) 7→ 1a and 1b,

(1, 1, 1) 7→ 1a and 1b,

(2, 2) 7→ 0a,

(1, 3) 7→ 0b,

(1, 2, 1) 7→ 0a,

(1, 1, 2) 7→ 0b.


Thus we have distinguished each copy of the same sequence with multiplicity 2k

by associating to the copies 2k l-digit subscripted binary numbers. Call the set of
subscripted binary numbers for a particular sequence σ, Mσ

ab.
We assign + and − signs to sequences inM and define a sign-reversing involution

φ :M 7→M. The sequences in M\Mab are + objects. For σ ∈ Mab, the sign of σ
is

(−1)number of thrice repeated symbols.

Let φ :M 7→M be as follows: φ(σ) = σ if σ ∈M\Mab; otherwise considerMσ
ab, the

set of binary numbers with subscripts for some sequence σ ∈ Mab. According to the
reflected Gray code order, and for all elements ofMσ

ab, φ maps the 2nth (respectively,
(2n+1)th) binary number to the (2n+1)th (respectively, 2nth) binary number keeping
the subscripts unchanged. Then for each binary number with subscripts, use the map

(2)
a←→
b

(3)

(1, 1)
a←→
b

(2, 1)

(1, 3)
b←→ (1, 2)

a←→ (2, 2)

(1, 1, 2)
b←→ (1, 1, 1)

a←→ (1, 2, 1)


to obtain a sequence τ with a prescribed subscripted binary number in Mτ

ab. The
map φ is a sign-reversing involution because the sign of a sequence is the number of
1’s in the binary number, and Gray code listing is used.

Therefore s5(n) is the cardinality of the sequences fixed by φ, namely,M\Mab.
But such sequences have multiplicity 1, and all nonterminal symbols occur not at all
or four times in the fashion {(4), (3,1), (2,1,1), (1,1,1,1)}. Replacing maximal blocks
of symbols y . . . y by y, we get all 5-Stockhausen sequences.

The following is a grouping of ordered partitions for s6(n). Note that signed
ordered partitions are cancelled in each group, and exactly one multiplicity-one par-
tition of every number of parts remains. In each group, partitions with a negative
multiplicity are assigned 1, and the others 0. The number of subscripts for a group is
the number of negative (or positive) partitions. Finally, replacing maximal blocks of
symbols y . . . y by y, we get all 6-Stockhausen sequences.
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Multiplicity Ordered partitions
a1 = 1 1
a2 = −2 2 1,1
a3 = 4 3 2,1 1,1,1

1,2
a4 = −3 4 3,1 2,1,1 1,1,1,1

2,2 1,2,1
1,3 1,1,2

a5 = 1 5 4,1 1,4 3,1,1 1,2,2 2,1,1,1 1,1,1,1,1
3,2 1,3,1 1,2,1,1
2,3 1,1,3 1,1,2,1

2,2,1 1,1,1,2
2,1,2
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STEINER 2-EDGE CONNECTED SUBGRAPH POLYTOPES ON
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Abstract. Given a graph G = (V,E) with weights on its edges and a set of specified nodes
S ⊆ V , the Steiner 2-edge survivable network problem is to find a minimum weight subgraph of G
such that between every two nodes of S there are at least two edge-disjoint paths. This problem has
applications to the design of reliable communication and transportation networks. In this paper, we
give a complete linear description of the polytope associated with the solutions to this problem when
the underlying graph is series-parallel. We also discuss related polyhedra.

Key words. Steiner 2-edge connected subgraphs, polytopes, series-parallel graphs

AMS subject classifications. 05C85, 90C27

PII. S0895480193259813

1. Introduction. A graph G = (V,E) is said to be k-edge (respectively, k-node)
connected (1 ≤ k ≤ |V |− 1) if for any pair of nodes i, j ∈ V there are at least k edge-
disjoint (respectively, node-disjoint) paths from i to j. Let G = (V,E) be a graph and
w ∈ RE a weight vector associated with the edges of G. The weight of a subgraph
of G is the sum of the weights of its edges. Given a subset of distinguished nodes
S ⊆ V , called terminals, the Steiner 2-edge survivable network problem (STESNP)
is the problem of finding a minimum weight subgraph of G spanning S such that
between every two nodes i, j of S there are at least two edge-disjoint paths between
i and j. The STESNP has applications to the design of reliable communication and
transportation networks [5], [25], [26].

In this paper, we discuss the polytope associated with the solutions to this prob-
lem. We give a complete linear description of this polytope when the graph is series-
parallel.

The STESNP is NP-hard in general. It has been shown to be polynomially
solvable in some special cases of graphs. In [28], [29], Winter devised linear time algo-
rithms to solve the STESNP in Halin graphs [28] and series-parallel graphs [29]. Ac-
tually, Winter considers the following more general problem called the general Steiner
problem: Given a set S ⊆ V and an integer (|S|, |S|)-matrix R = (Rij) (defining
certain pairwise connectivity requirements), find a minimum weight subgraph span-
ning S such that between every pair (i, j) of nodes in S there are at least Rij edge
(node)-disjoint paths. He showed that this problem can be solved in linear time if
the graph is series-parallel or a Halin graph. This problem has been considered later
by Grötschel and Monma [18] and Grötschel, Monma, and Stoer [19], [20], [21] in
the framework of a more general model. In particular, Grötschel, Monma, and Stoer
studied polyhedral aspects of that model and devised cutting plane algorithms.

Given a graph G = (V,E) and a node subset W ⊆ V of G, the set of edges having
one endnode in W and the other in V \W is called a cut of G and denoted by δ(W ).
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1996.
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If v ∈ V is a node of G, then we write δ(v) for the cut δ({v}) and we say that δ(v) is
defined by v. If a cut contains k edges, it is also called a k-edge cut set.

Let G = (V,E) be a graph. Let x(e) be a variable associated with each edge e
and for an edge subset F ⊆ E, the 0-1 vector xF ∈ RE with xF (e) = 1 if e ∈ F
and xF (e) = 0 otherwise is called the incidence vector of F . For any subset of edges
F ⊆ E, we define x(F ) =

∑
e∈F x(e). If W ⊆ V , then we denote by E(W ) the set of

edges having both endnodes in W . The STESNP can be formulated as the following
integer linear program.

Min wx

subject to

0 ≤ x(e) ≤ 1 for all e ∈ E,(1.1)

x(δ(W )) ≥ 2 for all W ⊆ V, S 6= W
⋂

S 6= ∅,(1.2)

x(e) ∈ {0, 1} for all e ∈ E.(1.3)

Let

STESNP(G,S) = conv{x ∈ RE | x satisfies (1.1), (1.2), and (1.3)}
be the polytope associated with the STESNP.

Using a polynomial time algorithm for the maximum flow problem [10], [12] and
the famous maximum flow-minimum cut theorem (cf. Ford and Fulkerson [14]), one
can solve in polynomial time the separation problem for inequalities (1.2) (the problem
that consists to determine whether a given solution x satisfies the inequalities (1.2),
and if not, to find an inequality among (1.2) which is violated by x). This implies,
from the ellipsoid method [17], that there is a polynomial time algorithm for solving
STESNP whenever STESNP(G,S) is completely described by the inequalities (1.1)
and (1.2). Also one can obtain an equivalent extended compact formulation for the
system given by (1.1) and (1.2) using the max flow-min cut theorem. This yields a
further polynomial time algorithm for solving the STESNP when STESNP(G,S) is
described by these inequalities.

In this paper, we will show that if the graph is series-parallel, then the polytope
STESNP(G,S) is given by inequalities (1.1) and (1.2).

To the best of our knowledge, the STESNP(G,S) has not been considered in the
literature. However some special cases received much attention. In particular, the
case where S = V has been extensively investigated.

For S = V , Mahjoub [22] gave a complete description of STESNP(G,S) in the
case where the graph is series-parallel and he introduced a large class of facet defining
inequalities for the polytope STESNP(G,S) called the odd-wheel inequalities. This
class of facet defining inequalities has been generalized by Grötschel, Monma, and
Stoer [19] for more general polyhedra. In [2] Barahona and Mahjoub characterized
the polytope STESNP(G,S) for Halin graphs. In [18] Grötschel and Monma discuss
a general model related to the design of minimum-cost survivable networks. They
discuss polyhedral aspects of this model and identify basic facets of the associated
polyhedra. Grötschel, Monma, and Stoer [19], [20], [21] describe further classes of
facets of these polyhedra, develop a cutting plane algorithm for the associated problem
and present computational results. A complete survey of that model and related work
is given in Stoer [26].

Coullard, Rais, Rardin, and Wagner [7], [8], [9] consider the Steiner 2-node con-
nected subgraph polytope, that is the polytope, the extreme points of which are the
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incidence vectors of the edge sets of the 2-node connected subgraphs of G, spanning S.
They give a complete description of that polytope when the graph is series-parallel [7].
In [9] they characterize the dominant of that polytope for the graphs noncontractible
to W4 (the wheel on five nodes). In [8] they devise linear time algorithms for the
Steiner 2-node connected subgraph problem in the graphs noncontractible to W4 and
Halin graphs.

Related work can also be found in [4], [6], [13]. In [6] Cornuéjols, Fonlupt, and
Naddef studied some related polyhedra to STESNP(G,S). They showed that when
S = V and G is series-parallel, the polyhedron given by the nonnegativity inequalities
and the cut-inequalities is integral. Fonlupt and Naddef [13] characterized the class
of graphs for which the system given by these inequalities defines the convex hull of
the incidence vectors of the tours of G (a tour is a cycle going at least once through
each node). Chopra [4] considers the polyhedron, the extreme points of which are the
incidence vectors of the edge sets of the k-edge connected spanning subgraphs of G,
when multiple copies of an edge may be considered. He characterized this polyhedron
for the class of outerplanar graphs when k is odd.

In the next section, we describe the polytope STESNP(G,S) for series-parallel
graphs, and we give some structural properties for the system of inequalities defining
that polytope. In section 3 we prove our main result. Concluding remarks are given in
section 4. The remainder of this section is devoted to more definitions and notations.

The graphs we consider are finite, undirected, connected, and may have multiple
edges and loops. We denote a graph by G = (V,E) where V is the node set and E is
the edge set of G. If e is an edge with endnodes u and v, then we write e = uv.

A graph G is said to be contractible to a graph H if H may be obtained from G by
a sequence of elementary removal and contractions of edges. A contraction consists
of identifying a pair of adjacent vertices and of preserving all other vertices and of
preserving all other adjacencies between vertices. A graph is called series-parallel [11]
if it is not contractible to K4 (the complete graph on four nodes). Note that if G is a
series-parallel graph and G is contractible to a graph H, then H is series-parallel. It
is easily seen that series-parallel graphs have the following property.

Lemma 1. Any connected series-parallel graph with more than two nodes and
without nodes defining 2-edge cut sets contains multiple edges.

If G = (V,E) is a graph and W ⊆ V is a subset of nodes, we denote by G(W )
the subgraph of G induced by W . For W, W ′ ⊆ V, (W, W ′) denotes the set of edges
having one endnode in W and the other in W ′. If F ⊆ E, V (F ) will denote the set
of the nodes of the edges of F . If W ⊆ V , we let W = V \W . Given a constraint
ax ≥ α, a ∈ RE and a solution x∗, we will say that ax ≥ α is tight for x∗ if ax∗ = α.
If G = (V,E) is a graph and e ∈ E, G− e will denote the graph obtained from G by
removing e.

2. The polytope STESNP(G,S) of a series-parallel graph. Let G = (V,E)
be a graph and S ⊆ V a set of terminals. We will suppose |S| ≥ 2, (if |S| = 1, then
an optimal solution to the problem STESNP would consist of the edges of negative
weights). Let P (G,S) denote the polytope given by inequalities (1.1) and (1.2). These
inequalities will be called, respectively, trivial and Steiner-cut inequalities. A cut
corresponding to a Steiner-cut inequality will be called Steiner-cut. Given a Steiner-
cut δ(W ) and a solution x for which the corresponding Steiner-cut inequality is tight,
we will also say that δ(W ) is a Steiner-cut tight for x.

Our main result is the following.
Theorem 2. If G = (V,E) is a series-parallel graph and S ⊆ V a set of terminals,
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then STESNP(G,S) = P (G,S).
The proof of this theorem will be given in the following section. In what follows,

we are going to discuss some properties of the extreme points of the polytope P (G,S).
These properties will be useful in the sequel. First we give a technical lemma.

Lemma 3. Let x be a solution of P (G,S). If δ(W1) and δ(W2) are two Steiner-
cuts tight for x and (W1 ∩W2) ∩ S 6= ∅ and (W1 ∪W2) ∩ S 6= ∅ (respectively, (W1 \
W2)∩S 6= ∅ and (W2 \W1)∩S 6= ∅), then δ(W1 ∩W2) and δ(W1 ∪W2) (respectively,
δ(W1\W2) and δ(W2\W1)) are two Steiner-cuts tight for x, and x(W1\W2, W2\W1) =
0 (respectively, x(W1 ∩W2,W1 ∪W2) = 0.

Proof. Since δ(W1) and δ(W2) are tight for x we have

4 = x(δ(W1)) + x(δ(W2))

= x(δ(W1 ∩W2)) + x(δ(W1 ∪W2)) + 2x(W1 \W2,W2 \W1)

≥ x(δ(W1 ∩W2)) + x(δ(W1 ∪W2))

≥ 4.

The two last inequalities follow from the fact that x(e) ≥ 0 for all e ∈ E and
δ(W1 ∩W2) and δ(W1 ∪W2) are both Steiner-cuts. This implies that all the above
inequalities are satisfied at equality. Consequently, x(δ(W1∩W2)) = x(δ(W1∪W2)) =
2 and x(W1 \W2,W2 \W1) = 0.

If (W1 \ W2) ∩ S 6= ∅ and (W2 \ W1) ∩ S 6= ∅, then the cuts δ(W1 \ W2) and
δ(W2 \W1) are Steiner-cuts and in a similar way, we obtain that these cuts are tight
for x and x(W1 ∩W2,W1 ∪W2) = 0.

If x is an extreme point of P (G,S), then there exist two edge subsets, E0, E1 ⊆ E
of G and a family of Steiner-cuts {δ(Wi), i = 1, ..., l} such that x is the unique solution
of the system x(e) = 0 for all e ∈ E0,

x(e) = 1 for all e ∈ E1,
x(δ(Wi)) = 2 for i = 1, . . . , l,

(2.1)

where |E0|+ |E1|+ l = |E|.
Lemma 4. Let x ∈ RE be a solution of P (G,S) such that x(e) > 0 for all e ∈ E.

If δ(W ) is a Steiner-cut tight for x, then G(W ) and G(W ) are both connected.

Proof. Suppose, for instance, that G(W ) is not connected. Let W
1
, W

2
be

a partition of W such that (W
1
,W

2
) = ∅. Since G is connected, it follows that

(W,W
1
) 6= ∅ 6= (W,W

2
). From the hypothesis we then have

x(W,W
1
) > 0, x(W,W

2
) > 0.(2.2)

In addition, since W ∩ S 6= ∅, we may, without loss of generality (w.l.o.g.), assume

that W
1 ∩ S 6= ∅. Hence δ(W

1
) is a Steiner-cut of G. However, as

x(δ(W )) = x(W,W
1
) + x(W,W

2
) = 2,

it follows by (2.2) that x(δ(W
1
)) = x(W,W

1
) < 2, a contradiction.

The following remark will be used frequently in the next section.
Remark 5. Let G′ = (V ′, E′) be a graph obtained from G by contracting a

connected edge subset F ⊆ E. Let S′ = (S \ V (F )) ∪ {s′} if S ∩ V (F ) 6= ∅ and
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S′ = S if not, where s′ is the node that arises in the contraction of F . Let x′ be the
restriction of x on G′. Then x′ is a solution of P (G′, S′).

Proof. Obviously, x′ satisfies the inequalities (1.1). Furthermore, since any
Steiner-cut δ(W ) of G′ with respect to S′ is a Steiner-cut of G with respect to S,
it follows that inequalities (1.2) are also satisfied by x′.

3. Proof of Theorem 2. The proof is by induction on the number of edges.
The theorem is trivially true for a graph with no more than two edges. Suppose it is
true for any series-parallel graph with no more than m edges and suppose G contains
exactly m+1 edges. Let us assume that, on the contrary, STESNP(G,S) 6= P (G,S).
And let x be a fractional extreme point of P (G,S). Also let us assume that, under
the induction hypothesis, |S| is maximum. That is, for any series-parallel graph
G′ = (V ′, E′) with |E′| = m + 1 and a set of terminals S′ such that |S′| > |S|, we
have STESNP(G′, S′) = P (G′, S′). We have the following lemmas:

Lemma 6. x(e) > 0 for all e ∈ E.

Proof. If e0 is an edge such that x(e0) = 0, then let x′ be the point given by
x′(e) = x(e) for all e ∈ E \ {e0}. Clearly, x′ belongs to P (G− e0). Moreover x′ is an
extreme point of P (G− e0). Since x′ is fractional, we have a contradiction.

Lemma 7. Let x be an extreme point of P(G,S) and g = uv an edge of G such
that x(g) > 0. Then there exist at least two constraints containing g in the system
(2.1) defining x.

Proof. System (2.1) must be of full rank and therefore there must exist at least one
constraint containing g in the system (2.1). So, let us assume that there exists exactly
one constraint of system (2.1) that contains g. Let (2.1)′ be the system obtained from
(2.1) by deleting this constraint. Let x′ ∈ Rm be the solution given by x′(e) = x(e)
for all e ∈ E \ {g}. We claim that x′ is fractional. In fact, this is clear if x(g) = 1. If
not, then g belongs to a tight Steiner-cut and thus there must exist at least one more
edge in G with a fractional value, which implies that x′ is fractional. Moreover, x′ is
the unique solution of the system (2.1)′. Now let G′ be the graph obtained from G
by contracting g. Let S′ = (S −{u, v})⋃{w} if g ∈ E(S) and S′ = S if not, where w
is the node arising from the contraction of g. By Remark 5 we have x′ ∈ P (G′, S′).
Furthermore, note that the system (2.1)′ is included in P (G′, S′). This implies that
x′ is an extreme point of P (G′, S′). Since G′ is series-parallel and has less edges than
G this contradicts the induction hypothesis and thus our lemma is proved.

Lemma 8. G does not contain a node defining a 2-edge cut set.

Proof. Suppose that G contains a node v such that δ(v) = {e1, e2} where e1 = vw1

and e2 = vw2. We will distinguish two cases.

Case 1. x(e1) = x(e2).

Let G′ be the graph obtained from G by contracting e1. Clearly, G′ is series-
parallel. Let x′ be the restriction of x on G′ and let S′ = (S \ {v, w1}) ∪ {v′} if
{v, w1} ∩ S 6= ∅ and S′ = S if not, where v′ is the node that arises in the contraction
of e1. By Remark 5, we have that x′ belongs to P (G′, S′). We claim that x′ is an
extreme point of P (G′, S′). In fact, if this is not the case, then there are two solutions
y1 and y2 of P (G′, S′), y1 6= y2 such that x′ = 1

2 (y1 + y2). Let x1 and x2 be the
solutions given by

x1(e) =

{
y1(e) if e ∈ E \ {e1},
y1(e2) if e = e1,
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and

x2(e) =

{
y2(e) if e ∈ E \ {e1},
y2(e2) if e = e1.

We claim that x1 and x2 both belong to P (G,S). Clearly, both x1 and x2 satisfy
the trivial inequalities. In what follows we show that they also satisfy inequalities
(1.2). We show this for x1, the proof for x2 is identical.

Let δ(W ) be a Steiner-cut of G. If e1 /∈ δ(W ), then δ(W ) is a Steiner-cut of G′

with respect to S′ and then x1(δ(W )) = y1(δ(W )) ≥ 2. So suppose that e1 ∈ δ(W ).
Also, suppose, w.l.o.g, that v ∈W . Hence w1 ∈W . We consider two cases.

Case 1.1. v ∈ S.
Since δ(v) is a Steiner-cut, it follows from inequalities (1.1) and (1.2) that x(e1) =

x(e2) = 1. Hence

x1(e1) = x1(e2) = 1.(3.1)

We claim that w2 ∈ S. In fact, first remark that x(δ(Z)) ≥ 2 holds for every
cut δ(Z) such that S ⊆ Z and w2 ∈ Z. This is clear if w1 (and w2) belong to
Z. Now suppose that w1 ∈ Z. Let Z ′ = Z \ {v}. Since |S| ≥ 2 and v ∈ S, we
have that Z ′ ∩ S 6= ∅ and Z ′ ∩ S 6= ∅. Thus δ(Z ′) is a Steiner-cut of G. Moreover,
we have δ(Z ′) = (δ(Z) \ {e2}) ∪ {e1}. Since x(e1) = x(e2) it then follows that
x(δ(Z)) = x(δ(Z ′)) ≥ 2.

Now if w2 /∈ S, then let S = S ∪{w2}. From the above remark, we have that x is
an extreme point of P (G,S). Since x is fractional and |S| < |S|, this contradicts the
maximality of S.

Thus w2 ∈ S. Now if e1, e2 ∈ δ(W ) then by (3.1), we have x1(δ(W )) ≥ 2. If
not, since e1 ∈ δ(W ), we have {e1, e2} ∩ δ(W ) = {e1}, and thus w2 ∈ W . Let
W ′ = (W \ {w1}) ∪ {v′}. As v′ and w2 belong to S, δ(W ′) is a Steiner-cut of G′.
Since δ(W ′) = (δ(W ) \ {e1}) ∪ {e2}, it follows by (3.1) that

x1(δ(W )) = x1(δ(W ′)) = y1(δ(W ′)) ≥ 2.(3.2)

Case 1.2. v /∈ S.
First of all note that every constraint of type (1.2), with e1, e2 ∈ δ(W ) is re-

dundant in P (G,S). Since w1 ∈ W and v ∈ W we may then suppose that {e1, e2} ∩
δ(W ) = {e1}. By setting W ′ = (W \{w1})∪{v′}, we obtain that δ(W ′) is a Steiner-cut
in G′ and that (3.2) holds.

In both cases, x1 satisfies the inequality associated with δ(W ), and thus x1 ∈
P (G,S). Consequently, x1, x2 ∈ P (G,S). But x = 1

2 (x1 + x2). Since x1 6= x2, this
contradicts the extremality of x.

Case 2. x(e1) 6= x(e2).
Without loss of generality, we may suppose that x(e1) > x(e2). Thus e1 cannot

belong to any Steiner-cut tight for x. In fact, first note that v cannot be in S.
Otherwise δ(v) would be a Steiner-cut not satisfied by x which is impossible. Now
suppose that there is a Steiner-cut δ(W ) tight for x with e1 ∈ δ(W ). W.L.O.G., we
may suppose v ∈W . Then δ(W ′) where W ′ = W \{v} is a Steiner-cut of G. Moreover,
x(δ(W ′)) = x((δ(W ) \ {e1}) ∪ {e2}) = 2 − x(e1) + x(e2) < 2, a contradiction. As
a consequence, e1 belongs to only one constraint of system (2.1), namely x(e1) = 1.
But this contradicts Lemma 7 and our lemma is proved.

Lemma 9. G cannot contain two multiple edges f and g such that x(f) =
x(g) = 1.
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Proof. Suppose the contrary. Let G′ = (V ′, E′) be the graph obtained from G by
contracting the edges f and g. Clearly, G′ is series-parallel. Let S′ = (S\{u, v})∪{w},
if S ∩ {u, v} 6= ∅ and S′ = S if not, where u and v are the endnodes of f and g and
w is the node arising from the contraction of f and g. Let x′ ∈ Rm−1 be the solution
given by x′ = x(e) for all e ∈ E \ {f, g}. By Remark 5, x′ is a solution of P (G′, S′).
Moreover x′ is an extreme point of P (G′, S′). Indeed, if this is not the case, then there
must exist two solutions y1 and y2, y1 6= y2, of P (G′, S′) such that x′ = 1

2 (y1 + y2).

Now consider the solutions y1′
, y2′ ∈ Rm+1 given by

y1′
(e) =

{
y1(e) if e ∈ E \ {f, g},
1 if e ∈ {f, g},

and

y2′
(e) =

{
y2(e) if e ∈ E \ {f, g},
1 if e ∈ {f, g}.

It is clear that y1′
and y2′

both belong to P (G,S). Also we have that x = 1
2 (y1′

+y2′
), a

contradiction. Consequently, x′ is an extreme point of P (G′, S′). Since x′ is fractional
and |E′| < |E|, this contradicts the induction hypothesis.

Lemma 10. G does not contain two multiple edges f and g such that x(f) = 1
and 0 < x(g) < 1.

Proof. Let us suppose the contrary. Let u and v be the endnodes of f and g.
Since x(g) is fractional, there must exist a Steiner-cut δ(W1), W1 ⊂ V , tight for x,
and containing g (and f). From Lemma 4, it follows that G(W1) and G(W 1) are both
connected. We consider two cases.

Case 1. |W1| ≥ 2, |W 1| ≥ 2.
Let G1 and G2 be the graphs obtained from G by contracting W1 and W 1,

respectively. Since G(W1) and G(W 1) are connected, both graphs G1 and G2 are
series-parallel. Let S1 = (S ∩W 1) ∪ {s1} and S2 = (S ∩W1) ∪ {s2} where s1 and
s2 are the nodes arising from the contractions of W1 and W 1, respectively. Since
G1 and G2 contain less edges than G, by the induction hypothesis, P (G1, S1) and
P (G2, S2) are both integral. Let x1 and x2 be the restrictions of x on G1 and G2,
respectively. By Remark 5, x1 and x2 are solutions of P (G1, S1) and P (G2, S2),
respectively. Hence there must exist two integral solutions y1 and y2 of P (G1, S1)
and P (G2, S2) such that every constraint of P (G1, S1) (respectively, P (G2, S2)) that
is tight for x1 (respectively, x2) is also tight for y1 (respectively, y2). In particular
we have y1(δ(W1)) = y2(δ(W1)) = 2 and y1(f) = y2(f) = 1. Moreover, since 0 <
x1(g) = x2(g) = x(g) < 1, y1 and y2 can be chosen so that y1(g) = y2(g) = 1.
Consequently, y1(δ(W1) \ {f, g}) = y2(δ(W1) \ {f, g}) = 0. Now consider the solution
x∗ ∈ Rm+1 given by

x∗(e) =


y1(e) if e ∈ E(W 1),
y2(e) if e ∈ E(W1),
1 if e ∈ {f, g},
0 otherwise.

We claim that every constraint of P (G,S) that is tight for x is also tight for x∗.
Let e ∈ E such that x(e) = 1. Then e belongs either to E(W1) or E(W 1) or

e = f . If e ∈ E(W1) (respectively, e ∈ E(W 1)) then, x∗(e) = y2(e) = x2(e) = 1
(respectively, x∗(e) = y1(e) = x1(e) = 1). From Lemma 6 it then follows that every
inequality of type (1.1) that is tight for x is also tight for x∗.

Consider now a Steiner-cut δ(W ) tight for x.
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(a) If W ⊆ W1, then x(δ(W )) = x2(δ(W )) = y2(δ(W )) = 2. Since x∗(δ(W )) =
y2(δ(W )), we obtain that δ(W ) is tight for x∗.

(b) If W ⊆W 1, we obtain similarly that δ(W ) is tight for x∗.
(c) Suppose that W 6⊂W1, W1 6⊂W and W ∩W1 6= ∅.

(c.1) Consider first the case where at least one of the sets (W1 \W ) ∩ S and
(W \W1) ∩ S is empty. Since both δ(W ) and δ(W1) are Steiner-cuts,
it follows that (W1 ∩W ) ∩ S 6= ∅ and (W1 ∪W ) ∩ S 6= ∅. Hence by
Lemma 3, δ(W1 ∩W ) and δ(W1 ∪W ) are both Steiner-cuts tight for x
and x(W1\W,W \W1) = 0. By Lemma 6, this implies that (W1\W,W \
W1) = ∅. Furthermore, since (W1 ∩W ) ⊂ W1, and (W1 ∪W ) ⊂ W 1,
from Cases (a) and (b) above, it follows that δ(W1∩W ) and δ(W1 ∪W )
are both tight for x∗. Thus we have

x∗(δ(W )) = x∗(δ(W1∩W ))+x∗(δ(W1 ∪W ))−x∗(δ(W1)) = 2+2−2 = 2.

And the constraint x(δ(W )) ≥ 2 is tight for x∗.
(c.2) If (W1 \W ) ∩ S 6= ∅ and (W \W1) ∩ S 6= ∅, then by Lemma 3 we have

that δ(W1 \W ) and δ(W \W1) are both Steiner-cuts tight for x and
x(W1 ∩W,W1 ∪W ) = 0. Using this, we obtain in a similar way as in
c.1) that x(δ(W ) ≥ 2 is also tight for x∗.

Consequently, every constraint of P (G,S) that is tight for x is also tight for x∗. Since
x 6= x∗, this contradicts the fact that x is an extreme point of P (G,S).

Case 2. |W1| = 1.
By Lemma 7, there must exist a further Steiner-cut δ(W2) tight for x and con-

taining g (and f). If |W2| ≥ 2, |W 2| ≥ 2 then Case 1 applies. Thus let us assume, for
instance, that |W2| = 1. Hence we may suppose that W1 = {u} and W2 = {v}. This
implies that (V \ {u, v}) ∩ S = ∅. Otherwise δ(V \ {u, v}) would be a Steiner-cut not
satisfied by x, a contradiction. Hence any Steiner-cut of G contains both edges f and
g. Furthermore, note that every Steiner-cut tight for x contains only one edge with
integer value, namely f . Now consider the solution x̄ ∈ RE defined as

x̄(e) =
{

1 if x(e) = 1 or e = g,
0 if not.

We have that x̄ ∈ P (G,S). Moreover any inequality of P (G,S) which is tight for x
is also tight for x̄. Since x 6= x̄, this contradicts the fact that x is an extreme point of
P (G,S), which achieves the proof of our lemma.

From Lemmas 1, 8, 9, and 10 it follows that G contains two multiple edges f and
g such that 0 < x(f) < 1 and 0 < x(g) < 1. Let x′ be the solution such that

x′(e) =

x(e) + ε if e = g,
x(e)− ε if e = f ,
x(e) otherwise,

where ε is a scalar sufficiently small. Since any cut of G either contains both edges
f and g or none of them, it follows that x′ is also a solution of system (2.1). Since
x 6= x′, we have a contradiction, and the proof of our theorem is complete.

4. Concluding remarks. We have studied the Steiner 2-edge survivable net-
work problem and have given a complete linear description of the associated polytope
when the underlying graph is series-parallel. We have shown that in this case, the
polytope is given by the trivial inequalities and the Steiner cut inequalities.
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The following related problem, called the Steiner 2-edge connected subgraph prob-
lem (STECSP) has also been studied. Given a graph G = (V,E) with weights on
its edges and a set of terminals S ⊆ V , find a minimum 2-edge connected subgraph
of G, spanning S. Note that any solution of STECSP is also a solution of STESNP.
Moreover, if the weights are positive, then an optimal solution of STESNP is also an
optimal solution of STECSP. And if S = V , then both problems coincide.

As the STESNP, the STECSP is NP-hard in general. Wald and Colbourn [27]
showed that the STECSP can be solved in polynomial time in outerplanar graphs.
Also from [24], [29] it can be shown that this problem is polynomially solvable in the
more general class of series-parallel graphs.

The STECSP has also been studied by Monma, Munson, and Pulleyblank [23]
in the metric case, that is when the underlying graph G = (V,E) is complete and
the weight function satisfies the triangle inequality (i.e., w(e1) ≤ w(e2) + w(e3) for
every three edges e1, e2, e3 defining a triangle in G). In particular, Monma, Munson,
and Pulleyblank showed that in this case the weight of a minimum 2-edge connected
spanning subgraph in (S,E(S)) is at most 4

3 times the weight of a minimum 2-edge
connected subgraph of G, spanning S. Further structural properties and worst case
analysis are given in Frederickson and Ja’Ja’ [15], Bienstock, Brickell, and Monma [3]
and Goemans and Bertsimas [16].

If (W,F ), W ⊆ V , is a 2-edge connected subgraph of G, spanning S, then xF ,
the incidence vector of F satisfies the following inequalities:

x(δ(W ))− 2x(e) ≥ 0 for all W ⊆ V, S ⊆W, e /∈ E(W ).(4.1)

Inequalities (4.1) express the fact that for a cut δ(W ) that leaves S on one side, any
2-edges connected subgraph spanning S and containing an edge from E \E(W ) must
contain at least two edges from δ(W ).

Let STECSP(G,S) be the polytope associated with the STECSP, that is, the
convex hull of the incidence vectors of the edge sets of all the 2-edge connected sub-
graphs of G spanning S. Let Q(G,S) be the system given by inequalities (1.1), (1.2),
and (4.1). We have the following result; its proof uses similar techniques as that of
Theorem 2.

Theorem 11. If G = (V,E) is a series-parallel graph and S ⊂ V a set of
terminals, then STECSP(G,S)=Q(G,S).

Proof. For the proof, see [1].
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Abstract. This is a sequel to a previous paper entitled The Order Dimension of Convex
Polytopes, by the same authors [SIAM J. Discrete Math., 6 (1993), pp. 230–245]. In that paper, we
considered the poset PM formed by taking the vertices, edges, and faces of a 3-connected planar
map M, ordered by inclusion, and showed that the order dimension of PM is always equal to 4. In
this paper, we show that if M is any planar map, then the order dimension of PM is still at most 4.
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1. Introduction. In this paper, we are concerned with planar maps. We shall
allow loops and multiple edges, and we always consider a fixed representation of a
graph in the plane. More formally, given a multigraph G = (V,E), a plane drawing
D of G is a representation of G by points and arcs in R2 in which two edges meet
only at common vertices. A planar map M is a pair (G,D) consisting of a multigraph
and a plane drawing thereof. In what follows, we do not distinguish between a vertex
(edge) of G and the corresponding point (arc) of R2.

Deleting the vertices and edges of a planar map M from the plane leaves several
connected components whose closures are the faces of M. The unique unbounded
face is called the exterior face. For the purposes of this paper, it is not treated in any
special way.

Given a planar map M, the planar dual M∗ is defined in the usual way, taking a
vertex F ∗ for each face F of M, and, for each edge e of M, an edge e∗ in M∗ joining
the vertices of M∗ corresponding to the two faces separated by e in M. (In the special
case where the edge e is a bridge, the dual edge e∗ is a loop on the dual of the unique
face containing e.) Then each vertex v of M corresponds to a face v∗ in M∗. If M is
connected, then M∗∗ is isomorphic to M.

For a planar map M, we form a poset PM by taking the vertices, edges, and
faces of M (including the exterior face), ordered by inclusion. See Figure 1.1 for an
example of a planar map M and its associated poset PM. Let us note immediately
that, if M is connected, the poset PM∗ associated with the dual map is just the dual
poset (PM)∗ (i.e., the set of vertices, edges, and faces ordered by reverse inclusion).

The order dimension dim(P) of a partial order P is the smallest number t such
that P is the intersection of t linear orders on the same vertex set. The following
result was proved in [1], answering a question of Reuter [3].

Theorem 1.1. For every 3-connected planar map M, dim(PM) = 4.

This result is to be compared with one due to Schnyder [4]: if G is any graph
and P(G) is the poset formed from the vertices and edges of G, ordered by inclusion,
then dim(P(G)) ≤ 3 iff G is planar. If G is planar, and M is a map with underlying
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Fig. 1.1. A planar map M and the poset PM.

graph G, then P(G) is an induced subposet of our poset PM. Thus, although we do
not refer to it again explicitly, Schnyder’s work underpins much of what we do in this
paper.

One reason for restricting attention to 3-connected planar maps in [1] was the
connection with convex polytopes in R3: each convex polytope gives rise to a 3-
connected planar map M and the poset PM corresponds to the set of vertices, edges,
and faces of the polytope, ordered by inclusion.

The main purpose of this paper is to prove the following result, extending Theo-
rem 1.1 to general planar maps.

Theorem 1.2. Let M be a planar map, and let PM be the poset of all vertices,
edges, and faces of M ordered by inclusion. Then dim(PM) ≤ 4.

For more information as to the origin of the problem, see [1], Reuter [3], or
Schnyder [4].

In the course of proving Theorem 1.2, we shall use a result (Theorem 3.2) that is
slightly stronger than Theorem 1.2 itself as the base case for an induction argument.
However the machinery developed in [1] is used only in the proof of Theorem 3.2.

Before we begin, we need a few concepts from the theory of order dimension.
For a comprehensive treatment of dimension theory for finite posets, we refer the
reader to the monograph [6]. Other sources include the survey articles [2] and [5] and
our previous paper [1]. Given a partial order P, a set R = {L1, . . . , Lt} of linear
extensions of P is called a realizer of P if the intersection of the Li is exactly P. Thus
the order dimension of P is the minimum cardinality of a realizer.

An ordered pair (a, b) of elements of a partial order P is called a critical pair if
the following three conditions hold:

(i) a and b are incomparable;
(ii) if c < a in P, then c < b; and
(iii) if b < d in P, then a < d.

An ordered pair (a, b) of elements of P is said to be reversed by a linear extension L
if b < a in L. It is fairly easy to see that a set {L1, . . . , Lt} of linear extensions of P
is a realizer if and only if every critical pair is reversed by some Li.

If F is a face of M and x is a vertex not on F , then the pair (x, F ) is a critical
pair. We call this a vertex-face critical pair and extend the terminology in the obvious
way. If all critical pairs of PM are of this vertex-face type, we say that M is well
formed . It is easy to see that every 3-connected planar map (with no loops or multiple
edges) is well formed.

For a planar map M, we define another partial order QM by taking just the
vertices and faces of M, ordered by inclusion. (Figure 1.2 shows the poset QM for
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the map M in Figure 1.1.) Evidently QM is an induced subposet of PM, and so
dim(QM) ≤ dim(PM). The reverse inequality is not true in general, but it does hold
whenever M is well formed.

F G H J

x y z w

Fig. 1.2. The poset QM.

Lemma 1.3. Suppose that M is well formed. Then dim(PM) = dim(QM).
Proof. We have seen that dim(PM) ≥ dim(QM). Conversely, given a realizer

{L1, . . . , Lt} of QM, we can insert the edges of M into each linear extension Li in a
way consistent with PM: this then gives a realizer of PM, since the critical pairs of
PM are all of vertex-face type and so are reversed by some Li.

y

x

A vertex-vertex
critical pair (x,y)

(i) An edge-edge(ii )

e∀e GF

critical pair (e,e∀)
A face-face
critical pair (F,G)

(iii )

x e

A vertex-edge
critical pair (x,e)

(iv)

e

F

An edge-face
critical pair (e,F)

(v)

Fig. 1.3. Examples of critical pairs.

For a general planar map M, the poset PM may have vertex-vertex, edge-edge,
and face-face critical pairs, but only if M is not 2-connected: see Figure 1.3(i)–
(iii). However, QM can have vertex-vertex or face-face critical pairs even if M is
2-connected; for instance, if x is a vertex of degree 2 with distinct neighbors y and z,
then (x, y) and (x, z) are critical pairs in QM.

If (e, e′) is an edge-edge critical pair in PM, the two edges must share the same
endpoints and separate the same faces, as in Figure 1.3(ii). This makes edge-edge
critical pairs very easy to deal with: given a set {L1, L2, . . . , Lk} of linear extensions
reversing all other critical pairs, we move e′ to the place immediately above e in L1,
and to the place immediately below e in all the other Li. This yields a realizer. Thus
we may effectively ignore edge-edge critical pairs.
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Even if M is 2-connected, PM may have vertex-edge or edge-face critical pairs.
See Figure 1.3(iv) and (v) for examples. If e is an edge in such a critical pair, we call
e a critical edge. The following trivial observation will be useful later.

Lemma 1.4. Let e be an edge of a planar map M. Then e cannot be in both a
vertex-edge and an edge-face critical pair.

Before we begin the proof of Theorem 3.2, we must clarify what we mean by
k-connectivity for planar maps. The definition we use is not quite the usual one, since
it is appropriate for the concept to be invariant under duality. For instance, the map
in Figure 1.4 should not be 3-connected, since its dual isn’t 3-connected.

x

y

FG H
F*

x*

y*
G*

H*

Fig. 1.4. A map that is not 3-connected and its dual.

The approach we adopt here is to define the connectivity of a planar map M to
be the minimum of the connectivities of the underlying graphs of M and M∗. Note
that at least one of these graphs always contains a vertex of degree at most 3, so the
only 4-connected maps are those with underlying graph K4.

With the exception of a few graphs with at most three vertices, we have the
following alternative characterizations. A map has connectivity 0 iff it is disconnected,
connectivity 1 iff it is connected and has a cutvertex, and connectivity 2 iff either its
underlying graph has connectivity 2 or it has a double edge, as in Figure 1.4.

If a map M with at least four vertices has connectivity exactly 2, then it has
a pair {x, y} of vertices and a pair {F,G} of faces such that R2 − (F ∪ G ∪ {x, y})
falls into two components, neither of which is a single edge. We call {x, y, F,G} a
separating system. For instance, in Figure 1.4, {x, y, F,G} is a separating system.

We shall approach Theorem 3.2 via the following intermediate result.
Lemma 1.5. Let M be a 2-connected planar map. Then dim(QM) ≤ 4.
The next section is devoted to the deduction of Theorem 3.2 from Lemma 1.5.

Then in section 3 we prove Lemma 1.5. The basic idea involves modifying and com-
bining families of linear extensions given to us from Theorem 1.1. However, the
following observation gives some indication of the fundamental difference between the
3-connected case and the general case we are considering here.

For a 3-connected map M, the poset QM is 4-irreducible, as shown in section 6
of [1]. Indeed, the proof of Theorem 1.1 was very much geared to proving that QM is
“almost 3-dimensional”: producing three linear extensions that are almost a realizer.
But the poset QM for the map M in Figure 1.5 is not 4-irreducible; each critical pair
(xi, Fi) must be reversed by a different linear extension, so QM minus the outside
face still has dimension 4. Thus, to prove Lemma 1.5 we shall have to make full use
of the fact that we have four linear extentions to work with.

2. Reduction to the 2-connected case. We shall prove the following result,
which clearly combines with Lemma 1.5 to give Theorem 3.2.

Lemma 2.1. If M is a planar map, then there exists a 2-connected planar map
M0 such that dim(PM) ≤ dim(QM0

).
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F1F2
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F4

Fig. 1.5. A map M for which QMis not 4-irreducible.

Proof. If the map M is well formed and 2-connected, the result is immediate by
Lemma 1.3. Thus, we shall consider in turn each of the ways in which M may fail to
be 2-connected and well formed.

Our approach will be to construct a sequence of intermediate maps Mi from M
such that a realizer of PMi

or of QMi
can be converted into a realizer of PM.

We illustrate the process by showing in Figure 2.1 the sequence Mi of maps
generated by starting from the map M with two vertices and one loop.

x

e1

F
x x x

y y y y

M M1 M2 M3

f f G G

e2 u

v
a

b

F

x

y

M4

c
v
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e
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vd

Fc

x

M0

z

Fig. 2.1. The proof of Lemma 2.1.

(1) Making M connected. Given a planar map M, we construct a connected
map M1 from M by adding bridges between components as necessary. Clearly PM

is an induced subposet of PM1
, so dim(PM) ≤ dim(PM1

).
(2) Destroying loops and vertices of degree 1. Suppose that, as in Fig-

ure 2.1, there is a loop e on a vertex x in M1. In this case, we form M′
1 by subdi-

viding e; i.e., we replace e by a vertex z and a pair of edges e1 and e2 joining x to
z. Identifying e with e1, we see that PM1

is an induced subposet of PM′
1
, and thus

dim(PM1) ≤ dim(PM′
1
).
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By duality, we can also deal with the case where M1 has a vertex of degree 1.
Note that the dual operation to subdividing an edge is that of duplicating an edge:
replacing an edge f from x to y by two such edges surrounding a new face.

By repeating the process as often as necessary, we obtain a connected map M2

with no loops or vertices of degree 1 such that dim(PM1
) ≤ dim(PM2

).

(3) Destroying vertex-vertex and face-face critical pairs. Suppose that,
again as in Figure 2.1, there is a vertex-vertex critical pair (y, x) in M2. Then all
the edges including y have x as their other endpoint. Choose one such edge e′ and
subdivide it with a vertex v, introducing new edges a, between x and v, and b, between
v and y, in place of e′. This operation decreases the number of vertex-vertex critical
pairs without introducing any extra face-face critical pairs. Let F and G be the two
faces separated by e′. Call the new map M′

2.

Suppose {L1, . . . , Lt} is a realizer of PM′
2
. For each i = 1, . . . , t, we construct a

linear extension L′i of PM2 from Li as follows. We insert e′ immediately above the
highest of a, b, v in Li; then we delete a, b, and v from the ordering. This is certainly
a linear extension, since e′ is placed above x, y and below F,G.

We claim that {L′1, . . . , L′t} is a realizer of PM2
. When restricted to PM2

−e′, the
intersection of the L′i is the same as the intersection of the Li, so it remains to check
that all critical pairs involving e′ are reversed. Clearly e′ is not in any vertex-edge
critical pairs and, as mentioned in section 1, edge-edge critical pairs can be ignored.
If (e,H) is an edge-face critical pair, then (v,H) is reversed in some Lk, and hence
(e,H) is reversed in L′k.

Thus dim(PM2) ≤ dim(PM′
2
). Proceeding in this manner we can remove all the

vertex-vertex critical pairs. Thus we construct a map M3 with no critical pairs of
this type such that dim(PM2

) ≤ dim(PM3
).

Using the dual case of the above argument, we can next find a map M4 with
no critical pairs of either vertex-vertex or face-face type such that dim(PM3) ≤
dim(PM4). For instance, in the map M3 of Figure 2.1, (G,F ) is a critical pair,
which is destroyed by duplicating the edge b.

(4) Destroying vertex-edge and edge-face critical pairs. Our approach
to critical pairs of these types will be slightly different. We shall deal with all the
vertex-edge and edge-face critical pairs in one step, forming an auxiliary map M5

such that dim(PM4) ≤ dim(QM5
).

Recall from Lemma 1.4 that no edge is in both a vertex-edge and an edge-face
critical pair. We form M5 as follows. For every edge e, say between x and y, of M4

which is in a vertex-edge critical pair, replace e by a double edge from x to y, and call
the face between the two edges Fe. For every edge e of M4 in an edge-face critical
pair, subdivide e with a vertex ve. (The idea is that the new element Fe or ve will
represent the critical edge e in M5.) For instance, in the map M4 of Figure 2.1, (v, c)
and (d, F ) are critical pairs of PM4

, so c is duplicated to produce a face Fc, and d is
subdivided by a vertex vd.

Let {L1, . . . , Lt} be a realizer of QM5
. From each Li, we construct a linear

extension L′i of PM4 as follows. We start from Li, which includes all vertices and
faces of PM4

, and insert the edges according to the following rules. First, noncritical
edges of M4 are inserted anywhere consistent with the order PM4

. Next, if e is a
critical edge in a vertex-edge critical pair, with e separating faces F and G in M4,
say, then e is inserted just below the lowest of F , G, and Fe in Li. Similarly, if e is
an edge in an edge-face critical pair, with e joining x and y, then e is inserted into Li
just above the highest of x, y, and ve. Finally the auxiliary vertices and faces ve and
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Fe are deleted from the linear extension.
The Li thus constructed are clearly linear extensions of PM4 . It may be that some

edge-edge critical pairs are not reversed: if this is the case, we alter the Li so that
they are, as in section 1. Certainly all vertex-face critical pairs in PM4

are reversed
by some Li. It remains to be shown that all vertex-edge and edge-face critical pairs
are reversed. The two cases are dual, so we need only consider a vertex-edge critical
pair (v, e) of PM4 . For such a pair, we have an auxiliary face Fe, and the pair (v, Fe)
is reversed in some Lk. Hence (v, e) is reversed in L′k.

Thus all critical pairs of PM4
are reversed by some L′i, and so {L′1, . . . , L′t} is a

realizer of PM4 , as required.
(5) Making the map 2-connected. We proceed by reducing the number of

blocks of the underlying graph of M5 to 1, noting that no endblock is a single edge
or a loop. If M5 is not 2-connected, let x be any cutvertex of the underlying graph,
and let F be a face with x occurring at least twice on its boundary, as in Figure 2.1.
The sequence of vertices encountered by travelling around the boundary of F thus
includes x (indeed, more than once): let u and v be the vertices just before and after
x in one such encounter. Form M′

5 by joining y and z by an edge, thus decreasing
the number of blocks. Clearly QM′

5
= QM5

. Repeating as necessary, we end with a
2-connected map M0 such that QM0

= QM5
.

Combining all the steps, we see that dim(PM) ≤ dim(QM0
), as desired.

3. Proof of Lemma 1.5. Throughout this section, e will be a distinguished
edge in a 2-connected planar map M. The endpoints of e will always be denoted x
and y, and the faces separated by e by F and G.

For a planar map M with distinguished edge e, we say that a realizer R of QM

is an e-realizer if it has order 4, and the four linear extensions in R can be labelled
L1, L2, L3, L4 so as to satisfy the following conditions:

(a) x is the highest vertex in L1,
(b) y is the highest vertex in L2,
(c) F is the lowest face in L3, and
(d) G is the lowest face in L4.
We shall prove the following result, which is stronger than Lemma 1.5.
Theorem 3.1. Let M be a 2-connected planar map, and let e be an edge of M.

Then there is an e-realizer of QM.
One technical problem we have to deal with is that QM will in general have

vertex-vertex and face-face critical pairs. In fact, a glance at the proof of Lemma 2.1
shows that we can ignore these: to prove Theorem 1.2 it is enough to show that, for
every 2-connected map M, there is a set of four linear extensions of QM reversing
every vertex-face critical pair of QM. However, it involves essentially no extra work to
prove Theorem 3.1 as it stands, since the constructions we shall give do yield realizers
of QM.

Let us first see that Theorem 3.1 holds if M is 3-connected. We use the notation
and techniques of [1]. The reader who does not have that paper at hand may rest
assured that the proof is a straightforward application of the methods developed there.

Theorem 3.2. Let M be a 3-connected planar map, and let e be an edge of M.
Then there is an e-realizer of QM.

Proof. Arrange for G to be the outside face, with x and y two vertices of a triad
(v1 = x, v2 = y, v3), and apply the construction of [1] with this triad to obtain a
realizer consisting of four linear extensions L1, L2, L3, and L4, as in [1]. Certainly
G is the lowest face in the fourth linear extension L4. Also, x is the highest vertex
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in L1, since it is the only vertex w with S(w, 1) equal to the whole of R2 − int(G).
Similarly, y is the highest vertex in L2.

The face F is contained in S(w, 3) for every vertex w except for x and y. Thus
if z is any vertex on F and u is any vertex not on F , we have S(z, 3) ⊆ S(u, 3). If
S(z, 3) = S(u, 3), then either (F, y) witnesses (z, u) ∈ R′

3 or (F, x) witnesses (z, u) ∈
L′3. In any case, (z, u) in Q′

3. Thus in fact F lies below all vertices not on F in L3

and is certainly the lowest face in that order. Therefore the set {L1, L2, L3, L4} is an
e-realizer.

We make one more observation before the proof of Theorem 3.1. Let R be an
e-realizer of a planar map M. We call R a strong e-realizer if its four linear extensions
can be labelled L1, L2, L3, L4 so that, in addition to properties (a) to (d) above, we
have that

(e) y is the lowest element of L1, and F and G the two highest elements;
(f) x is the lowest element of L2, and F and G the two highest elements;
(g) x and y are the two lowest elements of L3, and G the highest element; and
(h) x and y are the two lowest elements of L4, and F the highest element.

Lemma 3.3. Let e be a distinguished edge in a 2-connected planar map M. If
QM has an e-realizer, then it has a strong e-realizer.

Proof. Let (L1, L2, L3, L4) be a realizer satisfying (a) through (d). If there are
any faces above x in L1 which do not contain x, they can be moved to a position in
L1 below x but above all other vertices. The altered set of linear extensions is clearly
still an e-realizer of QM. Thus we may assume that all critical pairs involving x are
reversed in L1.

Having made this assumption, we may then also suppose that x is the lowest
element in all of the other three linear extensions: if not, it can be moved to the
bottom, since the only critical pairs this affects are those involving x.

Proceeding in a similar way, we can alter the linear extensions so as to move y,
F , and G to the positions required by (e) through (h).

Proof of Theorem 3.1. We proceed by induction on the number of edges of M. It
is easily checked that the result is true for all 2-connected planar maps with at most,
say, 4 edges.

Let M be a 2-connected planar map with m ≥ 5 edges, and suppose that the
result is true for all 2-connected maps with fewer than m edges. Let e be an edge of
M.

If M is 3-connected, then dim(QM) ≤ 4 by Theorem 3.2. Suppose then that M
is not 3-connected.

The dual map M∗ of M is also 2-connected. Let e∗ be the edge of M∗ corre-
sponding to e, and suppose that there is an e∗-realizer {L1, . . . , L4} of QM∗ . Then
the set {L∗1, . . . , L∗4} of reverse linear orders provides an e-realizer of QM. In other
words it would suffice to prove the result for M∗ and e∗ instead of for M and e.

We split the argument into two cases, according to whether or not e is a critical
edge in M. In both cases, our task is to construct either an e-realizer of QM or an
e∗-realizer of QM∗ .

(A) e is a critical edge. Suppose that (e,H) is an edge-face critical pair: if
instead e is in a vertex-edge critical pair, then we work instead in the dual.

Removal of x, y, e, and H from the plane leaves two components, one containing
F and the other G. Let M1 be the submap of M specified by the edges in the F -
component together with e; and let M2 be the submap specified by e and the edges
in the G-component. In both cases, let H stand for the exterior face. See Figure 3.1.
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Thus the elements in common between QM1
and QM2

are just x, y, and H; and there
are no relations in QM between an element of QM1

and an element of QM2
except

those involving x, y, or H. Also, if (α, β) is a vertex-vertex or face-face critical pair,
then α and β must either both be in QM1

or both be in QM2
, except that (F,G) or

(G,F ) could be a critical pair.

x

y

M

e

F G

H x

e

F

H

y

M1

and

x

e

F G

H

y

M2

Fig. 3.1. Splitting M into M1 and M2.

Now M1 and M2 both have fewer edges than M, so we can find an e-realizer for
each map. To be more specific, we can find a realizer (L1

1, L
1
2, L

1
3, L

1
4) of QM1

and a
realizer (L2

1, L
2
2, L

2
3, L

2
4) of QM2

satisfying the following:
(i) x is the highest vertex in both L1

1 and L2
1,

(ii) y is the highest vertex in both L1
2 and L2

2,
(iii) F is the lowest face in L1

3,
(iv) G is the lowest face in L2

4, and
(v) H is the lowest face in both L2

3 and L1
4.

By Lemma 3.3, we may also take these two realizers to be strong e-realizers, so
in particular we may assume that H is the highest element in both L1

3 and L2
4 and

that x and y are the lowest elements in L2
3 and L1

4.
Now, for j = 1, . . . , 4, we combine the linear extensions L1

j and L2
j to form a linear

extension Lj of QM as follows. For j = 1, 2, we form Lj in any way such that the
restriction of Lj to the elements of QMi

is Lij , for i = 1, 2. Hence x is the highest
vertex in L1, and y the highest in L2.

For L3, we essentially put L2
3 above L1

3. To be more precise, we put every element
of QM2

other than x and y at the top, in the order given by L2
3, then below them the

elements of QM1
other than H, in the order given by L1

3. Again, the restriction of L3

to the elements of QMi
is Li3, for i = 1, 2. Clearly F is the lowest face in L3.

The fourth extension L4 is constructed in an analogous manner, putting L1
4 on

top of L2
4. We claim that the four orders Lj , shown in Figure 3.2, constitute a realizer

of QM. Clearly they are linear extensions of QM: it remains to be shown that every
critical pair is reversed.

If (α, β) is a critical pair with α and β both in QMi
, for i = 1 or 2, then (α, β) is

reversed in some Lij and so also in Lj .
If v is a vertex in M1 other than x or y, and J is a face in M2 other than H, then

(v, J) is reversed in L4. Similarly every critical pair (w,E), where w is a vertex of
M2 and E is a face of M1, is reversed in L3.

The only other possible critical pairs are (F,G) and (G,F ), and these are reversed
in L4 and L3, respectively. Therefore L1, . . . , L4 is an e-realizer of QM.
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Fig. 3.2. The new linear extensions Lj .

(B) e is not a critical edge. Let {u, v,D,E} be a separating system such that
the component C(e) of R2 − {u, v} − int(D) − int(E) containing e is minimal. Let
M1 be the submap determined by the edges in this component together with an edge
between u and v separating D and E.

We also form another map M2 by removing all the edges of M1 from M and
replacing them with a single edge f between u and v separating D and E. Both M1

and M2 have fewer edges than M. See Figure 3.3.

u

v

M

E

D

M1 M2

c

u

v

E

D

c

u

v

E

D

Fig. 3.3. The maps M1 and M2.

Suppose that there is a face H of M1 other than D and E containing both u
and v. Then {u, v,D,H} and {u, v, E,H} are separating systems in M, and for one
of them, say {u, v,D,H}, the component of e in the complement is a strict subset
of C(e). Therefore uDvH is not separating, and so the component of e is the single
edge e itself, between u and v. In that case, (e, E) is a critical pair, contradicting the
assumption that e is not critical.

Thus D and E are the only faces of M1 containing both u and v. By duality, we
also have that u and v are the only vertices of M1 on both D and E. In particular, v
has a neighbor z on D distinct from u, and there is a face C of M1 distinct from D
and E containing the edge vz. See Figure 3.4.

By a similar argument, we see that neither u nor v is involved in a vertex-vertex
critical pair in QM1

, and neither D nor E is in a face-face critical pair in QM1
.
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z

u

v

E
D

M1

C

Fig. 3.4. The vertex z and face C.

The map M1 has fewer edges than M, so there is an e-realizer of QM1
. In fact,

we would like this realizer to have certain extra properties as specified below.

We call a linear extension L of QM1
u-good if u is above v and also some face in

L. Similarly we call L v-good if v is above u and some face in L. The extension L is
D-good if D is below E and some vertex in L, and L is E-good if E is below D and a
vertex in L. Note that if {L1, . . . , L4} is a realizer of QM1

and α ∈ {u, v,D,E}, then
one of the Li is α-good. The next lemma states that rather more is true.

Lemma 3.4. There is an e-realizer (Ku,Kv,KD,KE) of QM1
such that, for

α = u, v,D,E, the linear extension Kα is α-good.

Note that some of u, v,D,E might coincide with some of x, y, F,G, so the condi-
tions above might preclude (Ku,Kv,KD,KE) from being a strong e-realizer.

Proof. Take R to be an e-realizer of QM1
maximizing the number N of α in the

set {u, v,D,E} such that there are two α-good linear extensions amongst the linear
extensions in R. If N = 4, then it is a simple matter to label these linear extensions
as Ku,Kv,KD,KE in an appropriate manner.

Thus we may assume without loss of generality that only one of the linear ex-
tensions is u-good: say L1 is the only linear extension in R with u above v and also
above some face. In particular, u is above the face C in L1. Thus the critical pair
(z, E) is reversed in some other linear extension, say L2, of R. Thus L2 is E-good.
A symmetrical argument shows that another linear extension L3 in R is D-good. If
the last linear extension L4 of R is v-good, then we can immediately label the Li’s as
(Ku,KE ,KD,Kv) in that order.

If this is not the case, then L4 is neither u-good nor v-good, so u and v are both
below the lowest face H in L4. If H does not contain u, then u can be moved to
the position immediately above H in L4: the new set of linear extensions is still an
e-realizer, but now both L1 and L4 are u-good, and so the value of N is higher for
this new set, a contradiction. Similarly if H does not contain v, then v can be moved
to the position just above H: this makes L4 v-good, and so we can label the Li’s as
before. Hence we may assume that H contains both u and v and therefore is either
D or E—without loss of generality D.

This certainly implies that L4 is D-good. Now we can apply the same argument
as above to L3 and conclude that D is the lowest face in that order as well. Note that
L2 is necessarily v-good.

It may well be that D is one of F or G, so is forced to be the lowest face in, say,
L3 by the condition that the Li’s form an e-realizer. However, this cannot also be the
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case in L4. Also, as in Lemma 3.3, we may assume that all critical pairs involving D
are reversed in L3. Thus D can be moved upward in L4, and the system is still an
e-realizer.

If E is below some vertex in L4, then putting D at the top of L4 makes the linear
extension E-good, enabling us to label the linear extensions as (Ku,Kv,KD,KE). So
suppose that E is above all vertices in L4.

Now put D directly above the second lowest face J in L4: this keeps L4 D-good.
One of u or v is not on J : place this vertex between D and J . As before, this either
increases N or allows a labelling as desired.

We take an e-realizer (Ku,Kv,KD,KE) of QM1
satisfying the conclusions of

Lemma 3.4, and a strong f -realizer S of QM2
, and combine them to make an e-

realizer of QM as follows.

Consider first the linear extension Ku of QM1
, in which u is above v and some

face of M1. We take also that linear extension Lu of QM2
in S, in which u is the top

vertex, v the bottom element, and D and E are the top two elements. We combine
these to make a linear extension Lu of QM by replacing u in Ku by all of QM2

except
for v,D,E, in the order given by Lu. This does indeed give a linear extension of QM,
and we note also that the top vertex and bottom face in Lu are the same as in Ku.
See Figure 3.5.
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Fig. 3.5. The new linear extensions.

We repeat with the other linear extensions to obtain four linear extensions Lu, Lv,
LD, LE of QM. It remains to be shown that these form a realizer. Notice that if, for
instance, u is above a face H in Kα, then every vertex in M2, other than perhaps v,
comes above H in Lα.

We consider each possible type of critical pair in turn, checking it is reversed by
one of the four linear extensions.

We start with critical pairs involving u. For H a face in M1 not including u,
(u,H) is reversed in Lα whenever it is reversed in Kα. For β an element of M2 with
(u, β) a critical pair, (u, β) is reversed in Lu, and hence also in Lu. Similarly all
critical pairs involving v, D, or E are catered to.

Let z be a vertex of M1 other than u and v. Without loss of generality z is not
on the face E, so the pair (z, E) is reversed in some Kα. Hence all the faces of M2

come below z in Lα, so all critical pairs of the form (z,H) for H a face of M2 are
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reversed in Lα. By duality, all pairs of the form (w, J) for w a vertex of M2 and J a
face in M1 are also reversed.

Finally, if β and γ are elements of the same Mi, then if (β, γ) is a critical pair
then it is reversed in some Kα or Lα, and hence is reversed in the corresponding Lα.

Thus every critical pair is reversed by some Lα, and so the family (Lu, Lv, LD,
LE) constitutes a realizer. Since the top and bottom elements are the same in Lα as
in Kα, this is an e-realizer.

In both cases, we have constructed an e-realizer for our poset QM. Thus, by
induction, QM has an e-realizer for every 2-connected map M and edge e.

4. Concluding remarks. It is proved in Reuter [3], and in [1], that, for every
3-connected map M, dim(QM) ≥ 4, and therefore dim(PM) = dim(QM) = 4. Ob-
viously this is not true if the 3-connectedness condition is removed, and we are left
with the questions of characterizing the planar maps M with dim(PM) or dim(QM)
equal to 3 (or 2). We offer a few remarks on some of these problems.

Let us first ask which maps M have dim(PM) equal to 2. Note that, if M
contains any cycle with at least 3 vertices, then dim(PM) ≥ 3, since the subposet of
PM induced by the vertices and edges of the cycle is a crown. If M contains any edges
with multiplicity at least 3, they give rise to a cycle in the dual, so again PM has
dimension at least 3. Similarly, if any vertex (face) of M has three distinct neighbors,
then dim(PM) ≥ 3. Hence, if dim(PM) = 2, then each component of the underlying
graph of M is a path, possibly with loops and/or double edges. Similar considerations
lead to the conclusions that only the final edges of paths can be double edges, that
all loops separate one endvertex of the path from the other, and that, if X and Y
are two components of the graph, then an endvertex of X must share a face with an
endvertex of Y . These restrictions give us a complete characterization of maps M
with dim(PM) = 2: a typical such map is shown in Figure 4.1.

Fig. 4.1. A map M with PM= 2.

As far as we can tell, none of the other three problems suggested at the beginning
of this section has as neat a solution. Maybe the right question is, are there polynomial
algorithms to determine whether dim(PM) or dim(QM) is equal to 3? It is known
that this problem for a general partial order is NP-complete, but there is a polynomial
algorithm to determine whether a partial order has dimension 2.

Another related line of inquiry is to ask which maps M have QM 4-irreducible.
We know from [1] that all 3-connected maps have this property, and it is tempting to
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conjecture the converse: if QM is 4-irreducible, then M is 3-connected. However, the
example in Figure 4.2 shows that this is false.

Fig. 4.2. A non-3-connected map M with QM4-irreducible.

Again, we suspect that there is no particularly neat characterization, and the
complexity version of the problem may be more fruitful.

Finally, it is natural to ask how the results of [1] and this paper extend to other
surfaces. If M is a map drawn on a surface of genus k, then there are some bounds
f(k), g(k) for dim(PM) and dim(QM). What are the best possible bounds? Are they
the same in both cases? We tentatively venture the suggestion that dim(PM) and
dim(QM) are still bounded above by 4 when M is a map drawn on the torus.

REFERENCES

[1] G. R. Brightwell and W. T. Trotter, The order dimension of convex polytopes, SIAM J.
Discrete Math., 6 (1993), pp. 230–245.

[2] D. Kelly and W. T. Trotter, Dimension theory for ordered sets, in Proceedings of the Sym-
posium on Ordered Sets, I. Rival et al., eds., Reidel, Boston, MA, 1982, pp. 171–212.

[3] K. Reuter, On the Order Dimension of Convex Polytopes, preprint.
[4] W. Schnyder, Planar graphs and poset dimension, Order, 15 (1989), pp. 323–343.
[5] W. T. Trotter, Progress and new directions in dimension theory for finite partially ordered

sets, in Extremal Problems for Finite Sets, P. Frankl et al., eds., Bolyai Soc. Math. Studies
3, 1991, pp. 457–477.

[6] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns
Hopkins University Press, Baltimore MD, 1992.



ALGORITHMS FOR VERTEX PARTITIONING PROBLEMS ON
PARTIAL k-TREES ∗

JAN ARNE TELLE† AND ANDRZEJ PROSKUROWSKI‡

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 4, pp. 529–550, November 1997 002

Abstract. In this paper, we consider a large class of vertex partitioning problems and apply to
them the theory of algorithm design for problems restricted to partial k-trees. We carefully describe
the details of algorithms and analyze their complexity in an attempt to make the algorithms feasible
as solutions for practical applications.

We give a precise characterization of vertex partitioning problems, which include domination,
coloring and packing problems, and their variants. Several new graph parameters are introduced as
generalizations of classical parameters. This characterization provides a basis for a taxonomy of a
large class of problems, facilitating their common algorithmic treatment and allowing their uniform
complexity classification.

We present a design methodology of practical solution algorithms for generallyNP-hard problems
when restricted to partial k-trees (graphs with treewidth bounded by k). This “practicality” accounts
for dependency on the parameter k of the computational complexity of the resulting algorithms.

By adapting the algorithm design methodology on partial k-trees to vertex partitioning problems,
we obtain the first algorithms for these problems with reasonable time complexity as a function of
treewidth. As an application of the methodology, we give the first polynomial-time algorithm on
partial k-trees for computation of the Grundy number.
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1. Introduction. Many inherently difficult (NP-hard) optimization problems
on graphs become tractable when restricted to trees or to graphs with some kind
of tree-like structure. A large class of such graphs is the class of partial k-trees
(equivalently, graphs with treewidth bounded by k). Although tractability requires
fixed k, this class contains all graphs with n vertices when the parameter k is allowed
to vary through positive integers up to n − 1. Many natural classes of graphs have
bounded treewidth [21]. There are many approaches to finding a template for the
design of algorithms on partial k-trees with time complexity polynomial, or even
linear, in the number of vertices [1, 2, 3, 4, 5, 7, 11, 23, 24, 30]. Proponents of these
approaches attempt to encompass as wide a class of problems as possible, often at the
expense of simplicity of the resulting algorithms, and also at the expense of increased
algorithm time complexity as a function of k. In contrast, results giving explicit
practical algorithms in this setting are usually limited to a few selected problems on
either (full) k-trees [9], partial 1-trees, or partial 2-trees [25]. We intend to cover
the middle ground between these two extremes by investigating time complexity as a
function of both input size and treewidth k.

We assume that the input graph is given with a width k tree-decomposition,
computable in linear time for fixed k [6]. Our algorithms employ a binary parse tree
of the input partial k-tree, easily derived from a tree-decomposition of the graph.
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This parse tree is based on very simple graph operations that mimic the construction
process of an embedding k-tree. We propose a design methodology that for many
NP-hard problems results in algorithms with time complexity linear in the size of the
input graph and only exponential in its treewidth, lowering the exponent of previously
known solutions. We give a careful description of the algorithm design details with
the aim of easing the task of implementation for practical applications. We include a
brief report on an ongoing implementation project.

A large class of inherently difficult discrete optimization problems can be ex-
pressed in the vertex partitioning formalism. This formalism involves neighborhood
constraints on vertices in different classes (blocks) of a partition and provides a basis
for a taxonomy of vertex partitioning problems. We define this formalism and then
use it to provide a uniform algorithmic treatment on partial k-trees of vertex parti-
tioning problems. As an example of application of our paradigm, we give the first
polynomial-time algorithms on partial k-trees for the Grundy number. The efficiency
of our algorithm follows from (i) the description of the Grundy number problem as a
vertex partitioning problem, (ii) a careful investigation of time complexity of vertex
partitioning problems on partial k-trees, and (iii) a new logarithmic bound on the
Grundy number of a partial k-tree.

We present these ideas as follows: in section 3, we describe the binary parse
tree of partial k-trees and the general algorithm design method, in section 4 we define
vertex partitioning problems, in section 5 we apply the partial k-tree algorithm design
method to vertex partitioning problems, and in section 6 we give the efficient solution
algorithm for the Grundy number on partial k-trees. We conclude the paper with a
brief report on experiences with implementations.

2. Definitions. We denote the nonnegative integers by N and the positive in-
tegers by P. The graph G = (V (G), E(G)) has vertex set V (G) and edge set E(G).
We consider simple, undirected graphs, unless otherwise specified. For S ⊆ V (G), let
G[S] = (S, {(u, v) : u, v ∈ S ∧ (u, v) ∈ E(G)}) denote the subgraph induced in G by
S. For S ⊆ V (G), let G \ S = G[V (G) \ S]. A component in a graph is a maximal
connected subgraph. A separator of a graph G is a subset of vertices S ⊆ V (G) such
that G \ S has more components than G. In a complete graph there is an edge for
every two-element subset of vertices.

A graph G is a k-tree if it is a complete graph on k vertices (a k-clique), or if it
has a vertex v ∈ V (G) whose neighbors induce a k-clique of size k such that G \ {v}
is again a k-tree. Such a reduction process of G (or the corresponding construction
process) determines its parse tree. A partial k-tree H is a subgraph of a k-tree and
a construction process of this embedding k-tree defines a parse tree of H. A tree-
decomposition of a graph G is a tree T whose nodes are subsets of vertices of G such
that for every edge (u, v) of G, there is a node containing both u and v, and for every
vertex u of G, the set of nodes of T that contain u induces a (nonempty, connected)
subtree of T . The nodes of T are often called bags. The width of a tree-decomposition
T is defined as one less than the maximum size of a bag. The treewidth of G is the
minimum width of a tree-decomposition of G. It is fairly easy to see that a parse
tree of a partial k-tree G defines (through maximal cliques of G) a width k tree-
decomposition of G. Similarly, based on such a decomposition one can find a k-tree
embedding G. For any partial k-tree G with at least k vertices, there is a k-tree H
with the same number of vertices for which G is a subgraph. The fact that we can
assume vertex sets equality follows from the treewidth formulation.

A linear ordering π = v1, . . . , vn of the vertices of a graph is a perfect elimination
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Fig. 2.1. a) A partial 3-tree G, embedded in a 3-tree H, dashed edges in E(H)− E(G). b) Its
peo-tree P with respect to peo=1,2,3,4,5,6,7,8,9,10.

ordering (peo) if, for each i, 1 ≤ i ≤ n, the higher-numbered neighbors of vi induce
a clique. A k-tree H has a peo π = v1, . . . , vn such that for each i, 1 ≤ i ≤ n − k,
the vertex set Bi = {vi}∪ (NH(vi)∩{vi+1, . . . , vn}) induces a k+ 1-clique in H. The
set Bi \ {vi} is a minimal separator of the graph H. See Figure 2.1 for an example
of a partial 3-tree embedded in a 3-tree. Analogous to the role (k + 1)-cliques of H
play in a width k tree-decomposition of H, we call Bi, 1 ≤ i ≤ n− k, a (k+ 1)-bag in
G under π, and each of its k-vertex subsets is similarly called a k-bag of G under π.
The remaining definitions in this and the following sections are all for given graphs
G,H, a peo π = v1, . . . , vn, and bags Bi as above. We first define a peo-tree P of G.
The peo-tree P of G based on π is a rooted tree with nodes V (P ) = {B1, . . . , Bn−k}.
The node Bn−k is the root of P ; a node Bi, 1 ≤ i < n− k, has as its parent in P the
node Bj , i < j ≤ n − k, such that j is the minimum bag index with |Bi ∩ Bj | = k
(note that this intersection does not contain vi). The peo-tree P is a clique tree of H
and also a width k tree-decomposition of both G and H (since Bi ∩Bj is a separator
of G). See Figure 2.1 for an example of a peo-tree.

3. Practical algorithms on partial k-trees. Many NP-hard problems on
graphs, when restricted to partial k-trees, for fixed values of k, have solution algo-
rithms that execute in polynomial, or even linear time as a function of input graph
size. In this section, we improve on the practicality of such algorithms, both in
terms of their complexity and their derivation, by accounting for dependency on the
treewidth k. Since each such algorithm is designed for fixed k, we consider a class of
algorithms parameterized by k. We first define a binary parse tree of partial k-trees
that is based on very simple graph operations. Then we discuss the derivation and
complexity analysis of dynamic programming solution algorithms which follow this
parse tree.

3.1. Binary parse tree. Based on the peo-tree of a partial k-tree as defined
above, we construct a binary parse tree. We first introduce an algebra of i-sourced
graphs. Terms in this algebra will evaluate to partial k-trees and their expression
trees will be the binary parse trees of the resulting graphs.
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Let a graph with i distinguished vertices (also called sources) have type Gi. We
define the following graph operations:

• Primitive: → Gk+1. This 0-ary operation introduces the graph G[B], for
some (k + 1)-bag B.

• Reduce: Gk+1 → Gk. This unary operation eliminates a source designation
of the (k + 1)-st source vertex, leaving the graph otherwise unchanged.

• Join: Gk+1 × Gk → Gk+1. This binary operation takes the union of its two
argument graphs (say, A and B), where the sources of the second graph (a
k-bag SB) are a subset of the sources of the first graph (a (k + 1)-bag SA);
these are the only shared vertices, and adjacencies for shared vertices are
the same in both graphs. In other words, V (A) ∩ V (B) = SB ⊆ SA and
E(A[SB ]) = E(B[SB ]), giving the resulting graph Join(A,B) = (V (A) ∪
V (B), E(A) ∪ E(B)) with sources SA.

• Forget: Gk+1 → G0. This operation eliminates the source designation of all
source vertices.

The above definitions imply that in a term of the sourced graphs algebra that
evaluates to a graph G, the source sets are (k + 1)-bags and k-bags in a width k
tree-decomposition of G. A binary parse tree of a graph G is the expression tree of
such a term.

We show how to construct a binary parse tree from a peo-tree. Intuitively, each
node of the peo-tree is “stretched” into a leaf-towards-root path of the binary parse
tree. Let P be a peo-tree of a partial k-tree G under a peo π. For a node Bi

of P , 1 ≤ i ≤ n−k, with c children, define a path starting in a Primitive node
evaluating to G[Bi], with c Join nodes as interior vertices (one for each child of Bi),
and ending in a Reduce node which drops the source designation of vi. From the
resulting collection of |V (P )| Primitive-Join∗-Reduce paths (note the total number of
Join nodes is |E(P )| = |V (P )| − 1) we construct the binary parse tree by assigning
Reduce nodes as children of the appropriate Join nodes. The only exception is the
Reduce node associated with the root of P , which becomes the child of a new Forget
node, the root of the resulting binary parse tree. The Reduce node associated with a
node Bi of P with parent(Bi) becomes the child of a Join node on the path associated
with parent(Bi). These assignments are easily done so that each Join node has a
unique Reduce node as a child. Note that we have the freedom of choosing the order
in which the children of a given node in P are Joined. This freedom, and also a possible
choice of π, can be exploited to keep the resulting parse tree shallow, an important
attribute in the design of parallel algorithms for partial k-trees. See Figure 3.1 for
an example of a binary parse tree; note the |V (P )| paths from leaves to their Reduce
ancestors.

Theorem 3.1. Given a peo-tree P of a partial k-tree G, the graph algebra term
that corresponds to the constructed binary parse tree T evaluates to G.

Proof. The constructed tree T is the expression tree of a well-formed term in the
given algebra, since Primitive nodes are exactly its leaves, and children of other nodes
have the right types. Primitive nodes contain all edges of G, as they represent all
subgraphs induced by (k+1)-bags of G. For each node Bi of P , the Reduce operation
associated with it merely drops the source designation of vi. Thus, we need only show
that the Join operations act correctly on their argument graphs by identifying their
sources. The Join operations are in a natural one-to-one correspondence with the
edges of the peo-tree P , a tree-decomposition of G, where identification of vertices is
done simply by taking the union of the two bags at endpoints of the edge. Let a Join



ALGORITHMS FOR PARTIAL k-TREES 533

Fig. 3.1. The binary parse tree T of the partial 3-tree G based on the peo-tree P (see Figure 1).
Nodes u ∈ V (T ) labeled by V (Gu) with nonsources in parenthesis.

operation Join(X,Y ) correspond in this way to the edge between a node Bi of P and
its parent Bj . We have |Bi∩Bj | = k with Bi \Bj = {vi}. By structural induction on
T , we assume that subtrees representing X (of type Gk+1) and Y (of type Gk) have
correctly identified vertices of G, so that the sources of X and Y are Bj and Bi \{vi},
respectively. The operation Join(X,Y ) identifies exactly the vertices Bi ∩ Bj , and
the resulting subtree rooted at this node has sources Bj . The Forget node at the root
of T drops all source designations, so the graph algebra term that corresponds to the
constructed binary parse tree T evaluates to G.

We say that T represents G. Since P is a peo-tree with n − k nodes, the binary
parse tree T of G derived from P has n− k Primitive leaves and n− k Reduce nodes,
one for each node of P , it has n − k − 1 Join nodes, one for each edge of P , and a
single Forget node at the root.

3.2. Complexity analysis accounting for treewidth. The following algo-
rithm design methodology is an adaptation to the binary parse tree of the earlier
paradigm of [3]. A dynamic programming solution algorithm for a problem on a par-
tial k-tree G will follow a bottom-up traversal of the binary parse tree T . As usual,
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with each node u of T we associate a data structure table. Each index of these tables
represents a different constrained version of the problem. The corresponing entry
of a table associated with a node u of T characterizes the optimal solutions to the
constrained subproblem restricted to Gu, the sourced subgraph of G represented by
the subtree of T rooted at u. The table of a leaf is initialized according to the base
case, usually by a brute-force strategy. The table of an interior node is computed in a
bottom-up traversal of T according to the tables of its children. The overall solution
is obtained from the table at the root of T .

The paradigm for designing such algorithms is especially attractive for the class
of vertex state problems. For a vertex state problem, we define a set of vertex states,
that represent the different ways that a solution to a subproblem can affect a single
source vertex.

We illustrate these concepts by an example. Suppose we want to solve the mini-
mum dominating set problem on a partial k-tree G: minimize |S| over all S ⊆ V (G)
such that every vertex not in S has at least one neighbor in S. Relative to some partial
dominating set S ⊆ V (Gu), a source vertex v ∈ V (Gu) of a node u of the parse tree
could be in one of three states: [dominator] v ∈ S; [nondominator, nondominated]
v 6∈ S ∧ |NGu

(v) ∩ S| = 0; [nondominator, dominated] v 6∈ S ∧ |NGu
(v) ∩ S| ≥ 1 (we

call S a partial dominating set since at nonroot nodes of the parse tree source vertices
can be in the state [nondominator, nondominated].) A table entry at node u gives
the minimum number of dominator nonsources in Gu necessary to ensure that all
nonsources are either dominators or dominated and that the vertex states for source
vertices of Gu correspond to the table index.

Consider the binary parse tree in Figure 3.1. The table of the lower left Join
node, labelled 9765(1), would have 34 entries, one entry for each assignment of one of
the three vertex states to the four sources. In the subgraph associated with this Join
node (see Figure 2.1), the sources 9,7,6, and 5 form a clique and vertices 5 and 6 share
the neighboring nonsource vertex 1. We first describe the vertex state assignments
that indicate an illegal configuration. Since we are solving a minimization problem,
the corresponding table entries will have value +∞:

• two sources have the pair of states [dominator] and [nondominator, nondom-
inated];

• 7 or 9 have state [nondominator, dominated] but no source has state [domi-
nator]; and

• 5 or 6 have state [nondominator, nondominated].

The latter case is illegal since then nonsource vertex 1 can neither be dominator nor
dominated. For the remaining possibilities we have two cases:

• 5 or 6 have state [dominator] and
• 5 and 6 both have state [nondominator, dominated].

In the first case, table entries have value zero, since then no dominator nonsources
are needed to dominate the nonsources and ensure these vertex states for sources. In
the latter case, table entries have value one, since nonsource vertex 1 will then have
to be a dominator itself (1 has neighbors 5 and 6 only and must be either dominated
or dominator).

As mentioned earlier, the sources of Gu constitute a k or (k + 1)-bag and form
a separator of G, which renders possible the table update for all the operations, and
in particular Join(A,B), based on the tables of A and B. An algorithm for a given
problem must describe the tables involved and also describe how tables are computed
during traversal of the parse tree. A candidate table is verified by the correctness
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proof of table update procedures for all operations involved. The introduction of
Reduce and Join greatly simplifies this verification process, since these operations
make only minimal changes to their argument graphs. In general, the algorithm
computing a parameter R(G) for a partial k-tree G given with a tree-decomposition
has the following structure:

Algorithm-R, where R is a graph parameter

Input: G, k, width k tree-decomposition of G
Output: R(G)
(1) Based on tree-decomposition find a binary parse tree T of G.
(2) Initialize Primitive-Tables at leaves of T .
(3) Traverse T bottom-up using Join-Tables and Reduce-Table.
(4) Optimize Root-Table at root of T gives R(G).

Note that a tree-decomposition of width k is given as part of the input. For a
given graph G on n vertices and any fixed k, Bodlaender [6] gives an O(n) algorithm
for deciding whether the treewidth of G is at most k and, in the affirmative case,
finding a width k tree-decomposition of G. The time complexity of his algorithm
has a coefficient that is exponential in a polynomial in k, a polynomial which is not
given explicitly in his paper. Improving on his algorithm to decrease this polynomial
is an important problem that we do not address here. A construction of a k-tree
embedding, given a tree-decomposition, is described in [21]. From a k-tree embedding
it is straightforward to find a peo and the corresponding peo-tree and to construct
the binary parse tree as described in the previous subsection. The time for step (1)
becomes O(nk2).

For a vertex state problem R with vertex state set A, the most expensive oper-
ation in the partial k-tree algorithm outlined above is the computation of the table
associated with the Join operation. The complexity of this computation at a node of
the parse tree is proportional to the number of pairs of indices, one index from the
table of each of its two children. The table index sets associated with the children of
a Join node for the problem R have size |A|k and |A|k+1, and there are fewer than n
Join nodes in the parse tree. The overall complexity of the algorithm, given a tree-
decomposition, is dominated by the total of Join-Tables computation and is equal
to T (n, k,A) = O(n|A|2k+1). When |A| does not depend on n we have a finite-state
problem and a linear-time algorithm on partial k-trees, for fixed k. Note that a vertex
state problem can be solved in polynomial time whenever |A| is polynomial in n.

In section 4, we define a class of vertex partitioning problems, and then in section
5 we give a procedure to produce a set of vertex states and table update procedures
for each such problem definition.

4. Vertex partitioning problems. In this section, we define a class of discrete
optimization problems in which each vertex has a state, an attribute that is verifiable
by a local neighborhood check.

Our motivation for defining these vertex partitioning problems is twofold. On the
one hand, this formalism provides a general and uniform description of many existing
problems in which a solution consists of a selection of vertex subsets. On the other,
being vertex state problems, their restriction to partial k-trees have efficient solution
algorithms that can be designed according to a general paradigm that follows their
vertex partitioning description.

Considering partitions of the vertex set of a given graph is an attempt to unify
graph properties expressible by either vertex subsets, such as independent dominating
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set, or by vertex coloring of graphs. Both these constructs are constrained by the
structure of neighborhoods of vertices in different subsets. We define this formally.

Definition 4.1. A degree constraint matrix Dq is a q × q matrix with entries
being subsets of natural numbers {0, 1, . . .}. A Dq-partition in a graph G is a partition
V1, V2, . . . , Vq of V (G) such that, for 1 ≤ i, j ≤ q, we have ∀v ∈ Vi : |NG(v) ∩ Vj | ∈
Dq[i, j].

For technical reasons, we will allow a partition V1, . . . , Vq of V (G) to possibly
have some empty partition classes; i.e., if the degree constraints on a partition class
Vi are satisfied by Vi = ∅, then we allow this possibility. Given a degree constraint
matrix Dq, it is natural to ask about the existence of a Dq-partition in an input
graph. We call this the ∃Dq problem. We might also ask for an extremal value of
the cardinality of a vertex partition class over all Dq-partitions. Additionally, given a
sequence of degree constraint matrices, D1, D2, . . . , we might want to find an extremal
value of q for which a Dq-partition exists in the input graph. We call these partition
minimization and partition maximization problems.

To illustrate and give weight to this formalism, we express some well-known
problems1 in the terminology of vertex partitioning and also define new vertex parti-
tioning problems as generalizations of old problems. In each case, correctness of the
vertex partitioning formulation follows immediately from Definition 4.1.

4.1. Vertex subset problems. Many domination-type problems can be called
vertex subset problems, as they ask for existence or optimization of a vertex subset
with certain neighborhood properties. For example,

INDEPENDENT DOMINATING SET (IDS)
INSTANCE: Graph G.
QUESTION: Does G have an independent dominating set, i.e., is there a subset
S ⊆ V (G) such that S is independent (no two vertices in S are neighbors) and
dominating (each vertex not in S has a neighbor in S)?

Equivalently, the IDS problem is defined with σ = {0}, ρ = {1, 2, . . .} and asks,
Does G have a

D2 =

(
σ N

ρ N

)

partition? Such a description defines a [ρ, σ]-property. Table 4.1 shows some classical
vertex subset properties expressed using this notation [14, 8]. The complexity of
optimization and existence problems defined over [ρ, σ]-properties for general graphs
was studied in [26]; the existence problem is NP-complete whenever both ρ and σ
are finite nonempty sets and 0 6∈ ρ (note that the IDS problem is trivial; every graph
has such a set).

4.2. Uniform vertex partitioning problems. For a [ρ, σ]-property, we can
also define partition maximization, partition minimization, and q-partition existence
problems by taking the degree constraint matrix Dq with diagonal entries σ and off-
diagonal entries ρ. We call these problems [ρ, σ]-Partition problems. For example,

GRAPH K-COLORABILITY[GT4]
INSTANCE: Graph G, positive integer k.
QUESTION: Is G k-colorable, i.e., is there a partition of V (G) into k independent
sets?

1 [GTx] as a citation refers to the Graph Theory problem number x in Garey and Johnson [12].
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Table 4.1
Some vertex subset properties.

ρ σ Standard terminology
{0, 1, ...} {0} Independent set
{1, 2, ...} {0, 1, ...} Dominating set
{0, 1} {0} Strong Stable set or 2-Packing
{1} {0} Perfect Code or Efficient Dominating set
{1, 2, ...} {0} Independent Dominating set
{1} {0, 1, ...} Perfect Dominating set
{1, 2, ...} {1, 2, ...} Total Dominating set
{1} {1} Total Perfect Dominating set
{0, 1} {0, 1, ...} Nearly Perfect set
{0, 1} {0, 1} Total Nearly Perfect set
{1} {0, 1} Weakly Perfect Dominating set
{0, 1, ...} {0, 1, ..., p} Induced Bounded-Degree subgraph
{p, p+1, ...} {0, 1, ...} p-Dominating set
{0, 1, ...} {p} Induced p-Regular subgraph

The graph k-colorability problem is defined with σ = {0}, ρ = {0, 1, . . .}, Dk a k
× k degree constraint matrix with diagonal elements σ and off-diagonal elements ρ,
and asks: Does G have a Dk-partition?

Chromatic number is the partition minimization problem over degree constraint
matrices D1, D2, . . . , each one defined as Dk above. Similarly, Domatic Number [GT3]
asks for a partition into maximum number of dominating sets (σ = N, ρ = {1, 2, . . .})
and Partition into Perfect Matchings [GT16] asks for a partition into minimum num-
ber of induced 1-regular subgraphs (σ = {1}, ρ = N).

As an example of a generalization, consider the degree constraint matrix defining
a partition into two Perfect Dominating Sets

D2 =

(
N {1}
{1} N

)

and the question, Does a given graph G have a D2-partition? This problem, which
asks for a special cut of the graph, can also be posed as a vertex labelling question.

PERFECT MATCHING CUT
INSTANCE: Graph G.
QUESTION: Does G have a perfect matching cut, i.e. can the vertices of G be labelled
with two labels such that each vertex has exactly one neighbor labelled differently from
itself?

As an example, binomial trees and hypercubes have perfect matching cuts. This
follows immediately from their iterative definition, i.e., the binomial tree B0 is a single
vertex and, for i > 0, the binomial tree Bi is constructed by adding a new leaf to
every vertex in Bi−1. In [15], the complexity of uniform vertex partitioning problems
is studied; Perfect Matching Cut is NP-complete even when restricted to 3-regular
graphs.

We can also consider vertex partitions into subsets with different properties. In
general, take vertex subset properties [ρ1, σ1], [ρ2, σ2], . . . , [ρq, σq], and construct a de-
gree constraint matrix Dq with column i having entry σi in position i and ρi elsewhere.
The ∃Dq-problem asks if a graph G has a partition V1, V2, . . . , Vq of V (G) where Vi
is a [ρi, σi]-set in G.

4.3. Iterated removal problems. A variation of these problems arises by ask-
ing if a graph G has a partition V1, V2, . . . , Vq, where Vi is a [ρ, σ]-set in G \ (V1 ∪V2 ∪
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· · · ∪ Vi−1). To define this we use the degree constraint matrix Dq with diagonal en-
tries σ, above-diagonal entries N, and below-diagonal entries ρ. We call the resulting
problems [ρ, σ]-Iterated Removal problems, since V1 is a [ρ, σ]-set in G1 = G, while V2

is a [ρ, σ]-set in G2 = G1 \ V1, and, in general, Vi is a [ρ, σ]-set in Gi = Gi−1 \ Vi−1

(1 < i ≤ q). Here we may have to add the requirement that all partition classes be
nonempty. For example,

GRAPH GRUNDY NUMBER [GT56, undirected version]

INSTANCE: Graph G, positive integer k.

QUESTION: Is the Grundy number of G at least k; i.e., is there a function f : V (G) →
{1, 2, . . . , k′} for some k′ ≥ k such that, for each v, f(v) is the least positive integer
not contained in the set {f(u) : u ∈ NG(v)}?

Note that if such a function f exists, then the color classes Vi = {v : f(v) =
i}, 1 ≤ i ≤ k′, form a partition of V (G), and each Vi is an independent dominating
set in the graph G \ (V1 ∪V2 ∪ · · · ∪Vi−1). We can therefore define the Graph Grundy
number problem as an Iterated Removal partition maximization problem. Let σ = {0},
ρ = {1, 2, . . .}, and let Dk′ be a k′ by k′ degree constraint matrix with diagonal entries
σ, above-diagonal entries N, and below-diagonal entries ρ. The Graph Grundy number
problem is: does G have a Dk′ -partition, with nonempty partition classes, for some
k′ ≥ k?

4.4. H-coloring and H-covering problems. For some vertex partitioning
problems the degree constraint matrix is constructed using the adjacency matrix of
an arbitrary graph H. For example,

H-COLORING (GRAPH HOMOMORPHISM)[GT52, fixed H version]

INSTANCE: Graph G.

QUESTION: Is there a homomorphism from G to H; i.e., is there a function f :
V (G) → V (H) such that uv ∈ E(G) ⇒ f(u)f(v) ∈ E(H)?

We frame H-coloring as a vertex partitioning problem using the degree constraint
matrix D|V (H)|, obtained from the adjacency matrix of H by replacing 1-entries with
N and 0-entries with {0}. The question to be asked is: Does G have a DV (H)-
partition? H-coloring is NP-complete if H is not bipartite and polynomial-time
solvable otherwise [16].

H-COVERING

INSTANCE: Graph G.

QUESTION: Does G cover H; i.e., is there a degree-preserving function f : V (G) →
V (H) such that for all v ∈ V (G) we have {f(u) : u ∈ NG(v)} = NH(f(v))?

Similarly, the H-cover problem, whose complexity was studied in [19], is formu-
lated as an ∃Dq problem using the adjacency matrix of H with singleton entries {1}
and {0}.

5. Algorithms for vertex partitioning problems on partial k-trees. We
give algorithms for solving vertex partitioning problems on partial k-trees. These
algorithms take a graph G and a width k tree-decomposition of G as input. Earlier
work by Arnborg, Lagergren, and Seese [2] establishes the existence of pseudo-efficient
algorithms for most, but not all, of these problems. They are pseudo-efficient in the
sense that their time complexity is polynomial in the size of the input for fixed k, but
with horrendous multiplicative constants (“towers” of powers of k). In contrast to
this behavior, the algorithms presented here have running times with more reasonable
bounds as a function of both input size and treewidth, e.g., O(n24k) for well-known
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vertex subset problems. Since these problems are NP-hard in general, and a tree-
decomposition of width n − 1 is easily found for any graph on n vertices, we should
not expect polynomial dependence on k.

We devote most of this section to describe algorithms that solve ∃Dq-problems,
for any degree constraint matrix Dq (as defined in the preceding section). In section
5.4 we describe extensions to partition minimization and maximization problems, and
problems asking for an extremal value of the cardinality of a vertex partition class.

The algorithms will follow the general outline given in section 3.2, giving an
answer YES if the input graph has a Dq-partition and NO otherwise. We first discuss
the pertinent vertex and separator states and give a description of the tables involved
in the algorithm. We then fill in details of table operations, prove their correctness,
and give their time complexities.

5.1. Vertex and separator states. To define the set of vertex states A for an
∃Dq problem, we start with the definition of the problem as captured by the degree
constraint matrix Dq. To check whether a given partition V1, . . . , Vq of V (G) is a
Dq-partition we first assign to each vertex v ∈ V (G) with v ∈ Vi and |N(v) ∩ Vj | =
dj , j = 1, . . . , q the state (i)(d1, d2, . . . , dq) and then check if this state satisfies the
constraints imposed by row i of Dq. The states allowed by Dq are called the final
vertex states. In our partial k-tree algorithms we must consider a refined version of
the original problem. For a given partition on a subgraph, a vertex may start out in a
state not allowed by Dq and then acquire neighbors through Join operations so that
the augmented partition indeed becomes a Dq-partition. To define this larger set of
vertex states that are either final or can become final by adding new neighbors we
need to define the augmented degree constraint matrix ADq.

For t ∈ N, we view ≥ t as a single element, and define the sets Yt
df
= {0, 1, . . . , t},

W0 = {≥ 0}, Wt
df
= Yt−1∪{≥ t} if t > 0, and let R

df
= {Yt : t ∈ N}∪{Wt : t ∈ N}∪{N}.

Note that |Yt| = |Wt| = t + 1. We now define a function β : 2N → R such that
ADq[i, j] = β(Dq[i, j]).

Definition 5.1. ADq[i, j] = β(Dq[i, j]), where

β(Dq[i, j]) =




Yt if ∃t ∈ Dq[i, j] such that t = max{Dq[i, j]},
Wt if ∃t ∈ Dq[i, j] with t minimum s.t. {t, t+ 1, . . .} ⊆ Dq[i, j],
N otherwise.

The set of vertex states A for an ∃Dq problem is defined according to the rows
of matrix ADq. A vertex state consists of a pair (i)(M), where 1 ≤ i ≤ q indexes
a row of ADq and M is an element of the Cartesian product ADq[i, 1] × ADq[i, 2] ×
· · · × ADq[i, q]. We assume that ADq[i, j] 6= N for any entry of ADq, as otherwise
we would have an infinite vertex state set and our algorithmic template would not
work. Equivalently, we assume that every entry of the degree constraint matrix Dq is
cofinite.

Definition 5.2. For an ∃Dq problem, with cofinite entries of Dq, we define the
vertex state set A and a subset, the final vertex state set F ⊆ A:

A = {(i)(Mi1Mi2 . . .Miq) : i ∈ {1, . . . , q} ∧ ∀j(j ∈ {1, . . . , q} ⇒Mij ∈ ADq[i, j])},
F = {(i)(Mi1Mi2 . . .Miq) ∈ A : i ∈ {1, . . . , q} ∧ ∀j(j ∈ {1, . . . , q} ⇒

(Mi,j ∈ Dq) ∨ (ADq[i, j] = Wt ∧Mi,j =≥ t))}.
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D3 =

AD 3 =

Fig. 5.1. The degree constraint matrix D3 and the augmented degree constraint matrix AD3

for deciding whether there exists a partition into 3 independent dominating sets. To the right an
example with the resulting vertex states for a given partition.

Before continuing, let us first consider an example. Figure 5.1 shows the matrix
D3 such that the ∃D3 problem decides whether vertices of a graph can be partitioned
into 3 independent dominating sets. Note that the partition given in the example is
not a D3-partition, as can be seen from vertex a which needs a new neighbor in V3 if
this partition is to be augmented to a D3-partition of some supergraph. By applying
Definition 5.1 we get, for i = 1, 2, 3, AD3[i, i] = β(D3[i, i]) = β({0}) = Y0 = {0}
and, for i 6= j, AD3[i, j] = β(D3[i, j]) = β({1, 2, . . .}) = W1 = {0,≥ 1}. Applying
Definition 5.2 we then get the 12 vertex states in the vertex state set A:

{(1)(0 0 0), (1)(0 0 ≥1), (1)(0 ≥1 0), (1)(0 ≥1 ≥1),
(2)(0 0 0), (2)(0 0 ≥1), (2)(≥1 0 0), (2)(≥1 0 ≥1),
(3)(0 0 0), (3)(0 ≥1 0), (3)(≥1 0 0), (3)(≥1 ≥1 0)}.

The three states at the rightmost column above (the 4th, 8th, and 12th) constitute
the final state set F, corresponding to the three rows of the degree constraint matrix
D3. For any partition V1, V2, V3 of V (G) and a vertex v ∈ V (G) this algorithm uses
the following natural definition of stateV1,V2,V3

(v):

stateV1,V2,V3
(v) =




(1)(0 0 0) if v ∈ V1 and |NG(v) ∩ V1| = 0∧
∧|NG(v) ∩ V2| = 0 ∧ |NG(v) ∩ V3| = 0,

. . .
(3)(≥1 ≥1 0) if v ∈ V3 and |NG(v) ∩ V1| ≥ 1∧

∧|NG(v) ∩ V2| ≥ 1 ∧ |NG(v) ∩ V3| = 0,
undefined otherwise.

Note that this state function is total (defined everywhere) for the set of partitions
that could possibly be augmented to a D3-partition by addition of neighbors to the
graph, i.e., all vertices of the graph are assigned a state if (and only if) V1, V2, V3

are independent sets. For a general ∃Dq-problem the state function is total for all
partitions V1, . . . , Vq that could possibly be augmented to Dq-partitions.

We return to the discussion of a general ∃Dq-algorithm and examine first the size
of the vertex state set A. Assume for simplicity that the matrix Dq has all diagonal
entries equal and all off-diagonal entries equal, with Aσ = ADq[i, i] and Aρ = ADq[i, j]
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for i 6= j. With A the set of vertex states for the ∃Dq-problem, we thus have |A| =
q|Aσ||Aρ|q−1 vertex states, since vertex states are of the form (i)(Mi1Mi2 . . .Miq)
with i ∈ {1, 2, . . . , q}, Mii ∈ Aσ, and Mij ∈ Aρ for i 6= j. We now examine the index
set Ik of the table at a node u of the parse tree representing a subgraph with k sources.
The table at node u will have |Ik| entries. Let the bag of sources (the separator) at
node u be Bu = {w1, w2, . . . , wk}. Each of the sources can take on a vertex state in
|A| and the table thus has index set Ik = {s = s1, . . . , sk} where si ∈ A. Thus the
size of the table is |Ik| = |A|k = qk|Aσ|k|Aρ|k(q−1). For the earlier example, partition
into three independent dominating sets, we get |Ik| = 12k = 3k1k2k(3−1).

Next, we discuss the values of table entries. For Dq, a subgraph Gu with sources
Bu = {w1, . . . , wk}, and a k-vector of vertex states s = {s1, . . . , sk}, ∀i si ∈ A, we
define a family Ψ of equivalent partitions V1, V2, . . . , Vq of V (Gu) such that in Gu, a
source wi has state si and a nonsource vertex has a final state in F . Note that for a
nonsource vertex v ∈ Vi we thus have |NG(v)∩ Vj | ∈ Dq[i, j], j = 1, . . . , q, as dictated
by the degree constraint matrix.

Definition 5.3. For problem ∃Dq, with vertex states A and final states F , a
graph Gu with sources Bu = {w1, w2, . . . , wk} and a k-vector s = s1, . . . , sk : ∀i
si ∈ A, we define

Ψ
df
= {V1, . . . , Vq a q-partition of V (Gu) : ∀wi ∈ Bu ∀v ∈ V (Gu) \Bu

(stateV1,...,Vq (wi) = si and stateV1,...,Vq (v) ∈ F )}.
Ψ forms an equivalence class of solutions to the subproblem on Gu, and its ele-

ments are called Ψ-partitions respecting Gu and s. The binary contents of Tableu[s]
records whether any solution respecting Gu and s exists.

Definition 5.4.

Tableu[s] =

{
1 if Ψ 6= ∅,
0 if Ψ = ∅.

5.2. Table operations. We now elaborate on the operations of Initialize-Table,
Reduce-Table, Join-Tables, and Optimize-Root-Table in the context of an ∃Dq-problem
with vertex states A and final states F . Each of the following subsections defines the
appropriate procedure, gives the proof of its correctness, and analyzes its complexity.

5.2.1. Initialize-Tables. A leaf u of T is a Primitive node, and Gu is the
graph G[Bu], where Bu = {w1, . . . , wk+1}. Let Partitions(Bu) be the family of all
qk+1 partitions of Bu into partition classes V1, . . . , Vq. Following Definition 5.4, we
initialize Tableu by a brute-force method in two steps:

(1) ∀s ∈ Ik+1 : Tableu[s] := 0,
(2) ∀V1, V2, . . . , Vq ∈ Partitions(Bu): if in G[Bu] for i = 1, . . . , k+ 1 we have
stateV1,...,Vq (wi) = si ∈ A, then for s = s1, . . . , sk+1, Tableu[s] := 1.

We need only consider partitions that assign a state in A to all vertices, since any
other partition is in violation of Dq and cannot be augmented to a Dq-partition of
the input graph. The complexity of this initialization for each leaf of T is O(|Ik+1|+
(k + 1)qk+2), since for each partition we must check the q neighborhood constraints
of k + 1 vertices.

5.2.2. Reduce-Table. A Reduce node u of T has a single child a such that
Bu = {w1, . . . , wk} and Ba = {w1, . . . , wk+1}. We compute Tableu based on Tablea
as follows:

∀s ∈ Ik : Tableu[s] :=
∨

p {Tablea[p]},
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where the disjunction is over all p = {p1, . . . , pk+1} ∈ Ik+1 with ∀l : 1 ≤ l ≤ k, pl = sl
and pk+1 ∈ F . Correctness of the operation follows by noting that Ga and Gu

designate the same subgraph of G and differ only by wk+1 not being a source in Gu.
By definition, Tableu[s] should store a 1 if and only if there is some Ψ-set respecting
Ga and s, where the state of nonsources, and thus also wk+1, is constrained by Dq,
and thus assigned a final state. The complexity of this operation for each Reduce node
of T is O(|Ik+1|), assuming that in constant time we can both (i) decide whether an
index of Tablea represents a final state for wk+1 and (ii) access the corresponding
entry of Tableu.

5.2.3. Join-Tables. A Join node u of T has children a and b such that Bu =
Ba = {w1, . . . , wk+1} and Bb = {w1, . . . , wk} is a k-subset of Ba. Moreover, Ga

and Gb share exactly the subgraph induced by Bb, G[Bb]. We compute Tableu by
considering all pairs of table entries of the form Tablea[p], Tableb[r]. Recall that the
separator state p consists of k + 1 vertex states p1, p2, . . . , pk+1, where the state pi
is associated with vertex wi. For a vertex state pi = (j)(Mj1, . . . ,Mjq) we call j the
partition class index, class(pi), and the cardinality Mjl, size(pi, l). In the algorithm
for the Join operation, we first check that p, r is a compatible separator state pair,
meaning the partition class assigned to vertex wi, i ∈ {1, . . . , k}, is identical in both
p and r.

compatible(p, r) :=

{
1 if class(pi) = class(ri) ∀i ∈ {1, . . . , k},
0 otherwise.

We then combine, in a manner described below, for each wi, i ∈ {1, . . . , k+1}, the
contributions from p and r to give the resulting separator state s = combine(p, r),
and update Tableu[s] based on Tablea[p] and Tableb[r]. For a vertex wi under s, the
resulting q-vector of neighborhood sizes is computed by (componentwise) addition of
its q-vectors under p and r. Moreover, since the neighbors wi has inBb = {w1, . . . , wk}
are the same in both Ga and Gb, we must subtract the shared Vj neighbors wi has
in Bb under p and r. This addition at the jth component is performed using the
following definition of a ⊕ b 	 c which adds two size values a, b and subtracts c ∈ N.
The definition of a⊕ b	 c depends on whether a, b are of type Yt or Wt, and returns
a value of the same type, unless undefined.

Definition 5.5. For a, b ∈ Yt and c ∈ N

a⊕ b	 c =

{
a+ b− c if a+ b− c ∈ Yt,
↑ otherwise.

For a, b ∈Wt and c ∈ N,

a⊕ b	 c =




≥ t if either a or b is the element ≥ t,
≥ t if a+ b− c ∈ {t, t+ 1, . . .},
a+ b− c if a+ b− c ∈ {0, 1, . . . , t− 1},
↑ otherwise.

We thus use

combine(p, r) := s1, s2, . . . , sk+1, where ∀i ∈ {1, . . . , k}, ∀j ∈ {1, . . . , q},
class(si) = class(ri) = class(pi), and sk+1 = pk+1, and
size(si, j) = size(pi, j)⊕ size(ri, j)	
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|{wl ∈ Bb : (wi, wl) ∈ E(G) ∧ class(pl) = j}|.
We can now state the two-step procedure for the Join operation:

(1) ∀s ∈ Ik+1 : Tableu[s] := 0,

(2) ∀(p ∈ Ik+1, r ∈ Ik) : if compatible(p, r) and Tablea[p] = Tableb[r] = 1,
then Tableu[combine(p, r)] := 1

In step (2) we assume that Tableu is accessed only if combine(p, r) designates a
vertex state, i.e., only if each of its size components is defined.

Theorem 5.6. The procedure given for the Join operation at a node u with
children a and b correctly updates Tableu based on Tablea and Tableb.

Proof. We argue the correctness of the Join operation at a node u with sources
Bu = {w1, . . . , wk+1}, based on correct table entries at its children a and b, with
notation as before. Consider any s = s1, . . . , sk+1 such that there exists a partition
V1, . . . , Vq of V (Gu) respecting Dq with stateV1,...,Vq (wi) = si for i = 1 to k + 1
in the graph Gu. We will show that Tableu[s] is then correctly set to the value
1. Let A1, . . . , Aq and B1, . . . , Bq be the induced partitions on V (Ga) and V (Gb),
respectively, i.e., Vi ∩ V (Ga) = Ai and Vi ∩ V (Gb) = Bi. Let p = p1, . . . , pk+1 and
r = r1, . . . , rk be defined by pi = stateA1,...,Aq (wi) in Ga and ri = stateB1,...,Bq (wi) in
Gb, respectively. By the assumption that Tablea and Tableb are correct we must have
Tablea[p] = Tableb[r] = 1. This follows since any vertex in V (Ga) \Bu has the exact
same state in Ga under A1, . . . , Aq as it has in Gu under V1, . . . , Vq, by the fact that
there are no adjacencies between a vertex in V (Ga) \Bu and a vertex in V (Gb) \Bu.
Similarly for Gb. We can check that from the definitions we have compatible(p, r) = 1
and combine(p, r) = s, so indeed Tableu[s] is set to 1 when the pair p, r is considered
by the algorithm.

Now consider an s such that there is no q-partition of V (Gu) respecting Dq and
resulting in s as the state for the separator. We will show, by contradiction, that in this
case Tableu[s] is set to 0 initially and then never altered. If Tableu[s] = 1, there must
be a compatible pair p, r such that combine(p, r) = s and Tablea[p] = Tableb[r] = 1.
Let A1, . . . , Aq and B1, . . . , Bq be partitions of V (Ga) and V (Gb), respectively, that
cause these table entries to be set to 1. Then V1, . . . , Vq defined by Vi = Ai ∪ Bi is
a q-partition of V (Gu) respecting Dq such that the resulting state for the separator
is s, because Bu = {w1, . . . , wk+1} separates Gu into Ga \ Bu and Gb \ Bu. This
contradicts our assumption that such a q-partition does not exist. We conclude that
the Join-Tables operation is correct.

For each Join node of T , the complexity of Join-Tables is O(kq|Ik||Ik+1|) since
any pair of entries from tables of children is considered at most once, and for each
compatible pair the combine operation considers kq size pairs.

5.2.4. Optimize-Root-Table. Let the root of T have child r with Br =
{w1, . . . , wk}. We decide whether G has a Dq-partition based on Tabler as follows:

YES if ∃s = s1, . . . , sk ∈ Ik with Tabler[s] = 1 and si ∈ F for 1 ≤ i ≤ k,
NO otherwise.

Correctness of this optimization follows from the definition of table entries and
final states and the fact that Gr is the graph G with sources Br. The complexity of
Optimize-Root-Table at the root of T is O(|Ik+1|), assuming that in constant time
we can decide whether an index of Tabler represents a final state for each vertex in
Br.

5.3. Overall correctness and complexity. Correctness of an algorithm based
on this algoritmic template follows by induction on the binary parse tree T . As noted
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Table 5.1
Time complexity for specific problems on partial k-trees of n vertices.

Problem q |Aσ | |Aρ| Time complexity

CHROMATIC NUMBER 1 ≤ q ≤ k + 1 1 1 O(nk2(k+1))

q-COLORING q 1 1 O(nq2(k+1))

H-COVER q = |V (H)| 1 2 O(n23k|V (H)|)
H-COLOR q = |V (H)| 1 1 O(n|V (H)|2(k+1))

DOMATIC NUMBER 1 ≤ q ≤ k + 1 1 2 O(n23k2
)

GRUNDY NUMBER 1 ≤ q ≤ 1 + k logn 1 2 O(n3k2
)

ITERATED DOM. REMOVAL 1 ≤ q ≤ 1 + k logn 1 2 O(n3k2
)

in section 3.1, T has n− k Primitive nodes, n− k Reduce nodes, and n− k − 1 Join
nodes. The algorithm finds the binary parse tree T , traverses it bottom-up executing
the respective operation at each of its nodes, and performs Optimize-Root-Table at
the root.

Theorem 5.7. The time complexity for solving an ∃Dq problem, entries of Dq

cofinite, with vertex state set A, on a partial k-tree G with n vertices, given a width k
tree-decomposition of G, is O(nkq|A|2k+1). If the augmented degree constraint matrix
ADq has |Aσ| = maxi{|ADq[i, i]|} and |Aρ| = maxi6=j{|ADq[i, j]|} it can be expressed
as O(nq2(k+1)|Aσ|2k+1|Aρ|(2k+1)(q−1)).

Proof. The first bound holds since the most expensive operation is Join-Tables
which costs O(kq|Ik||Ik+1|) where |Ik| = |A|k, and there are less than n
Join-Table nodes in the binary parse tree. The refined bound holds since |A| =
q|Aσ||Aρ|q−1.

Note that the last bound holds in particular when ADq has all diagonal entries
equal to Aσ and all off-diagonal entries equal to Aρ.

5.4. Extensions. Here we mention a few natural extensions of the problems
described above: partition maximization and minimization, construction of a Dq-
partition, complexity of vertex subset problems, optimization over a partition class
cardinality, and, finally, implications on optimizations problems without a constant
bound.

Recall that given a sequence of degree constraint matrices, D1, D2, . . . , partition
minimization or maximization problems involve finding an extremal value of q for
which a Dq-partition exists in the input graph. To solve such problems with an upper
bound f(n, k) on the parameter in question for n-vertex partial k-trees, we need at
most f(n, k) calls to the ∃Dq algorithm, for different values of q. Several parameters
are bounded by the treewidth only, e.g., chromatic number and domatic number are
bounded by k + 1 on partial k-trees. We call a partition maximization (respectively,
minimization) parameter monotone if existence of a Dq-partition implies the existence
of a Dq−1-partition (respectively, a Dq+1-partition). For monotone properties we can
apply binary search so that log f(n, k) calls to the ∃Dq algorithm suffices. Resulting
time bounds for specific problems are shown in Table 5.1 and also discussed in the
following sections.

To construct a Dq-partition, in case of a positive answer for the ∃Dq problem, we
add pointers from a positive table entry to the table entries of children which updated
it positively.

Table 4.1 lists some vertex subset properties, which we called [ρ, σ]-properties,
expressible by a degree constraint matrix D2. Various NP-hard optimization prob-
lems ask for an extremal value of the cardinality of a vertex subset with some [ρ, σ]
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property. In an earlier paper [28], we give algorithms on partial k-trees for solving
these problems.

Theorem 5.8 (see [28]). Given a tree-decomposition of width k of a graph G, any
optimization problem over a [ρ, σ]-property, with both ρ and σ cofinite, can be solved
on G in O(n(|β(ρ)|+ |β(σ)|)2k+1) steps.

Problems defined over properties derived from Table 4.1 have complexity O(n24k)
(for parameterized properties we assume p ≤ 2). Those algorithms are very similar
to the ones given here, with values of table entries defined to be

Tableu[s]
df
=

{ ⊥ if Ψ = ∅,
optimum{V1,V2}∈Ψ{|V1|} otherwise,

and table operations altered similarly to optimize this value. Any vertex partitioning
problem optimizing over the cardinality of a partition class can be solved in a similar
manner. The time complexity of the resulting algorithm for a problem given by the
degree constraint matrix Dq remains as given in Theorem 5.7.

In section 4 we discussed several new problems, including the general classes
of [ρ, σ] uniform partition problems, [ρ, σ] iterated removal problems, H-coloring,
and H-covering problems. All these problems are encompassed by Theorem 5.7.
Polynomial-time algorithms for partition maximization or minimization problems on
partial k-trees are constructible in this manner only if an appropriate bound holds for
the parameter in question. In the next section we first show that the Grundy number
of an n-vertex partial k-tree has an upper bound logarithmic in n and then construct
a polynomial-time solution algorithm.

6. Grundy number algorithm. The Grundy number of a graph, defined in
section 4.3, is a tight upper bound on the number of colors used by the following
“naive greedy coloring” algorithm: repeatedly select an uncolored vertex and color
it with the least available positive integer. The Grundy number is the highest color
thus assigned to any vertex, maximized over all orderings of vertices, with the vertex
partitioning iterated removal definition based on the fact that the set of vertices with
color i form an independent dominating set in the graph induced by vertices with
color i or higher.

Computing the Grundy number of an undirected graph is NP-complete even
for bipartite graphs and for chordal graphs [22]. A binomial tree on 2q−1 vertices,
defined in section 4.2, has Grundy number q [13]. In general the nonexistence of an
f(k) upper bound on the Grundy number of a partial k-tree explains the lack of a
description of this problem in EMSOL [20] (note that [2] mistakenly gives a different
impression). For trees there exists a linear time algorithm [13], but until now it was
an open question whether polynomial-time algorithms existed even for 2-trees.

The definition of a Grundy number as a vertex partitioning problem requires all
partition classes to be nonempty. In this section, we first show how the algorithm
template of section 5 can be easily adjusted to enforce this requirement. For a partial
k-tree G with n vertices, we prove a logarithmic in n upper bound on the Grundy num-
ber of G. These results suffice to show the polynomial-time complexity of computing
the Grundy number of any partial k-tree for fixed k.

To facilitate the presentation of these results, we reverse the ordering of the
partition classes in the definition of a Grundy number from section 4; this is expressed
by the degree constraint matrix Dq with diagonal entries {0}, above-diagonal entries
P, and below-diagonal entries N. Thus, for a graph G, the Grundy number GN(G)
is the largest value of q such that its vertices V (G) can be partitioned into nonempty
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V5 = {a,d}     V4 = {b,c}

V3 = {e}    V2 = {f}    V1 = {g}

Fig. 6.1. A 2-tree on 7 vertices with Grundy number 5 and an appropriate partition
V 1, V 2, . . . , V 5.

classes V1, V2, . . . , Vq with the constraint that for i = 1, . . . , q, Vi is an independent set
and every vertex in Vi has at least one neighbor in each of the sets Vi+1, Vi+2, . . . , Vq
(see Figure 6.1). Note that if we have at least one vertex v ∈ V1 then this guarantees
that every partition class is nonempty, sinceDq requires v to have at least one neighbor
in each of V2, V3, . . . , Vq. In the algorithm for deciding whether a partial k-tree has a
Dq-partition with nonempty classes, with Dq as described above, we extend the value
of a table entry Tableu[s] by a single extra bit called nonempty. This bit will record
whether there exists any partition V1, . . . , Vq respecting Gu and the separator state s
such that V1 6= ∅. In the following, we use notation as given in section 5, with the
definition of table entries

Tableu[s] =




〈0, 0〉 if Ψ = ∅,
〈1, 0〉 if Ψ 6= ∅, but 6 ∃V1, V2, . . . , Vq ∈ Ψ with V1 6= ∅,
〈1, 1〉 if Ψ 6= ∅, and ∃V1, V2, . . . , Vq ∈ Ψ with V1 6= ∅.

The two-step Initialize-Table procedure becomes

(1) ∀s ∈ Ik+1 : Tableu[s] := 〈0, 0〉,
(2) ∀V1, V2, . . . , Vq ∈ Partition(Bu): if in G[Bu], for i = 1, . . . , k+1, we have
stateV1,...,Vq (wi) = si ∈ A, then for s = s1, . . . , sk+1

if V1 = ∅ set Tableu[s] := 〈1, 0〉
else if V1 6= ∅ set Tableu[s] := 〈1, 1〉.

Note that for a leaf u of the binary parse tree of G, all vertices of Gu are sources
so the separator state s, in step (2) above, contains the information determining
if V1 is empty. The Reduce-Table procedure remains as given in section 5, except
that the disjunction is taken pairwise over both bits in the values of table entries,
i.e., 〈a, b〉 ∨ 〈c, d〉 = 〈a ∨ c〉, 〈b ∨ d〉. For the Join-Table procedure, the concepts
of compatibility and combining of pairs are unchanged, and the two-step update
procedure becomes

(1) ∀s ∈ Ik+1 : Tableu[s] := 〈0, 0〉,
(2) ∀(p ∈ Ik+1, r ∈ Ik) : if compatible(p, r) and

Tablea[p] = 〈1, x〉 and Tableb[r] = 〈1, y〉 and Tableu[combine(p, r)] =
〈z, w〉, then Tableu[combine(p, r)] := 〈1, x ∨ y ∨ w〉.

Optimize-Root-Table becomes

YES if ∃s = s1, . . . , sk ∈ Ik such that Tabler[s] = 〈1, 1〉 and si ∈ F for
1 ≤ i ≤ k,

NO otherwise.
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It is easy to see that the time complexity of the resulting algorithm remains as
described by Theorem 5.7.

We now turn to the bound on the Grundy number GN(G) of a partial k-tree
G. Since the Grundy number of a graph may increase when some edges of the graph
are removed, we cannot restrict our attention to k-trees, but must consider partial k-
trees. A tree (i.e., a 1-tree) with Grundy number q, witnessed by a (Grundy) partition
V1, . . . , Vq, must have at least 2q−1 vertices since each vertex of the set

⋃
1≤i<j Vi has

a unique neighbor in Vj , thus doubling the size of
⋃

1≤i≤j Vi for each consecutive
1 < j ≤ q. This argument relies on the fact that 1-trees do not have cycles. For a
partial k-tree G with k ≥ 2 and Grundy number q, we cannot guarantee the existence
of a perfect elimination ordering of vertices that respects a Vq, . . . , V1 Grundy partition
of V (G), as in the 1-tree example above. See Figure 6.1 for an example of a 2-tree on
7 vertices with Grundy number 5 that does not have a perfect elimination ordering
respecting the partial order given by any Grundy partition V5, V4, . . . , V1. Hence, the
upper bound given below has a somewhat less trivial proof than the 1-tree case.

Theorem 6.1. The Grundy number of a partial k-tree G on n vertices, n ≥ k ≥
1, is at most 1 + k log2 n.

Proof. Let the Grundy number of G be GN(G) = q, with V1, V2, . . . , Vq an
appropriate partition of V (G) as described above. For 1 ≤ i ≤ q, define Gi to be
the graph G \ (∪Vj , j > i). Thus Gq = G and, in general, Gi is the graph induced
by vertices V1 ∪ V2 ∪ · · · ∪ Vi, with Vi a dominating set of Gi. Let ni = |V (Gi)| and
mi = |A(Gi)|. By induction on i from k to q we show that in this range

ni ≥
(
k + 1

k

)i−1

.

For the base case i = k we have (2/1)0 ≤ 1 ≤ n1 and (3/2)1 < 2 ≤ n2 and for k ≥ 3
(1 + 1/k)k−1 ≤ (1 + 1/k)k ≤ e < 3 ≤ nk. Note that the inequality is strict for k ≥ 2.
We continue with the inductive step of the proof, with the inductive assumption that
the inequality holds for j in the range k to i−1 and establish the inequality for j = i.
Note that mi−mi−1 counts the number of edges in Gi, with at least one endpoint in
Vi. Since every vertex in V (Gi−1) = V1 ∪ V2 ∪ · · · ∪ Vi−1 has at least one Gi-neighbor
in Vi, we get a lower bound on mi

mi ≥ mi−1 + ni−1.

Gi is a subgraph of a k-tree, and if i ≥ k, then it is a partial k-tree on ni ≥ k vertices.
It is well-known that Gi is then a subgraph of a k-tree on ni vertices, and from the
iterative construction of k-trees it is easy to show that we have

mi ≤ k(k − 1)

2
+ (ni − k)k.

Rearranging terms, we get the following bound on ni for k ≤ i ≤ q:

ni ≥ mi

k
+
k + 1

2
.

Repeatedly substituting the mi bound in the above, we get

ni ≥ mi−1 + ni−1

k
+
k + 1

2
≥ · · · ≥ nk + nk+1 + · · ·+ ni−2 + ni−1

k
+
mk

k
+
k + 1

2
.
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In the right-hand side we substitute, for all nj , the inductive bound nj ≥ (k+1
k )j−1

to get

ni ≥ 1

k

i−2∑
j=k−1

(
k + 1

k

)j
+
mk

k
+
k + 1

2
=

(
k + 1

k

)i−1

−
(
k + 1

k

)k−1

+
mk

k
+
k + 1

2
.

Since Vj is a dominating set in Gj for 1 ≤ j ≤ k, we must have mk ≥ (k − 1)k/2,
which we substitute in the above to get the desired bound

ni ≥
(
k + 1

k

)i−1

−
(
k + 1

k

)k−1

+ k ≥
(
k + 1

k

)i−1

.

Note that the last bound is strict for k ≥ 2. For i = q, we thus get q ≤ 1+log(k+1)/k nq
(note that q = GN(G) and nq = n), which is a tight bound for k = 1. For k ≥ 2,
the base is not an integer and, because of the strict inequality mentioned above, we
can apply the floor function to the log. Converting bases of the logarithm we get
GN(G) ≤ 1 + (log2

k+1
k )−1 log2 n ≤ 1 + k log2 n.

Theorem 6.2. Given a partial k-tree G on n vertices its Grundy number can be
found in O(n3k2

) time.
Proof. First note that a tree-decomposition can be found in time linear in n [6].

Define the Grundy number problem using the degree constraint matrix Dq with di-
agonal entries {0}, above-diagonal entries P, and below-diagonal entries N. We then
use the algorithm from section 6.2.2 extended with the nonempty information as de-
scribed above. The correctness of each table operation procedure is easily established,
so that by induction over the parse tree we can conclude that the root-optimization
procedure will correctly give the answer YES if and only if the input graph has an
appropriate partition V1, . . . , Vq with nonempty classes. An affirmative answer im-
plies that GN(G) ≥ q. Using the bound GN(G) ≤ 1 + k log2 n, we run the ∃Dq

algorithm for descending values of q starting with q = 1+k log2 n and halting as soon
as an affirmative answer is given. The complexity of this algorithm is then given by
appropriately applying Theorem 5.7, with |Aσ| = 1 and |Aρ| = 2.

Consider any maximum iterated [ρ, σ] removal problem with ρ = P, asking how
many times we can remove a σ-constrained dominating set from a graph (compare
with a Grundy number which removes independent dominating sets). This translates
to a partition maximization problem where the degree constraint matrix has diagonal
entries σ, above-diagonal entries N, and below-diagonal entries P. Note that the proof
of the logarithmic bound on the Grundy number in Theorem 6.1 does not use the fact
that the classes Vi of the partition are independent sets, only the fact that they are
dominating sets in the remaining graph. Thus we get a logarithmic upper bound also
on these generalized maximum dominating iterated removal parameters on partial
k-trees and a polynomial-time algorithm for computing these parameters for fixed k.

7. Conclusions. In this paper, we have presented a design methodology for
practical solution algorithms on partial k-trees and a characterization of a class of
vertex partitioning problems. These results were combined by adapting the algorithm
design methodology on partial k-trees to vertex partitioning problems, yielding the
first algorithms for these problems with reasonable time complexity as a function of
treewidth.

Implementation of the resulting algorithms is a project at the University of Bergen
[17]. The program for solving the Independent Set problem: maximize |V1| over
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partitions (V1, V2) satisfying

D2 =

( {0} N

N N

)

is about 1000 lines of C++ code. Less than 100 of these lines are problem-specific,
i.e., to produce a solution algorithm for any other vertex subset problem requires
changing only a handful of functions.

The actual running time behaves as predicted by the bounds given in this paper,
e.g., to solve the independent set problem on an n-node partial k-tree (using a 150
Mhz alpha processor-based digital computer) it takes roughly 10−5 ·n ·2k seconds. For
example, on a 3000-node graph with treewidth 5, we solve the maximum independent
set problem in about 1 second.

Various improvements can be made to these algorithms to reduce the average, if
not worst-case, running time. For example, one can use parse trees with smaller bags
in “thin” parts of the graph or computing table entries can be based only on nonzero
table entries in the children.

A recent result [29] shows that control-flow graphs of structured (goto-free) pro-
grams have small treewidth, e.g., treewidth at most 3 for Pascal programs and
treewidth at most 6 for C programs. Moreover, a tree-decomposition of the control-
flow graph can be easily computed from the program structure (in fact from the
3-address code), making our algorithms, which require a k-tree embedding (tree-
decomposition), relatively easily applicable in various compiler optimization settings.
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Abstract. Periodic global updates of dual variables have been shown to yield a substantial speed
advantage in implementations of push-relabel algorithms for the maximum flow and minimum cost
flow problems. In this paper, we show that in the context of the bipartite matching and assignment
problems, global updates yield a theoretical improvement as well. For bipartite matching, a push-

relabel algorithm that uses global updates runs in O
(√

nm
log(n2/m)

logn

)
time (matching the best bound

known) and performs worse by a factor of
√
n without the updates. A similar result holds for the

assignment problem, for which an algorithm that assumes integer costs in the range [−C, . . . , C ] and
that runs in time O(

√
nm log(nC)) (matching the best cost-scaling bound known) is presented.

Key words. assignment problem, cost scaling, bipartite matching, dual update, push-relabel
algorithm, zero-one flow
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1. Introduction. The push-relabel method [10, 13] is the best currently known
method for solving the maximum flow problem [1, 2, 19]. This method extends to
the minimum cost flow problem using cost-scaling [10, 14], and an implementation
of this technique has proven very competitive on a wide class of problems [11]. In
both contexts, the idea of periodic global updates of node distances or prices has been
critical in obtaining the best running times in practice.

Several algorithms for the bipartite matching problem run in O(
√
nm) time.1 The

first algorithm proved to achieve this bound was proposed by Hopcroft and Karp [15].
Karzanov [17, 16] and Even and Tarjan [5] proved that the blocking flow algorithm
of Dinic [4] runs in this time when applied to the bipartite matching problem. Two-
phase algorithms based on a combination of the push-relabel method [13] and the
augmenting path method [7] were proposed in [12, 20].

Feder and Motwani [6] give a “graph compression” technique that combines with

the algorithm of Dinic to yield an O
(√

nm log(n2/m)
log n

)
algorithm. This is the best time

bound known for the problem.
The most relevant theoretical results on the assignment problem are as follows.

The best currently known strongly polynomial time bound of O
(
n(m + n logn)

)
is

achieved by the classical Hungarian method of Kuhn [18]. Under the assumption
that the input costs are integers in the range [−C, . . . , C ], Gabow and Tarjan [9]
use cost-scaling and blocking flow techniques to obtain an O

(√
nm log(nC)

)
time

algorithm. An algorithm using an idea similar to global updates with the same running
time appeared in [8]. Two-phase algorithms with the same running time appeared
in [12, 20]. The first phase of these algorithms is based on the push-relabel method and
the second phase is based on the successive augmentation approach. Our algorithm
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for the assignment problem runs in O
(√

nm log(nC)
)
, and like the other algorithms

with this time bound, it is based on cost-scaling, assumes that the input costs are
integers, and is not strongly polynomial.

We show that algorithms based on the push-relabel method with global updates
match the best bounds for the bipartite matching and assignment problems. Our
results are based on the following new selection strategies: the minimum distance
strategy in the bipartite matching case and minimum price change strategy in the
assignment problem case. We also prove that the algorithms perform significantly
worse without global updates. Similar results can be obtained for maximum and
minimum cost flows in networks with unit capacities. Our results are a step toward
a theoretical justification of the use of global update heuristics in practice.

This paper is organized as follows. Section 2 gives definitions relevant to bipartite
matching and maximum flow. Section 3 outlines the push-relabel method for maxi-
mum flow and shows its application to bipartite matching. In section 4, we present
an O(

√
nm) time bound for the bipartite matching algorithm with global updates,

and in Section 5 we show how to apply Feder and Motwani’s techniques to improve

the algorithm’s performance to O
(√

nm log(n2/m)
log n

)
. Section 6 shows that without

global updates, the bipartite matching algorithm performs poorly. Section 7 gives
definitions relevant to the assignment problem and minimum cost flow. In section 8,
we describe the cost-scaling push-relabel method for minimum cost flow and apply
the method to the assignment problem. Sections 9 and 10 generalize the bipartite
matching results to the assignment problem. In section 11, we give our conclusions
and suggest directions for further research.

2. Bipartite matching and maximum flow. Let G = (V = X ∪ Y,E) be an
undirected bipartite graph, let n = |V |+2 (the additive constant being, for notational
convenience, in the reduction to come), and let m = |E|. A matching in G is a subset
of edges M ⊆ E that have no node in common. The cardinality of the matching is
|M |. The bipartite matching problem is to find a maximum cardinality matching.

The conventions we assume for the maximum flow problem are as follows: Let
G = ({s, t} ∪ V,E) be a digraph with an integer-valued capacity u(a) associated with
each arc2 a ∈ E. We assume that a ∈ E ⇒ aR ∈ E (where aR denotes the reverse of
arc a). A pseudoflow is a function f : E → R satisfying the following for each a ∈ E:

• f(a) = −f(aR) (flow antisymmetry constraints);
• f(a) ≤ u(a) (capacity constraints).

The antisymmetry constraints are for notational convenience only, and we will often
take advantage of this fact by mentioning only those arcs with nonnegative flow; in
every case, the antisymmetry constraints are satisfied simply by setting the reverse
arc’s flow to the appropriate value. For a pseudoflow f and a node v, the excess
flow into v, denoted ef (v), is defined by ef (v) =

∑
(u,v)∈E f(u, v). A preflow is a

pseudoflow with the property that the excess of every node except s is nonnegative.
A node v 6= t with ef (v) > 0 is called active.

A flow is a pseudoflow f such that, for each node v ∈ V , ef (v) = 0. Observe
that a preflow f is a flow if and only if there are no active nodes. The maximum flow
problem is to find a flow maximizing ef (t).

2Sometimes we refer to an arc a by its endpoints, e.g., (v, w). This is ambiguous if there are
multiple arcs from v to w. An alternative is to refer to v as the tail of a and to w as the head of a,
which is precise but inconvenient.
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s t

Given Matching Instance

Bipartite Matching Instance Corresponding Maximum Flow Instance

(Reverse arcs not shown)

Fig. 3.1. Reduction from bipartite matching to maximum flow.

3. The push-relabel method for bipartite matching. We reduce the bi-
partite matching problem to the maximum flow problem in a standard way. For
brevity, we mention only the “forward” arcs in the flow network; to each such arc
we give unit capacity. The “reverse” arcs have capacity zero. Given an instance
G =

(
V = X ∪ Y,E

)
of the bipartite matching problem, we construct an instance(

G = ({s, t} ∪ V,E), u
)

of the maximum flow problem by

• setting V = V ;
• for each node v ∈ X, placing arc (s, v) in E;
• for each node v ∈ Y , placing arc (v, t) in E;
• for each edge {v, w} ∈ E with v ∈ X and w ∈ Y , placing arc (v, w) in E.

A graph obtained by this reduction is called a matching network (see Figure 3.1).
Note that if G is a matching network, then for any integral pseudoflow f and for
any arc a ∈ E, u(a), f(a) ∈ {0, 1}. Indeed, any integral flow in G can be interpreted
conveniently as a matching in G; the matching is exactly the edges corresponding to
those arcs a ∈ X × Y with f(a) = 1. It is a well-known fact [7] that a maximum flow
in G corresponds to a maximum matching in G.

For a given pseudoflow f , the residual capacity of an arc a ∈ E is uf (a) =
u(a) − f(a). The set of residual arcs Ef contains the arcs a ∈ E with f(a) < u(a).
The residual graph Gf = (V,Ef ) is the graph induced by the residual arcs. The
augmented residual graph G=

f has the same nodes and arcs as G but is associated
with the capacity function uf . The point of defining G=

f is to meaningfully discuss
pseudoflows that obey the residual capacity constraints. Since the residual graph lacks
arcs a with uf (a) = 0, it can lack reverse arcs that are assumed by the definition of
a pseudoflow.

A distance labeling is a function d : V → Z+. We say a distance labeling d is valid
with respect to a pseudoflow f if d(t) = 0, d(s) = n and, for every arc (v, w) ∈ Ef ,
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push(v, w).
send a unit of flow from v to w.

end.

relabel(v).

replace d(v) by min(v,w)∈Ef

{
d(w) + 1

}
end.

Fig. 3.2. The push and relabel operations.

d(v) ≤ d(w)+1. Those residual arcs (v, w) with the property that d(v) = d(w)+1 are
called admissible arcs, and the admissible graph GA = (V,EA) is the graph induced
by the admissible arcs. It is straightforward to see that GA is acyclic for any valid
distance labeling.

We begin with a high-level description of the generic push-relabel algorithm for
maximum flow specialized to the case of matching networks. The algorithm starts
with the zero flow, then sets f(s, v) = 1 for every v ∈ X. For an initial distance
labeling, the algorithm sets d(s) = n and d(t) = 0 and, for every v ∈ V , sets d(v) = 0.
Then the algorithm applies push and relabel operations in any order until the current
pseudoflow is a flow. The push and relabel operations, described below, preserve the
properties that the current pseudoflow f is a preflow and that the current distance
labeling d is valid with respect to f .

The push operation applies to an admissible arc (v, w) whose tail node v is active.
It consists of “pushing” a unit of flow along the arc, i.e., increasing f(v, w) by one,
increasing ef (w) by one, and decreasing ef (v) by one. The relabel operation applies
to an active node v that is not the tail of any admissible arc. It consists of changing
v’s distance label so that v is the tail of at least one admissible arc, i.e., setting d(v) to
the largest value that preserves the validity of the distance labeling. See Figure 3.2.

Our analysis of the push-relabel method is based on the following facts. (See [13]
for details; note that arcs in a matching network have unit capacities and thus
push(v, w) saturates the arc (v, w)).

• For all nodes v, we have 0 ≤ d(v) ≤ 2n.
• Distance labels do not decrease during the computation.
• relabel(v) increases d(v).
• The number of relabel operations during the computation is O(n) per node.
• The work involved in relabel operations is O(nm).
• If a node v is relabeled t times during a computation segment, then the

number of pushes from v is at most (t+ 1)× degree(v).
• The number of push operations during the computation is O(nm).

The above facts imply that any push-relabel algorithm runs in O(nm) time given
that the work involved in selecting the next operation to apply does not exceed the
work involved in applying these operations. This can be easily achieved using the
following simple data structure (see [13] for details). We maintain a current arc for
every node. Initially, the first arc in the node’s arc list is current. When pushing
flow excess out of a node v, we push it on v’s current arc if the arc is admissible, or
advance the current arc to the next arc on the arc list. When there are no more arcs
on the list, we relabel v and set v’s current arc to the first arc on v’s arc list.
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4. Global updates and the minimum distance discharge algorithm. In
this section, we specify an ordering of the push and relabel operations that yields
certain desirable properties. We also introduce global distance updates and show
that the algorithm resulting from our operation ordering and global update strategy
runs in O(

√
nm) time.

For any nodes v, w, let dw(v) denote the breadth-first-search distance from v to
w in the (directed) residual graph of the current preflow. If w is unreachable from v
in the residual graph, dw(v) is infinite. Setting d(v) = min

{
dt(v), n+ds(v)

}
for every

node v ∈ V is called a global update operation. This operation also sets the current
arc of every node to the node’s first arc. Such an operation can be accomplished with
O(m) work that amounts to two breadth-first-search computations. Validity of the
resulting distance labeling is a straightforward consequence of the definition. Note
that a global update cannot decrease any node’s distance label [13].

The ordering of operations we use is called minimum distance discharge. It con-
sists of repeatedly choosing an active node whose distance label is minimum among
all active nodes and, if there is an admissible arc leaving that node, pushing a unit of
flow along the admissible arc; otherwise we relabel the node. For the sake of efficient
implementation and easy generalization to the weighted case, we formulate this selec-
tion strategy in a slightly different (but equivalent) way and use this formulation to
guide the implementation and analysis. The intuition is that we select a unit of excess
at an active node with a minimum distance label and process that unit of excess until
a relabeling occurs or the excess reaches s or t. In the event of a relabeling, the new
distance label may be small enough to guarantee that the same excess still has the
minimum label; if so, we avoid the work associated with finding the next excess to
process. This scheme’s important properties generalize to the weighted case, and it
allows us to show easily that the work done in active node selection is not too great.

To implement this selection rule, we maintain a collection of buckets, b0, . . . , b2n;
each bi contains the active nodes with distance label i, except possibly one which is
currently being processed. During execution, we maintain µ, which is the index of the
bucket from which we selected the most recent unit of excess. If the new distance label
is no more than µ when we relabel a node, we know that node still has a minimum
distance label among the active nodes, so we continue processing the same unit of
excess.

In addition, we perform periodic global updates. The first global update is per-
formed immediately after the preflow is initialized. After each push and relabel oper-
ation, the algorithm checks the following two conditions and performs a global update
if both conditions hold:

• Since the most recent update, at least one unit of excess has reached s or t.
• Since the most recent update, the algorithm has done at least m work in push

and relabel operations.

Immediately after each global update, we rebuild the buckets in O(n) time and set
µ to zero. The following lemma shows that the algorithm does little extra work in
selecting nodes to process.

Lemma 4.1. Between two consecutive global updates, the algorithm does O(n)
work in examining empty buckets.

Proof. The proof is immediate, because µ decreases only when it is set to zero
after an update, and there are 2n+ 1 = O(n) buckets.

We will denote by Γ(f, d) (or simply Γ) the minimum distance label of an active
node with respect to the pseudoflow f and the distance labeling d. We let Γmax denote
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Fig. 4.1. Accounting for work when 0 ≤ Γmax ≤ n.

the maximum value reached by Γ during the algorithm so far. Note that Γmax is often
equal to µ; we use separate names mainly to emphasize that µ is maintained by the
implementation, while Γmax is an abstract quantity with relevance to the analysis
regardless of the implementation details.

Figure 4.1 represents the structure underlying our analysis of the minimum dis-
tance discharge algorithm. (Strictly speaking, the figure shows only half of the anal-
ysis; the other half, when Γmax > n, is essentially similar.) The horizontal axis
corresponds to the value of Γmax, which increases as the algorithm proceeds, and the
vertical axis corresponds to the distance label of the node currently being processed.
Our analysis hinges on a parameter k, in the range 2 ≤ k ≤ n, to be chosen later. We
divide the execution of the algorithm into four stages. In the first two stages, excesses
are moved to t; in the final two stages, excesses that cannot reach t return to s. We
analyze the first stage of each pair using the following lemma.

Lemma 4.2. The minimum distance discharge algorithm expends O(km) work
during the periods when Γmax ∈ [0, k] and Γmax ∈ [n, n+ k].

Proof. First, note that if Γmax falls in the first interval of interest, Γ must lie in
that interval as well. This relationship also holds for the second interval after a global
update is performed, since Γmax ≥ n implies that no excess can reach t. Because the
work from the beginning of the second interval until the price update is performed is
O(m), it is enough to show that the time spent by the algorithm during periods when
Γ ∈ [0, k] and Γ ∈ [n, n+ k] is in O(km). Note that the periods defined in terms of Γ
may not represent contiguous intervals during the execution of the algorithm.

Each node can be relabeled at most k + 1 times when Γ ∈ [0, k] and similarly
for Γ ∈ [n, n + k]. Hence the relabelings and pushes require O(km) work. The
observations that a global update requires O(m) work and that during each period
there are O(k) global updates complete the proof.
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To study the behavior of the algorithm during the remainder of its execution, we
exploit the structure of matching networks by appealing to a combinatorial lemma.
The following lemma is a special case of a well-known decomposition theorem [7] (also
see [5]). The proof depends mainly on the fact that for a matching network G, the
in-degree of v ∈ X in Gf is 1− ef (v) and the out-degree of w ∈ Y in Gf is 1 + ef (w)
for any integral pseudoflow f .

Lemma 4.3. Any integral pseudoflow f in the augmented residual graph of an
integral flow g in a matching network can be decomposed into cycles and simple paths
that are pairwise node-disjoint, except at the endpoints of the paths, such that each
element in the decomposition carries one unit of flow. Each path is from a node v
with ef (v) < 0 (v can be t) to a node w with ef (w) > 0 (w can be s).

Lemma 4.3 allows us to show that when Γmax is outside the intervals covered by
Lemma 4.2, the amount of excess the algorithm must process is small.

Given a preflow f , we define the residual flow value to be the total excess that
can reach t in Gf .

Lemma 4.4. If Γmax ≥ k > 2, the residual flow value is at most n/(k − 1) if G
is a matching network.

Proof. Note that the residual flow value never increases during an execution of
the algorithm, and consider the pair (f, d) such that Γ(f, d) ≥ k for the first time
during the execution. Let f∗ be a maximum flow in G, and let f ′ = f∗− f . Now −f ′
is a pseudoflow in G=

f∗ and can therefore be decomposed into cycles and paths as in
Lemma 4.3. Such a decomposition of −f ′ induces the obvious decomposition on f ′

with all the paths and cycles reversed and excesses negated. Because Γ ≥ k and d is a
valid distance labeling with respect to f , any path in Gf from an active node to t must
contain at least k+1 nodes. In particular, the excess-to-t paths in the decomposition
of f ′ contain at least k+1 nodes each and are node-disjoint except for their endpoints.
Since G contains only n nodes, there can be no more than (n−2)/(k−1) < n/(k−1)
such paths. Since f∗ is a maximum flow, the amount of excess that can reach t in Gf

is no more than n/(k − 1).

The proof of the next lemma is similar.

Lemma 4.5. If Γmax ≥ n + k > n + 2 during an execution of the minimum
distance discharge algorithm with global updates on a matching network, the total
excess at nodes in V is at most n/(k − 1).

The following lemma shows an important property of the rules we use to trigger
global update operations, namely, that during a period when the algorithm does Θ(m)
work at least one unit of excess is guaranteed to reach s or t.

Lemma 4.6. Between any two consecutive global update operations, the algorithm
does Θ(m) work.

Proof. According to the two conditions that trigger a global update, it suffices
to show that immediately after an update, the work done in moving a unit of excess
to s or t is O(m). For every node v, at least one of ds(v), dt(v) is finite. Therefore,
immediately after a global update at least one admissible arc leaves every node except
s and t, by definition of the global update operation. Recall that the admissible
graph is acyclic, so the first unit of excess processed by the algorithm immediately
after a global update arrives at t or at s before any relabeling occurs, and does so
along a simple path. Consider the path taken by the flow unit to s or t. The work
performed while moving the unit along the path is proportional to the length of the
path plus the number of times current arcs of nodes on the path are advanced. This
O(n+m) = O(m) work is performed before the first condition for a global update is
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met.

Following an amount of additional work bounded above by m+O(n), plus work
proportional to that for a push or relabel operation, another global update opera-
tion will be triggered. Clearly a push or relabel takes O(m) work and the lemma
follows.

We are ready to prove the main result of this section.

Theorem 4.7. The minimum distance discharge algorithm with global updates
computes a maximum flow in a matching network (and hence a maximum cardinality
bipartite matching) in O(

√
nm) time.

Proof. By Lemma 4.2, the total work done by the algorithm when Γmax ∈ [0, k] and
Γmax ∈ [n, n + k] is O(km). By Lemmas 4.4 and 4.5, the amount of excess processed
when Γmax falls outside these bounds is at most 2n/(k − 1). From Lemma 4.6 we
conclude that the work done in processing this excess is O(nm/k). Hence the time
bound for the minimum distance discharge algorithm is O

(
km+ nm/k

)
. Choosing

k = Θ(
√
n ) to balance the two terms, we see that the minimum distance discharge

algorithm with global updates runs in O(
√
nm) time.

5. Improved performance through graph compression. Feder and Mot-
wani [6] give an algorithm that runs in o(

√
nm) time and produces a compressed

representation G
∗

= (V ∪W,E
∗
) of a bipartite graph in which all adjacency infor-

mation is preserved, but that has asymptotically fewer edges if the original graph
G = (V ,E) is dense. This graph consists of all the original nodes of X and Y , as
well as a set of additional nodes W . An edge {x, y} appears in E if and only if either

{x, y} ∈ E
∗

or G
∗

contains a length-two path from x to y through some node of W .

The following theorem is slightly specialized from Feder and Motwani’s Theo-
rem 3.1 [6], which details the performance of their algorithm Compress.

Theorem 5.1. Let δ ∈ (0, 1) and let G = (V = X ∪ Y,E) be an undirected
bipartite graph with |X| = |Y | = n and |E| = m ≥ n2−δ. Then algorithm Compress

computes a compressed representation G
∗

= (V ∪ W,E
∗
) of G with m∗ = |E∗| =

O
(
mδ−1 log(n2/m)

log n

)
in time O(mnδ log2 n). The number of nodes in W is O(mnδ−1).

In particular, we choose a constant δ < 1/2; then the compressed representation

is computed in time o(
√
nm) and has m∗ = O

(
m log(n2/m)

log n

)
edges.

Given a compressed representation G
∗

of G, we can compute a flow network G∗

in which there is a correspondence between flows in G∗ and matchings in G. The only
differences from the reduction of section 3 are that each edge {x,w} with x ∈ X and
w ∈ W gives an arc (x,w), and each edge {w, y} with w ∈ W and y ∈ Y gives an
arc (w, y). As in section 3, we have a relationship between matchings in the original
graph G and flows in G∗, but now the correspondence is not one-to-one as it was
before. Nevertheless, it remains true here that given a flow f with ef (t) = c in G∗, we
can find a matching of cardinality c in G using only O(n) time in a straightforward
way.

The performance improvement that we gain comes from using the graph com-
pression step as preprocessing; we will show that the minimum distance discharge
algorithm with global updates runs in time O(

√
nm∗) on the flow network G∗ corre-

sponding to the compressed representation G
∗

of a bipartite graph G. In other words,
the speedup results only from the reduced number of edges, not from changes within
the minimum distance discharge algorithm.

To prove the performance bound, we must generalize certain lemmas from sec-
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tion 4 to networks with the structure of compressed representations. Let n∗ = n+ |W |
be the number of nodes in the maximum flow problem derived from the compressed
representation of the input graph. Lemma 4.2 is independent of the input network’s
structure, as are Lemma 4.6 and Lemma 4.1. These three lemmas give us their con-
clusions for compressed representations where we substitute n∗ for n and m∗ for m in
their statements and proofs. An analogue to Lemma 4.3 holds in a flow network de-
rived from a compressed representation; this will extend Lemmas 4.4 and 4.5, allowing
us to conclude the improved time bound.

Lemma 5.2. Any integral pseudoflow f in the augmented residual graph of an
integral flow g in the flow graph of a compressed representation can be decomposed into
cycles and simple paths that are pairwise node-disjoint at nodes of X and Y , except
at the endpoints of the paths, such that each element of the decomposition carries one
unit of flow. Each path is from a node v with ef (v) < 0 (v can be t) to a node w with
ef (w) > 0 (w can be s).

Proof. As with matching networks, the in-degree of v ∈ X is 1 − ef (v) and the
out-degree of y ∈ Y is 1 + ef (y), so the standard proof of Lemma 4.3 extends to this
case.

The following lemma is analogous to Lemma 4.4.

Lemma 5.3. If Γmax ≥ k > 2, the residual flow value is at most 2n/(k − 2) if G∗

is a compressed representation.

Proof. The proof follows as in the case of Lemma 4.4, except that here an excess-
to-t path in the decomposition of f ′ must contain at least k/2 nodes of V . Since
V contains only n nodes, there can be no more than 2n/(k − 2) such paths, and so
because f∗ is a maximum flow, the amount of excess that can reach t in G∗f is no
more than 2n/(k − 2).

The following lemma is analogous to Lemma 4.5, and its proof is similar to the
proof of Lemma 5.3.

Lemma 5.4. If Γmax ≥ n∗ + k > n∗ + 2 during an execution of the minimum
distance discharge algorithm with global updates on a compressed representation, the
total excess at nodes in V ∪W is at most 2n/(k − 2).

Using the same reasoning as in Theorem 4.7, we have the following theorem.

Theorem 5.5. The minimum distance discharge algorithm with global updates
computes a maximum flow in the network corresponding to a compressed representa-
tion with m∗ edges in O(

√
nm∗) time.

To complete our time bound for the bipartite matching problem we must dispense
with some technical restrictions in Theorem 5.1, namely, the requirements that |X| =
|Y | = n and that m ≥ n2−δ. The former condition is easily met by adding nodes to
whichever of X, Y is the smaller set, so their cardinalities are equal. These “dummy”
nodes are incident to no edges. As for the remaining condition, observe that our time
bound does not suffer if we simply forego the compression step and apply the result of
section 4 in the case where m < n2−δ. To see this, recall that we chose δ < 1/2, and

note that 1 ≤ m < n2−δ implies log(n2/m)
log n = Θ(1). So we have the following theorem.

Theorem 5.6. The minimum distance discharge algorithm with graph com-
pression and global updates computes a maximum cardinality bipartite matching in

O
(√

nm log(n2/m)
log n

)
time.

This bound matches that of Feder and Motwani for Dinic’s algorithm.

6. Minimum distance discharge algorithm without global updates. In
this section we describe a family of graphs on which the minimum distance discharge
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1. Initialization establishes |X| units of excess, one at each node of X;

2. Nodes of X are relabeled one-by-one, so all v ∈ X have d(v) = 1;

3. While ef (t) < |Y |,
3.1. a unit of excess moves from some node v ∈ X to some node w ∈ Y with

d(w) = 0;
3.2. w is relabeled so that d(w) = 1;
3.3. The unit of excess moves from w to t, increasing ef (t) by one.

4. A single node, x1 with ef (x1) = 1, is relabeled so that d(x1) = 2.

5. `← 1.

6. While ` ≤ n,

Remark: All nodes v ∈ V now have d(v) = ` with the exception of the one
node x` ∈ X, which has d(x`) = `+1 and ef (x`) = 1; all excesses are at nodes
of X;

6.1. All nodes with excess, except the single node x`, are relabeled one-by-one so
that all v ∈ X with ef (v) = 1 have d(v) = `+ 1;

6.2. While some node y ∈ Y has d(y) = `,
6.2.1. A unit of excess is pushed from a node in X to y;
6.2.2. y is relabeled so d(y) = `+ 1;
6.2.3. The unit of excess at y is pushed to a node x ∈ X with d(x) = `;
6.2.4. x is relabeled so that if some node in Y still has distance label `,

d(x) = `+ 1;
otherwise
d(x) = `+ 2 and x`+1 ← x;

6.3. `← `+ 1;

7. Excesses are pushed one-by-one from nodes in X (labeled n+ 1) to s.

Fig. 6.1. The minimum distance discharge execution on bad examples.

algorithm without global updates requires Ω(nm) time (for values of m between Θ(n)
and Θ(n2)). This shows that the updates improve the worst-case running time of the
algorithm. The goal of our construction is to admit an execution of the algorithm in
which each relabeling changes a node’s distance label by O(1). Under this condition
the execution will have to perform Ω(n2) relabelings, and these relabelings will require
Ω(nm) time.

Given ñ ∈ Z and m̃ ∈ [1, ñ2/4], we construct a graph G as follows: G is the
complete bipartite graph with V = X ∪ Y , where

X =

{
1, 2, . . . ,

⌈
ñ+

√
ñ2 − 4m̃

2

⌉}
and Y =

{
1, 2, . . . ,

⌊
ñ−√

ñ2 − 4m̃

2

⌋}
.

It is straightforward to check that this graph has n = ñ+O(1) nodes andm = m̃+O(ñ)
edges. Note that |X| > |Y |.

Figure 6.1 describes an execution of the minimum distance discharge algorithm
on G—the matching network derived from G—that requires Ω(nm) time. With more
complicated but unilluminating analysis, it is possible to show that every execution
of the minimum distance discharge algorithm on G requires Ω(nm) time.

It is straightforward to verify that in the execution outlined, all processing takes
place at active nodes whose distance labels are minimum among the active nodes.
The algorithm performs poorly because during the execution, no relabeling changes a
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distance label by more than two. Hence the execution uses Θ(nm) work in the course
of its Θ(n2) relabelings, and we have the following theorem.

Theorem 6.1. For any function m(n) in the range n ≤ m(n) < n2/4, there
exists an infinite family of instances of the bipartite matching problem having Θ(n)
nodes and Θ

(
m(n)

)
edges on which the minimum distance discharge algorithm without

global updates runs in Ω
(
nm(n)

)
time.

7. Minimum cost circulation and assignment problems. Given a weight
function c : E → R and a set of edges M , we define the weight of M to be the sum
of weights of edges in M . The assignment problem is to find a maximum cardinality
matching of minimum weight. We assume that the costs are integers in the range
[ 0, . . . , C ] where C ≥ 1. (Note that we can always make the costs nonnegative by
adding an appropriate number to all arc costs.)

For the minimum cost circulation problem, we adopt the following framework.
We are given a graph G = (V,E), with an integer-valued capacity function as before.
In addition to the capacity function, we are given an integer-valued cost c(a) for each
arc a ∈ E.

We assume c(a) = −c(aR) for every arc a. A circulation is a pseudoflow f with
the property that ef (v) = 0 for every node v ∈ V . (The absence of a distinguished
source and sink accounts for the difference in nomenclature between a circulation and
a flow.) We will say that a node v with ef (v) < 0 has a deficit.

The cost of a pseudoflow f is given by c(f) =
∑

f(a)>0 c(a)f(a). The minimum
cost circulation problem is to find a circulation of minimum cost.

8. The push-relabel method for the assignment problem. We reduce the
assignment problem to the minimum cost circulation problem as follows. As in the
unweighted case, we mention only “forward” arcs, each of which we give unit capacity.
The “reverse” arcs have zero capacity and obey cost antisymmetry. Given an instance(
G = (V = X ∪ Y,E), c

)
of the assignment problem, we construct an instance

(
G =

({s, t} ∪ V,E), u, c
)

of the minimum cost circulation problem by

• creating special nodes s and t, and setting V = V ∪ {s, t};
• for each node v ∈ X, placing arc (s, v) in E and defining c(s, v) = −nC;
• for each node v ∈ Y , placing arc (v, t) in E and defining c(v, t) = 0;
• for each edge {v, w} ∈ E with v ∈ X, placing arc (v, w) in E and defining
c(v, w) = c(v, w);

• placing n/2 arcs (t, s) in E and defining c(t, s) = 0.

If G is obtained by this reduction (see Figure 8.1), we can interpret an integral cir-
culation in G as a matching in G just as we did in the bipartite matching case.
Furthermore, it is easy to verify that a minimum cost circulation in G corresponds to
a maximum matching of minimum weight in G.

A price function is a function p : V → R. For a given price function p, the reduced
cost of an arc (v, w) is cp(v, w) = c(v, w) + p(v)− p(w).

Let U = X∪{t}. Note that all arcs in E have one endpoint in U and one endpoint
in its complement. Define EU to be the set of arcs whose tail node is in U .

For a constant ε ≥ 0, a pseudoflow f is said to be ε-optimal with respect to a price
function p if, for every residual arc a ∈ Ef , we have

{
a ∈ EU ⇒ cp(a) ≥ 0,
a /∈ EU ⇒ cp(a) ≥ −2ε.
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Given Assignment Instance

t s

Assignment Problem Instance Corresponding Minimum Cost Circulation Instance

Given Costs

Large Negative Costs

Zero Costs

Fig. 8.1. Reduction from assignment to minimum cost circulation.

A pseudoflow f is ε-optimal if f is ε-optimal with respect to some price function p. If
the arc costs are integers and ε < 1/n, any ε-optimal circulation is optimal.

For a given f and p, an arc a ∈ Ef is admissible iff{
a ∈ EU and cp(a) < ε or
a /∈ EU and cp(a) < −ε.

The admissible graph GA = (V,EA) is the graph induced by the admissible arcs.
These asymmetric definitions of ε-optimality and admissibility are natural in the

context of the assignment problem. They have the benefit that the complementary
slackness conditions are violated on O(n) arcs (corresponding to the matched arcs).
For the symmetric definition, complementary slackness can be violated on Ω(m) arcs.

First we give a high-level description of the successive approximation algorithm
(see Figure 8.2). The algorithm starts with ε = C, f(a) = 0 for all a ∈ E, and
p(v) = 0 for all v ∈ V . At the beginning of every iteration, the algorithm divides ε by
a constant factor α and saturates all arcs a with cp(a) < 0. The iteration modifies f
and p so that f is a circulation that is (ε/α)-optimal with respect to p. When ε < 1/n,
f is optimal and the algorithm terminates. The number of iterations of the algorithm
is 1 + blogα(nC)c.

Reducing ε is the task of the subroutine refine. The input to refine is ε, f , and
p such that (except in the first iteration) circulation f is ε-optimal with respect to p.
The output from refine is ε′ = ε/α, a circulation f , and a price function p such that
f is ε′-optimal with respect to p. At the first iteration, the zero flow is not C-optimal
with respect to the zero price function, but because every simple path in the residual
graph has cost of at least −nC, standard results about refine remain true.

The generic refine subroutine (described in Figure 8.3) begins by decreasing the
value of ε and setting f to saturate all residual arcs with negative reduced cost.

This converts f into an ε-optimal pseudoflow (indeed, into a 0-optimal pseudo-
flow). Then the subroutine converts f into an ε-optimal circulation by applying a
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procedure min-cost(V,E, u, c);
[initialization]
ε← C ; ∀v, p(v)← 0; ∀a, f(a)← 0;
[loop]
while ε ≥ 1/n do

(ε, f, p)← refine(ε, f, p);
return(f);

end.

Fig. 8.2. The cost-scaling algorithm.

procedure refine(ε, f, p);
[initialization]
ε← ε/α;
∀a ∈ E with cp(a) < 0, f(a)← u(a);
[loop]
while f is not a circulation

apply a push or a relabel operation;
return(ε, f, p);

end.

Fig. 8.3. The generic refine subroutine.

push(v, w).
send a unit of flow from v to w.

end.

relabel(v).
if v ∈ U

then replace p(v) by max(v,w)∈Ef

{
p(w)− c(v, w)

}
else replace p(v) by max(v,w)∈Ef

{
p(w)− c(v, w)− 2ε

}
end.

Fig. 8.4. The push and relabel operations.

sequence of push and relabel operations, each of which preserves ε-optimality. The
generic algorithm does not specify the order in which these operations are applied.
Next, we describe the push and relabel operations for the unit-capacity case.

As in the maximum flow case, a push operation applies to an admissible arc (v, w)
whose tail node v is active, and consists of pushing one unit of flow from v to w. A
relabel operation applies to an active node v that is not the tail of any admissible arc.
The operation sets p(v) to the smallest value allowed by the ε-optimality constraints,
namely max(v,w)∈Ef

{
p(w) − c(v, w)

}
if v ∈ U , or max(v,w)∈Ef

{
p(w) − c(v, w) − 2ε

}
otherwise. Figure 8.4 gives the push and relabel operations.

The analysis of cost-scaling push-relabel algorithms is based on the following
facts [12, 14]. During a scaling iteration

• no node price increases;
• every relabeling decreases a node price by at least ε;
• for any v ∈ V , p(v) decreases by O(nε).
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9. Global updates and the minimum change discharge algorithm. In
this section, we generalize the ideas of minimum distance discharge and global updates
to the context of the minimum cost circulation problem and analyze the algorithm
that embodies these generalizations.

We analyze a single execution of refine, and to simplify our notation, we make
some assumptions that do not affect the results. We assume that the price function is
identically zero at the beginning of the iteration. Our analysis goes through without
this assumption, but the required condition can be achieved at no increased asymp-
totic cost by replacing the arc costs with their reduced costs and setting the node
prices to zero in the first step of refine.

Under the assumption that each iteration begins with the zero price function,
the price change of a node v during an iteration is δ(v) = b−p(v)/εc. By analogy
to the matching case, we define Γ(f, p) = minef (v)>0

{
δ(v)

}
, and let Γmax denote the

maximum value attained by Γ(f, p) so far in this iteration. The minimum change
discharge strategy consists of repeatedly selecting a unit of excess at an active node
v with δ(v) = Γ and processing that unit until it cancels some deficit or until a
relabeling occurs. We implement this strategy as in the unweighted case. Observe
that no node’s price changes by more than 2αnε during refine, so a collection of 2αn+1
buckets b0, . . . , b2αn is sufficient to keep every active node v in bδ(v). As before, the
algorithm maintains the index µ of the lowest-numbered nonempty bucket and avoids
bucket access except immediately after a deficit is canceled or a relabeling of a node
v sets δ(v) > µ.

In the weighted context, a global update takes the form of setting each node
price so that GA is acyclic, there is a path in GA from every excess to some deficit
(a node v with ef (v) < 0) and every node reachable in GA from a node with excess
lies on such a path. This amounts to a modified shortest-paths computation and
can be done in O(m) time using ideas from Dial’s work [3]. At every refine, the
first global update is performed immediately after saturating all residual arcs with
negative reduced cost. After each push and relabel operation, the algorithm checks
the following two conditions and performs a global update if both conditions hold:

• Since the most recent update, at least one unit of excess has canceled some
deficit.

• Since the most recent update, the algorithm has done at least m work in push
and relabel operations.

We developed global updates from an implementation heuristic for the minimum cost
circulation problem [11], but in retrospect they prove similar in the assignment context
to the one-processor Hungarian Search technique developed in [8].

Immediately after each global update, the algorithm rebuilds the buckets in O(n)
time and sets µ to zero. As in the unweighted case, we have the following easy bound
on the extra work done by the algorithm in selecting nodes to process.

Lemma 9.1. Between two consecutive global updates, the algorithm does O(n)
work in examining empty buckets.

Figure 9.1 represents the main ideas behind our analysis of an iteration of the
minimum change discharge algorithm. The diagram differs from Figure 4.1 because
we must account for pushes and relabelings that occur at nodes with large values of
δ when Γmax is small. Such operations could not arise in the matching algorithm but
are possible here.

We begin our analysis with a lemma that is essentially similar to Lemma 4.2.

Lemma 9.2. The algorithm does O(km) work in the course of relabel operations
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Fig. 9.1. Accounting for work in the minimum change discharge algorithm.

on nodes v obeying δ(v) ≤ k and push operations from those nodes.

Proof. A node v can be relabeled at most k + 1 times while δ(v) ≤ k, so the
relabelings of such nodes and the pushes from them require O(km) work.

To analyze our algorithm for the assignment problem, we must overcome two
main difficulties that were not present in the matching case. First, we can do push
and relabel operations at nodes whose price changes are large even when Γmax is small;
this work is not bounded by Lemma 9.2 and we must account for it. Second, our
analysis of the period when Γmax is large in the unweighted case does not generalize
because it is not true that δ(v) gives a bound on the breadth-first-search distance
from v to a deficit in the residual graph.

Lemma 9.4 is crucial in resolving both of these issues, and to prove it we use the
following standard result which is analogous to Lemma 4.3.

Lemma 9.3. Given a matching network G and an integral circulation g, any
integral pseudoflow f in Gg can be decomposed into

• cycles, and
• paths, each from a node u with ef (u) < 0 to a node v with ef (v) > 0,

where all the elements of the decomposition are pairwise node-disjoint except at s, t,
and the endpoints of the paths, and each element carries one unit of flow.

We denote a path from node u to node v in such a decomposition by (u ; v).

The following lemma is similar in spirit to those in [8] and [12], although the single-
phase push-relabel framework of our algorithm changes the structure of the proof. Let
E(f) denote the total excess in pseudoflow f , i.e.,

∑
ef (v)>0 ef (v). When no confusion

arises, we simply use E to denote the total excess in the current pseudoflow. The
lemma depends on the (αε)-optimality of the circulation produced by the previous
iteration of refine, so it holds only in the second and subsequent scaling iterations.
Because the zero circulation is not C-optimal with respect to the zero price function,
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we need different phrasing to accomplish the same task in the first iteration. The
differences are mainly technical, so the first-iteration lemmas and their proofs are
confined to Appendix A.

Lemma 9.4. At any point during an execution of refine other than the first,
E × Γmax ≤ 2

(
(5 + α)n− 1

)
.

Proof. Let c denote the (reduced) arc cost function at the beginning of this
execution of refine, and let G = (V,E) denote the augmented residual graph at the
same instant. For simplicity in the following analysis, we view a pseudoflow as an
entity in this graph G. Let f ′, p′ be the current pseudoflow and price function, and
let f , p be the pseudoflow and price function at the most recent point during the
execution of refine when Γ(f, p) = Γmax. Since E(f) ≥ E(f ′) and Γ(f, p) ≥ Γ(f ′, p′),
it is enough to prove the lemma for f , p. We have

E(f)× Γmax ≤
∑

ef (v)>0

δ(v)ef (v).

From the definition of δ, then,

E(f)× Γmax × ε ≤ −
∑

ef (v)>0

p(v)ef (v).

We will complete our proof by showing that

−
∑

ef (v)>0

p(v)ef (v) = cp(f)− c(f)

and then deriving an upper bound on this quantity.
By the definition of the reduced costs,

cp(f)− c(f) =
∑

f(v,w)>0

(
p(v)− p(w)

)
f(v, w).

Letting P be a decomposition of f into paths and cycles according to Lemma 9.3 and
noting that cycles make no contribution to the sum, we can rewrite this expression as∑

(u;v)∈P
(p(u)− p(v)).

Since nodes u with ef (u) < 0 are never relabeled, p(u) = 0 for such a node, and we
have

cp(f)− c(f) = −
∑

(u;v)∈P
p(v).

Because the decomposition P must account for all of f ’s excesses and deficits, we can
rewrite

cp(f)− c(f) = −
∑

ef (v)>0

p(v)ef (v).

Now we derive an upper bound on cp(f) − c(f). It is straightforward to verify
that for any matching network G and integral circulation g, the residual graph Gg has
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exactly n arcs a /∈ EU , and so from the fact that the execution of refine begins with
the augmented residual graph of an (αε)-optimal circulation, we deduce that there
are at most n negative-cost arcs in E. Because each of these arcs has cost at least
−2αε, we have c(f) ≥ −2αnε. Hence cp(f)− c(f) ≤ cp(f) + 2αnε.

Now consider cp(f). Clearly, f(a) > 0 ⇒ aR ∈ Ef , and ε-optimality of f with
respect to p says that aR ∈ Ef ⇒ cp(a

R) ≥ −2ε. Since cp(a
R) = −cp(a), we have

f(a) > 0 ⇒ cp(a) ≤ 2ε. Recalling our decomposition P into cycles and paths from
deficits to excesses, observe that cp(f) =

∑
P∈P cp(P ). Let ν(P ) denote the interior

of a path P , i.e., the path minus its endpoints and initial and final arcs, and let ∂(P )
denote the set containing the initial and final arcs of P . If P is a cycle, ν(P ) = P
and ∂(P ) = ∅. We can write

cp(f) =
∑
P∈P

cp
(
ν(P )

)
+
∑
P∈P

cp
(
∂(P )

)
.

The total number of arcs not incident to s or t in the cycles and path interiors is
at most n by node-disjointness, and the number of arcs incident to s or t is at most
2n − 1. Also, the total excess is never more than n, so the initial and final arcs of
the paths number no more than 2n. And because each arc carrying positive flow has
reduced cost at most 2ε, we have cp(f) ≤ (n+ 2n− 1 + 2n)2ε = (5n− 1)2ε.

Therefore, cp(f) − c(f) ≤ 2
(
(5 + α)n − 1

)
ε, and we have E(f) × Γmax ≤ 2

(
(5 +

α)n− 1
)
.

Corollary 9.5. Γmax ≥ k implies E = O(n/k).

We use the following lemma to show that when Γmax is small, we do a limited
amount of work at nodes whose price changes are large.

Lemma 9.6. While Γmax ≤ k, the amount of work done in relabelings at nodes v
with δ(v) > k and pushes from those nodes is O(n2/k).

Proof. For convenience, we say a node that gets relabeled under the conditions
of the lemma is a bad node. We process a given node v either because we selected a
unit of excess at v or because the most recent operation was a push from one of v’s
neighbors to v. If a unit of v’s excess is selected, we have δ(v) ≤ Γmax (indeed without
global updates, δ(v) = Γmax), which implies δ(v) ≤ k, so v cannot be a bad node. In
the second case, the unit of excess just pushed to v will remain at v until Γmax ≥ δ(v)
because the condition δ(v) > µ will cause excess at a different node to be selected
immediately after v is relabeled. We cannot select v’s excess until Γmax ≥ δ(v), and
at such a time, Corollary 9.5 shows that the total excess remaining is O(n/k). Since
each relabeling of a bad node leaves a unit of excess that must remain at that node
until Γmax ≥ k, the number of relabelings of bad nodes is O(n/k). Because every
node has degree at most n, the work done in pushes and relabelings at bad nodes is
O(n2/k).

Recall that the algorithm initiates a global update only after a unit of excess has
canceled some deficit since the last global update. The next lemma, analogous to
Lemma 4.6, shows that this rule cannot introduce too great a delay.

Lemma 9.7. Between any two consecutive global update operations, the algorithm
does Θ(m) work.

Proof. As in the unweighted case, it suffices to show that the algorithm does
O(m) work in canceling a deficit immediately after a global update operation, and
O(m) work in selecting nodes to process. The definition of a global update operation
suffices to ensure that a unit of excess reaches some deficit immediately after a global
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update and before any relabeling occurs, and Lemma 9.1 shows that the extra work
done between global updates in selecting nodes to process is O(n).

Lemmas 9.2 and 9.6 show that the algorithm takes O(km + n2/k) time when
Γmax ≤ k. Corollary 9.5 says that when Γmax ≥ k, the total excess remaining is
O(n/k), and Lemma 9.7 shows that O(m) work suffices to cancel each unit of excess
remaining. Therefore the total work in an execution of refine is O

(
km+n2/k+nm/k

)
,

and choosing k = Θ(
√
n ) gives a O(

√
nm) time bound on an execution of refine. The

overall time bound follows from the O(log(nC)) bound on the number of scaling
iterations, giving the following theorem.

Theorem 9.8. The minimum change discharge algorithm with global updates
computes a minimum cost circulation in a matching network in O

(√
nm log(nC)

)
time.

Graph compression methods [6] do not apply to graphs with weights because the
compressed graph preserves only adjacency information and cannot encode arbitrary
edge weights. Hence the Feder–Motwani techniques cannot improve performance in
the assignment problem context.

10. Minimum change discharge algorithm without global updates. We
present a family of assignment instances on which we show that refine, without global
updates, performs Ω(nm) work in the first scaling iteration under the minimum change
discharge selection rule. Hence this family of matching networks suffices to show that
global updates account for an asymptotic difference in running time.

The family of assignment instances on which we show that refine, without global
updates, takes Ω(nm) time is structurally the same as the family of bad examples we
used in the unweighted case, except that each weighted example has two additional
nodes and one additional edge. The costs of the edges present in the unweighted
example are zero, and there are two extra nodes connected only to each other, sharing
an edge with cost α. These two nodes and the edge between them are present only to
establish the initial value of ε and the costs of arcs introduced in the reduction, and
are ignored in our description of the execution.

At the beginning of the first scaling iteration, ε = α. The iteration starts by
setting ε = 1. From this point on, the execution is similar to the execution of the
minimum distance discharge algorithm given in section 6, but the details differ because
of the asymmetric definitions of ε-optimality and admissibility that we use in the
weighted case.

Figure 9.2 details an execution of the minimum change discharge algorithm with-
out global updates. As in the unweighted case, every relabeling changes a node price
by at most two and the algorithm does Ω(n2) relabelings. Consequently, the relabel-
ings require Ω(nm) work, and we have the following theorem.

Theorem 10.1. For any function m(n) in the range n ≤ m(n) < n2/4, there
exists an infinite family of instances of the assignment problem having Θ(n) nodes
and Θ

(
m(n)

)
edges on which the minimum change discharge implementation of refine

without global updates runs in Ω
(
nm(n)

)
time.

11. Conclusions and open questions. We have presented algorithms that

achieve the best time bounds known for bipartite matching, i.e., O
(√

nm log(n2/m)
log n

)
,

and for the assignment problem in the cost-scaling context, i.e., O (
√
nm log(nC)).

We have also given examples to show that without global updates, the algorithms
perform worse. Hence we conclude that global updates can be a useful tool in the
theoretical development of algorithms.
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1. Initialization establishes |X| units of excess, one at each node of X.

2. While some node w ∈ Y has no excess,

2.1. a unit of excess moves from a node of X to w;
2.2. w is relabeled so that p(w) = −2.

Remark: Now every node of Y has one unit of excess.

3. Active nodes in X are relabeled one-by-one so that each has price −2.

4. A unit of excess moves from the most recently relabeled node of X to a node of Y ,
then to t, and on to cancel a unit of deficit at s.

5. While more than one node of Y has excess,

5.1. A unit of excess moves to t and thence to s from a node of Y ;

6. The remaining unit of excess at a node of Y moves to a node v ∈ X with p(v) = 0,
and v is relabeled so that p(v) = −2.

7. `← 1.

8. While ` ≤ αn/2− 1,

Remark: All excesses are at nodes of X, and these nodes have price −2`; all
other nodes in X have price −2`+ 2; all nodes in Y have price −2`.

8.1. A unit of excess is selected, and while some node x ∈ X has p(x) = −2`+ 2,
• the selected unit moves from some active node v to w, a neighbor of x in
Gf (for a given x there is a unique such w);

• the unit of excess moves from w to x;
• x is relabeled so p(x) = −2`.

Remark: Now all nodes in X ∪ Y have price −2`; all excesses are at nodes of
X.

8.2. While some node w ∈ Y has p(w) = −2` and some node v ∈ X has ef (v) = 1,
• a unit of excess moves from v to w;
• w is relabeled so p(w) = −2`− 2.

Remark: The following loop is executed only if |X| < 2|Y |. All active nodes
in Y have price −2`− 2, and all other nodes in Y have price −2`.

8.3. If a node in Y has price −2`, a unit of excess is selected, and while some node
y ∈ Y has p(y) = −2`,
• the selected unit moves from some w ∈ Y with ef (w) = 1 to v ∈ X with
p(v) = −2`, and then to y;

• y is relabeled so p(y) = −2`− 2.
Remark: The following loop is executed only if |X| > 2|Y |.

8.4. For each node v ∈ X with ef (v) = 1,
• v is relabeled so p(v) = max

{
−2`− 2,−αn

}
.

8.5. For each node w ∈ Y with ef (w) = 1,
• a unit of excess moves from w to v ∈ X with p(v) = −2`;
• v is relabeled so p(v) = max

{
−2`− 2,−αn

}
.

8.6. `← `+ 1.

9. Excesses move one-by-one from active nodes in X (which have price −αn) to s.

Fig. 9.2. The minimum change discharge execution on bad examples.

We have shown a family of assignment instances on which refine, without global
updates, performs poorly, but the poor performance seems to hinge on details of
the reduction, so it happens only in the first scaling iteration. An interesting open
question is the existence of a family of instances of the assignment problem on which
refine uses Ω(nm) time in every scaling iteration.
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Appendix A. The first scaling iteration. Let G be the network produced by
reducing an assignment problem instance to the minimum cost circulation problem as
in section 8. When refine initializes by saturating all negative arcs in this network, the
only deficit created will be at s by our assumption that the input costs are nonnegative.

For a pseudoflow f in G, define Et(f) to be the amount of f ’s excess that can
reach s by passing through t. Et(f) corresponds to the residual flow value in the
unweighted case (see section 4).

The (αε)-optimality of the initial flow and price function played an important role
in the proof of Lemma 9.4, specifically by lower-bounding the initial cost of any arc
that currently carries a unit of flow. In contrast, the first scaling iteration may have
many arcs that carry flow and have extremely negative costs relative to ε, specifically
those arcs of the form (s, v) introduced by the reduction. But to counter this difficulty,
the first iteration has an advantage that later iterations lack: an upper bound (in terms
of ε) on the initial cost of every residual arc in the network. Specifically, recall that
the value of ε in the first iteration is C/α, where C is the largest cost of an edge in
the given assignment instance. So for any arc a other than the (v, s) arcs introduced
by the reduction, c(a) ≤ αε in the first scaling iteration.

Lemma A.1. At any point during the first execution of refine, Et × Γmax ≤
n(2 + α).

Proof. Let f ′, p′ be the current pseudoflow and price function, and as in the proof
of Lemma 9.4, let f , p be the pseudoflow and price function at the most recent point
when Γ(f, p) = Γmax. As before, it is enough to prove the lemma for f , p; this will
imply the claim holds for f ′, p′.

Let f∗ be a minimum cost circulation in G, and let f ′ = f∗ − f . Recall that the
costs on the (s, v) arcs are negative enough that f∗ must correspond to a matching of
maximum cardinality. Therefore, f ′ moves Et(f) units of f ’s excess to s through t and
returns the remainder to s without its passing through t. Now −f ′ is a pseudoflow
in Gf∗ and can be decomposed into cycles and paths according to Lemma 9.3; as in
the proof of Lemma 4.4, let P denote the induced decomposition of f ′. Let Q ⊆ P be
the set of paths that pass through t, and note that Et(f) = |Q|. Let etf (v) denote the

number of paths of Q beginning at node v. The only deficit in f is at s, so etf (v) is
precisely the amount of v’s excess that reaches s by passing through t if we imagine
augmenting f along the paths of P. Of particular importance is that no path in Q
uses an arc of the form (s, v) or (v, s) for v 6= t.

Observe that

Et(f)× Γmax ≤
∑

etf (v)>0

etf (v)δ(v),

so by the definition of δ,

ε× Et(f)× Γmax ≤ −
∑

etf (v)>0

etf (v)p(v).

Now note that for any path P from v to s, we have p(v) = cp(P )− c(P ) because
p(s) = 0. Every arc used in the decomposition P appears in Gf . By ε-optimality of
f , each of the n or fewer arcs a in Gf with negative reduced cost has cp(a) ≥ −2ε, so
we have

∑
P∈Q cp(P ) ≥ −2nε. Next we use the upper bound on the initial costs to

note that
∑

P∈Q c(P ) ≤ αnε, so

ε× Et(f)× Γmax ≤ −
∑

etf (v)>0

etf (v)p(v) ≤ 2nε+ αnε = n(2 + α)ε,
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and the lemma follows.

Lemma A.2. At any point during the first execution of refine, E × (Γmax−αn) ≤
n(2 + α).

Proof. The proof is essentially the same as the proof of Lemma A.1, except that
if Γmax > αn, each path from an excess to the deficit at s will include one arc of the
form (v, s), and each such arc has original cost −nC = −αnε.

Lemmas A.1 and A.2 allow us to split the analysis of the first scaling iteration
into four stages, much as we did with the minimum distance discharge algorithm for
matching. Specifically, the analysis of section 9 holds up until the point where Γmax ≥
αn, with Lemma A.1 taking the place of Lemma 9.4. Straightforward extensions of
the relevant lemmas show that the algorithm does O(km + n2/k) work when Γmax ∈
[αn, αn + k], and when Γmax > αn + k, Lemma A.2 bounds the algorithm’s work by
O(nm/k). The balancing works as before: choosing k = Θ(

√
n ) gives a bound of

O(
√
nm) time for the first scaling iteration.
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Abstract. Scheduling a set of tasks on a set of machines so as to yield an efficient schedule is
a basic problem in computer science and operations research. Most of the research on this problem
incorporates the potentially unrealistic assumption that communication between the different ma-
chines is instantaneous. In this paper we remove this assumption and study the problem of network
scheduling, where each job originates at some node of a network, and in order to be processed at
another node must take the time to travel through the network to that node.

Our main contribution is to give approximation algorithms and hardness proofs for fully general
forms of the fundamental problems in network scheduling. We consider two basic scheduling objec-
tives: minimizing the makespan and minimizing the average completion time. For the makespan,
we prove small constant factor hardness-to-approximate and approximation results. For the aver-
age completion time, we give a log-squared approximation algorithm for the most general form of
the problem. The techniques used in this approximation are fairly general and have several other
applications. For example, we give the first nontrivial approximation algorithm to minimize the
average weighted completion time of a set of jobs on related or unrelated machines, with or without
a network.
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1. Introduction. Scheduling a set of tasks on a set of machines so as to yield
an efficient schedule is a basic problem in computer science and operations research.
It is also a difficult problem, and hence, much of the research in this area has incorpo-
rated a number of potentially unrealistic assumptions. One such assumption is that
communication between the different machines is instantaneous. In many application
domains, however, such as a network of computers or a set of geographically scattered
repair shops, decisions about when and where to move the tasks are a critical part
of achieving efficient resource allocation. In this paper we remove the assumption of
instantaneous communication from the traditional parallel machine models and study
the problem of network scheduling, in which each job originates at some node of a
network, and in order to be processed at another node must take the time to travel
through the network to that node.

Until this work, network scheduling problems had either loose [2, 4] or no ap-
proximation algorithms. Our main contribution is to give approximation algorithms
and hardness proofs for fully general forms of the fundamental problems in network
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scheduling. Our upper bounds are robust, as they depend on general characteristics
of the jobs and the underlying network. In particular, our algorithmic techniques
to optimize average completion time yield other results, such as the first nontrivial
approximation algorithms for a combinatorial scheduling question: minimization of
average weighted completion time on unrelated machines. They also give the first ap-
proximation algorithm for a problem motivated by satellite communication systems.
(To differentiate our network scheduling models from the traditional parallel machine
models, we will refer to the latter as combinatorial scheduling models.)

Our results not only yield insight into the network scheduling problem, but also
demonstrate contrasts between the complexity of certain combinatorial scheduling
problems and their network variants, shedding light on their relative difficulty.

An instance N = (G, `,J ) of the network scheduling problem consists of a net-
work G = (V,E), |V | = m, with nonnegative edge lengths `; we define `max to be
the maximum edge length. At each vertex vi in the network is a machine Mi. We
are also given a set of n jobs, J1, . . . , Jn. Each job Jj originates, at time 0, on a
particular origin machine Moj and has a processing requirement pj ; we define pmax to
be max1≤j≤n pj . Each job must be processed on one machine without interruption.
Job Jj is not available to be processed on a machine M ′ until time d(Moj ,M

′), where
d(Mi,Mk) is the length of the shortest path in G between Mi and Mk. We assume
that the Mi are either identical (Jj takes time pj on every machine) or that they are
unrelated (Jj takes time pij on Mi, and the pij may all be different). In the unrelated
machines setting, we define pmax = max1≤i≤m,1≤j≤n pij . The identical and unrelated
machine models are fundamental in traditional parallel machine scheduling and are
relatively well understood [3, 10, 11, 12, 15, 17, 25]. Unless otherwise specified, in
this paper the machines in the network are assumed to be identical.

An alternative view of the network scheduling model is that each job Jj has a
release date, a time before which it is unavailable for processing. In previous work on
traditional scheduling models, a job’s release date was defined to be the same on all
machines. The network model can be characterized by allowing a job Jj ’s release date
to be different on different machines; Jj ’s release date on Mk is d(Moj ,Mk). One can
generalize further and consider problems in which a job’s release date can be chosen
arbitrarily for all m machines and need not reflect any network structure. Almost all
of our upper bounds apply in this more general setting, whereas our lower bounds all
apply when the release dates have network structure.

We study algorithms to minimize the two most basic objective functions. One
is the makespan or maximum completion time of the schedule; that is, we would like
all jobs to finish by the earliest time possible. The second is the average completion
time. We define an α-approximation algorithm to be a polynomial-time algorithm
that gives a solution of cost no more than α times optimal.

1.1. Previous work. The problem of network scheduling has received some at-
tention, mostly in the distributed setting. Deng et al. [4] considered a number of
variants of the problem. In the special case in which each edge in the network is of
unit length, all job processing times are the same, and the machines are identical,
they showed that the off-line problem is in P. It is not hard to see that the problem
is NP-complete when jobs are allowed to be of different sizes; they give an off-line
O(log(m`max))-approximation algorithm for this. They also give a number of results
for the distributed version of the problem when the network topology is completely
connected, a ring or a tree.

Awerbuch, Kutten, and Peleg [2] considered the distributed version of the prob-



TASK SCHEDULING IN NETWORKS 575

lem under a novel notion of on-line performance, which subsumes the minimization of
both average and maximum completion time. They give distributed algorithms with
polylogarithmic performance guarantees in general networks. They also characterize
the performance of feedback-based approaches. In addition they derived off-line ap-
proximation results similar to those of Deng et al. [2, 20]. Alon et al. [1] proved an
Ω(logm) lower bound on the performance of any distributed scheduler that is trying
to minimize schedule length. Fizzano et al. [5] give a distributed 4.3-approximation
algorithm for schedule length in the special case in which the network is a ring.

Our work differs from these papers by focusing on the centralized off-line prob-
lem and by giving approximations of higher quality. In addition, our approximation
algorithms work in a more general setting, that of unrelated machines.

1.2. Summary of results. We first focus on the objective of minimizing the
makespan and give a 2-approximation algorithm for scheduling jobs on networks of
unrelated machines; the algorithm gives the same performance guarantee for identical
machines as a special case. The 2-approximation algorithm matches the best-known
approximation algorithm for scheduling unrelated machines with no underlying net-
work [17]. Thus it is natural to ask whether the addition of a network to a combi-
natorial scheduling problem actually makes the problem any harder. We resolve this
question by proving that the introduction of the network to the problem of scheduling
identical machines yields a qualitatively harder problem. We show that for the net-
work scheduling problem, no polynomial-time algorithm can do better than a factor
of 4

3 times optimal unless P = NP, even in a network in which all edges have length
one. Comparing this with the polynomial approximation scheme of Hochbaum and
Shmoys [10] for parallel machine scheduling, we see that the addition of a network
does indeed make the problem harder.

Although the 2-approximation algorithm runs in polynomial time, it may be
rather slow [21]. We thus explore whether a simpler strategy might also yield good
approximations. A natural approach to minimizing the makespan is to construct
schedules with no unforced idle time. Such strategies provide schedules of length a
small constant factor times optimal, at minimal computational cost, for a variety of
scheduling problems [6, 7, 15, 24]. We call such schedules busy schedules, and show
that for the network scheduling problem their quality degrades significantly; they can

be as much as an Ω
(√

logm
log logm

)
factor longer than the optimal schedule.

This is in striking contrast to the combinatorial model (for which Graham showed
that a busy strategy yields a 2-approximation algorithm [6]). In fact, even when re-
lease dates are introduced into the identical machine scheduling problem, if each
job’s release date is the same on all machines, busy strategies still give a (2 − 1

m )-
approximation guarantee [8, 9]. Our result shows that when the release dates of the
jobs are allowed to be different on different machines busy scheduling degrades signifi-
cantly as a scheduling strategy. This provides further evidence that the introduction of
a network makes scheduling problems qualitatively harder. However, busy schedules

are of some quality; we show that they are of length a factor of O
(

logm
log logm

)
longer

than optimal. This analysis gives a better bound than the (O(logm`max)) bound
of previously known approximation algorithms for identical machines in a network
[2, 4, 20].

We then turn to the NP-hard problem of the minimization of average completion
time. Our major result for this optimality criterion is a O(log2 n)-approximation
algorithm in the general setting of unrelated machines. It formulates the problem
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Table 1
Summary of main algorithms and hardness results. The notation x < α ≤ y means that we

can approximate the problem within a factor of y, but unless P = NP we cannot approximate the
problem within a factor of x. Unreferenced results are new results found in this paper.

Combinatorial Network
min. makespan, identical machines α < (1 + ε)[10] 4/3 < α ≤ 2

min. makespan, identical machines, α = 2− 1
m

[6] O
(

logm
log logm

)
,Ω
(√

logm
log logm

)
Busy schedules
min. makespan, unrelated machines 3/2 < α ≤ 2 [17] 3/2 < α ≤ 2
min. avg. completion time
unrelated machines α = 1 [12] 1 < α ≤ O(log2 n)
min. avg. wtd. completion time 1 < α[16]
unrelated machines, release dates α ≤ O(log2 n) 1 < α ≤ O(log2 n)

as a hypergraph matching integer program and then approximately solves a relaxed
version of the integer program. We can then find an integral solution to this relaxation,
employing as a subroutine the techniques of Plotkin, Shmoys, and Tardos [21]. In
combinatorial scheduling, a schedule with minimum average completion time can be
found in polynomial time, even if the machines are unrelated.

The techniques for the average completion time algorithm are fairly general,
and yield an O(log2 n)-approximation for minimizing the average weighted comple-
tion time. A special case of this result is an O(log2 n)-approximation algorithm for
the NP-hard problem of minimizing average weighted completion time for unrelated
machines with no network; no previous approximation algorithms were known, even
in the special case for which the machines are just of different speeds [3, 15]. Another
special case is the first O(log2 n)-approximation algorithm for minimizing the aver-
age completion time of jobs with release dates on unrelated machines. No previous
approximation algorithms were known, even for the special case of just one machine
[15]. The technique can also be used to give an approximation algorithm for a problem
motivated by satellite communication systems [18, 26].

We also give a number of other results, including polynomial-time algorithms for
several special cases of the above-mentioned problems and a 5

2 -approximation for a
variant of network scheduling in which each job has not only an origin, but also a
destination.

A summary of some of these upper bounds and hardness results appears in
Table 1.

A line of research which is quite different from ours, yet still has some similarity
in spirit, was started by Papadimitriou and Yannakakis [19]. They modeled commu-
nication issues in parallel machine scheduling by abstracting away from particular
networks and rather describing the communication time between any two processors
by one network-dependent constant. They considered the scheduling of precedence-
constrained jobs on an infinite number of identical machines in this model; the issues
involved and the sorts of theorems proved are quite different from our results.

Although all of our algorithms are polynomial-time algorithms, they tend to be
rather inefficient. Most rely on the work of [21] as a subroutine. As a result we will
not discuss running times explicitly for the rest of the paper.

2. Makespan. In this section we study the problem of minimizing the makespan
for the network scheduling problem. We first give an algorithm that comes within a
factor of 2 of optimal. We then show that this is nearly the best we can hope for, as
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it is NP-hard to approximate the minimum makespan within a factor of better than
4
3 for identical machines in a network. This hardness result contrasts sharply with
the combinatorial scenario, in which there is a polynomial approximation scheme
[10]. The 2-approximation algorithm is computationally intensive, so we consider
simple strategies that typically work well in parallel machine scheduling. In another
sharp contrast to parallel machine scheduling, we show that the performance of such

strategies degrades significantly in the network setting; we prove an Ω
(√

logm
log logm

)
lower bound on the performance of any such algorithm. We also show that greedy
algorithms do have some performance guarantee, namely O( logm

log logm ). Finally we
consider a variant of the problem in which each job has not only an origin but also a
destination, and give a 5

2 -approximation algorithm.

2.1. A 2-approximation algorithm for makespan. In this section we de-
scribe a 2-approximation algorithm to minimize the makespan of a set of jobs sched-
uled on a network of unrelated machines; the same bound for identical machines
follows as a special case. Let U ′ = (G, `,J ′) be an instance of the unrelated network
scheduling problem with optimal schedule length D. Assuming that we know D, we
will show how to construct a schedule of length at most 2D. This can be converted,
via binary search, into a 2-approximation algorithm for the problem in which we are
not given D [10].

In the optimal schedule of length D, we know that the sum of the time each job
spends travelling and being processed is bounded above by D. Thus, job Jj may run
on machine Mi in the optimal schedule only if

d(Moj ,Mi) + pij ≤ D.(1)

In other words, the length of an optimal schedule is not altered if we allow job Jj to
run only on the machines for which (1) is satisfied. Formally, for a given job Jj , we
will denote by Q(Jj) the set of machines that satisfy (1). If we restrict each Jj to only
run on the machines in Q(Jj), the length of the optimal schedule remains unchanged.

Form combinatorial unrelated machines scheduling problem (Z) as follows:

p
′
ij =

{
pij if Mi ∈ Q(Jj),
∞ otherwise.

(2)

If the optimal schedule for the unrelated network scheduling problem has length
D, then the optimal solution to the unrelated parallel machine scheduling problem
(2) is at most D. We will use the 2-approximation algorithm of Lenstra, Shmoys and
Tardos [17] to assign jobs to machines. The following theorem is easily inferred from
[17].

Theorem 2.1 (see [17]). Let Z be an unrelated parallel machine scheduling prob-
lem with optimal schedule of length D. Then there exists a polynomial-time algorithm
that finds a schedule S of length 2D. Further, S has the property that no job starts
after time D.

Theorem 2.2. There exists a polynomial-time 2-approximation algorithm to
minimize makespan in the unrelated network scheduling problem.

Proof. Given an instance of the unrelated network scheduling problem, with
shortest schedule of length D, form the unrelated parallel machine scheduling problem
Z defined by (2) and use the algorithm of [17] to produce a schedule S of length
2D. This schedule does not immediately correspond to a network schedule because
some jobs may have been scheduled to run before their release dates. However, if we
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allocate D units of time for sending all jobs to the machines on which they run, and
then allocate 2D units of time to run schedule S, we immediately get a schedule of
length 3D for the network problem.

By being more careful, we can create a schedule of length 2D for the network
problem. In schedule S, each machine Mi is assigned a set of jobs Si. Let |Si| be
the sum of the processing times of the jobs in Si and let Smax

i be the job in Si with
largest processing time on machine i; call its processing time pmax

i . By Theorem 2.1
and the fact that the last job run on machine i is no longer than the longest job run,
we know that |Si| − pmax

i ≤ D. Let S
′
i denote the set of jobs Si − Smax

i . We form the
schedule for each machine i by running job Smax

i at time D − pmax
i , followed by the

jobs in S
′
i .

In this schedule the jobs assigned to any machine clearly finish by time 2D; it
remains to be shown that all jobs can be routed to the proper machines by the time
they need to run there. Job Smax

i must start at time D − pmax
i ; conditions (1) and

(2) guarantee that it arrives in time. The remaining jobs need only arrive by time D;
conditions (1) and (2) guarantee this as well. Thus we have produced a valid schedule
of length 2D.

Observe that this approach is fairly general and can be applied to any problem
that can be characterized by a condition such as (2). Consider, for example the
following very general problem, which we call generalized network scheduling with
costs. In addition to the usual unrelated network scheduling problem, the time that
it takes for job Jj to travel over an edge is dependent not only on the endpoints of
the edge but also on the job. Further, there is a cost cij associated with processing
job Jj on machine Mi. Given a schedule in which job Jj runs on machine Mπ(j), the
cost of a schedule is

∑
j cπ(j),j . Given any target cost C, we define s(C) to be the

minimum length schedule of cost at most C.
Theorem 2.3. Given a target cost C, we can, in polynomial time, find a schedule

for the generalized network scheduling problem with makespan at most 2s(C) and of
cost C if a schedule of cost C exists.

Proof. We use similar techniques to those used for Theorem 2.2. We first modify
condition (1) so that d(·, ·) depends on the job as well. We then use a generalization of
the algorithm of Lenstra, Shmoys, and Tardos for unrelated machine scheduling, due
to Shmoys and Tardos [25] which, given a target cost C, finds a schedule of cost C and
length at most twice that of the shortest schedule of cost C. The schedule returned
also has the property that no job starts after time D, so the proof of Theorem 2.2
goes through if we use this algorithm in place of the algorithm of [17].

2.2. Nonapproximability.
Theorem 2.4. It is NP-complete to determine if an instance of the identi-

cal network scheduling problem has a schedule of length 3, even in a network with
`max = 1.

Proof. For the proof see the appendix.
Corollary 2.5. There does not exist an α-approximation algorithm for the

network scheduling problem with α < 4/3 unless P = NP, even in a network with
`max = 1.

Proof. Any algorithm with α < 4/3 would have to give an exact answer for a
problem with a schedule of length 3 since an approximation of 4 would have too high
a relative error.

It is not hard to see, via matching techniques, that it is polynomial-time decidable
whether there is a schedule of length 2. We can show that this is not the case when the
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machines in the network can be unrelated. Lenstra, Shmoys, and Tardos proved that
it is NP-complete to determine if there is a schedule of length 2 in the traditional
combinatorial unrelated machine model [17]. If we allow multiple machines at one
node, their proof proves Theorem 2.6. If no zero length edges are allowed, i.e., each
machine is forced to be at a different network node, this proof does not work, but we
can give a different proof of hardness, which we do not include in this paper.

Theorem 2.6. There does not exist an α-approximation algorithm for the un-
related network scheduling problem with α < 3/2 unless P = NP, even in a network
with `max = 1.

2.3. Naive strategies. The algorithms in section 2.1 give reasonably tight bounds
on the approximation of the schedule length. Although these algorithms run in poly-
nomial time, they may be rather slow [21]. We thus explore whether a simpler strategy
might also yield good approximations.

A natural candidate is a busy strategy: construct a busy schedule, in which, at
any time t there is no idle machine Mi and idle job Jj so that job Jj can be started on
Mi at time t. Busy strategies and their variants have been analyzed in a large number
of scheduling problems (see [15]) and have been quite effective in many of them. For
combinatorial identical machine scheduling, Graham showed that such strategies yield
a (2 − 1

m ) approximation guarantee [6]. In this section we analyze the effectiveness
of busy schedules for identical machine network scheduling. Part of the interest of
this analysis lies in what it reveals about the relative hardness of scheduling with and
without an underlying network; namely, the introduction of an underlying network
can make simple strategies much less effective for the problem.

2.3.1. A lower bound. We construct a family of instances of the network
scheduling problem, and demonstrate, for each instance, a busy schedule which is

Ω
(√

logm
log logm

)
longer than the shortest schedule for that instance. The network

G = (V,E) consists of ` levels of nodes, with level i, 1 ≤ i ≤ `, containing ρi−1 nodes.
Each node in level i, 1 ≤ i < ` − 1, is connected to every node in level i + 1 by an
edge of length 1. Each machine in levels 1, . . . , `− 1 receives ρ jobs of size 1 at time
0. The machines in level ` initially receive no jobs. The optimal schedule length for
this instance is 2 and is achieved by each machine in level i, 2 ≤ i ≤ `, taking exactly
one job from level i− 1. We call this instance I; see Figure 1.

The main idea of the lower bound is to construct a busy schedule in which machine
M always processes a job which originated on M , if such a job is available. This
greediness “prevents” the scheduler from making the much larger assignment of jobs
to machines at time 2 in which each job is assigned to a machine one level away.

To construct a busy schedule S, we use algorithm B, which in Step t constructs
the subschedule of S at time t.
Step t:
Phase 1: Each machine M processes one job that originated at M , if any such jobs
remain. We call such jobs local to machine M .
Phase 2: Consider the bipartite graph G∗ = (X,Y,A), where X has one vertex
representing each job that is unprocessed after Phase 1 of time t, Y contains one
vertex representing each machine which has not had a job assigned to it in Phase
1 of Step t, and (x, y) ∈ A if and only if job x originated a distance no more than
t− 1 from machine y. Complete the construction of S at time t by processing jobs on
machines based on any maximum matching in G∗. It is clear that S is busy.

When we apply algorithm B to instance I, the behavior follows a well-defined
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ρ

ρ

ρ

ρ

ρ

ρ

0

0

0

0

Level 1 Level 2 . . . Level L

Fig. 1. Lower bound instance for Theorem 2.8. Circles represent processors, and the numbers
inside the circles are the number of jobs which originate at that processor at time 0. Levels i and
i+ 1 are completely connected to each other. The optimal schedule is of length 2 and is achieved by
shifting each job to a unique processor one level to its right.

pattern. In Phase 2 of Step 2, all unprocessed jobs that originated in level ` − 1 are
processed by distinct processors in level `. During Phase 2 of Step 3, all unprocessed
jobs that originated in levels `− 2 and `− 3 are processed by machines in levels `− 1
and `. This continues, so that at Step i an additional (i− 1) levels pass their jobs to
higher levels and all these jobs are processed. This continues until either level 1 passes
its jobs, or processes its own jobs. We characterize the behavior of the algorithm more
formally in the following lemma.

Lemma 2.7. Let j(i, t) be the number of local jobs of processor i still unprocessed
after Phase 2 of Step t and let lev(i) be the level number of processor i. Then for all
times t ≥ 2, if ρ ≥ t, then

j(i, t) =

{
0 if lev(i) ≥ `− t(t− 1)/2,
j(i, t− 1)− 1 otherwise.

(3)

Proof. We prove the lemma by induction on t. During Phase 2 of Step 2, the only
edges in the graph G∗ connect levels ` and `− 1. There are ρ`−1 nodes in level ` and
ρ`−2(ρ − 1) remaining jobs local to machines in level ` − 1, so the matching assigns
all the unprocessed jobs in level ` − 1 to level `. Machines in levels 1 to ` − 1 all
process local jobs during Phase 1. As a result, all the neighbors of machines in levels
1 to `− 2 are busy in Phase 1 and cannot process jobs local to these machines during
Phase 2. The number of local jobs on these machines, therefore, decreases only by 1.
Thus the base case holds.

Assume the lemma holds for all t < t′. Then j(i, t′−1) = 0 for levels greater than
b ≡ ` − (t′ − 1)(t′ − 2)/2, and j(i, t′) = 0 for levels greater than b as well. We now
show that j(i, t′) = 0 if lev(i) ≥ ` − t′(t′ − 1)/2. For 1 ≤ x ≤ t′ − 1, level b + x has
ρb+x−1 processors. Level b+x−(t′−1) has at most ρ ·ρb+x−(t′−1)−1 = ρb+x−t

′+1 local
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jobs remaining. If t′ ≥ 2, then there are enough machines on level b + x to process
all the remaining jobs local to level b + x − (t′ − 1). Therefore another t′ − 1 of the
highest-numbered levels have their local jobs completed during time t′. Thus at time
t′ we have j(i, t′) = 0 if lev(i) ≥ `− t′(t′ − 1)/2.

Since we assumed sufficiently large initial workloads on all processors on levels
1 . . . (` − 1), then by the induction hypothesis, for all machines in levels less than
`− t′(t′ − 1)/2, all machines within distance t′ − 1 of them have local jobs remaining
after time t′ − 1 and will be assigned a local job during Phase 1 of Step t′. Therefore
all machines i such that lev(i) < `− t′(t′ − 1)/2 cannot pass any jobs to higher levels
and j(i, t′) = j(i, t′ − 1)− 1.

Depending on the relative values of ρ and `, either the machine in level 1 processes
all of the jobs which originated on it, or some of those jobs are processed by machines
in higher-numbered levels. Balancing these two cases we get the following theorem.

Theorem 2.8. For the family of instances of the identical machine network
scheduling problem defined above, there exist busy schedules whose length exceeds the

optimal length by a factor Ω
(√

logm
log logm

)
.

Proof. The first case in (3) will apply to level 1 when 1 ≥ ` − t(t − 1)/2. This
inequality does not hold when t =

√
2`, but it does hold when t =

√
2`+ 1. Thus, if

ρ >
√

2` then the schedule length is
√

2`, while if ρ <
√

2` then the jobs in level 1 will
be totally processed in their level, which takes ρ time. Therefore the makespan of S
is at most min(

√
2`, ρ). Given that the total number of machines is m = θ(ρ`−1), a

simple calculation reveals that min(c
√
`, ρ) is maximized at ` = θ( logm

log logm ). Thus S

is a busy schedule of length θ
(√

logm
log logm

)
longer than optimal.

Note that this example shows that several natural variants of busy strategies,
such as scheduling a job on the machine on which it will finish first, or scheduling a
job on the closest available processor, also perform poorly.

2.3.2. An upper bound. In contrast to the lower bound of the previous sub-
section, we can prove that busy schedules are of some quality. Given an instance I
of the network scheduling problem, we define C∗

max(I) to be the length of a shortest
schedule for I and CA

max(I) to be the length of the schedule produced by algorithm
A; when it causes no confusion we will drop the I and use the notation C∗

max.

Definition 2.9. Consider a busy schedule S for an instance I of the identical
machines network scheduling problem. Let pj(t) be the number of units of job Jj
remaining to be processed in schedule S at time t, and Wt =

∑j
k=1 pk(t) be the total

work remaining to be processed in schedule S at time t.

Lemma 2.10. WiC∗
max

≤ W0

2i! for i ≥ 1.

Proof. We partition schedule S into consecutive blocks B1, B2, . . . of length
C∗

max(I) and compare what happens in each block of schedule S to an optimal schedule
S∗ of length C∗

max for instance I.

Consider a job Jj that was not started by time C∗
max in schedule S, and let Mj

be the machine on which job Jj is processed in schedule S∗. This means that in
block B1 machine Mj is busy for pj units of time during job Jj ’s slot in schedule
S∗—the period of time during which job Jj was processed on machine Mj in schedule
S∗. Hence for every job Jj that is not started in block B1 there is an equal amount
of unique work which we can identify that is processed in block B1, implying that
WC∗

max
≤ W0/2. Successive applications of this argument yields WiC∗

max
≤ W0/2

i for
i ≥ 1, which proves the lemma for i = 1, 2.
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MO j

C *

max
C *

max<_

C *

max<_

MO r

r<_

MrMj

Fig. 2. If Jr takes Jj ’s slot in Br, then the machine on which Jj originates, Moj , is at most
a distance of (r + 2)C∗

max from Mr, the machine on which Jr runs in S∗. Thus Jj could have been
run in Jr’s slot in block i, i ≥ (r + 2).

To obtain the stronger bound WiC∗
max

≤ 1
2 (W0/i!), we increase the amount of

processed work which we identify with each unstarted job. Choose i ≥ 3 and consider
a job Jj which is unstarted in schedule S at the start of block Bi+1, namely at time
iC∗

max. Assume for the sake of simplicity that in every block Bk of schedule S, only
one job is processed in job Jj ’s slot (the time during which job Jj would be processed
if block Bk was schedule S∗). Assume also that this job is exactly of the same size as
job Jj ; if multiple jobs are processed the argument is essentially the same. Let Jr be
the job that took job Jj ’s slot in block Br, for r ≤ i− 2. We will show that Jj could
have been processed in Jr’s slot in block Bi for all 1 ≤ r ≤ i− 2. Figure 2 illustrates
the network structure used in this argument.

Assume that job Jj originated on machine Moj , that job Jr originated on ma-
chine Mor , and that job Jj was processed on machine Mj in schedule S∗. Then
d(Moj ,Mj) ≤ C∗

max since job Jj was processed on machine Mj in schedule S∗, and
d(Mor ,Mj) ≤ rC∗

max since job Jr was processed in job Jj ’s slot in block Br. Thus
d(Moj ,Mor ) ≤ (r+1)C∗

max and consequently Jj could have run in job Jr’s slot in any
of blocks Br+2, . . . , Bi. We focus on block Bi. Since Jj was not processed in block
Bi and schedule S is busy, some job must have been processed during job Jr’s slot in
block Bi for 1 ≤ r ≤ (i− 2). We identify this work with job Jj ; note that no work is
ever identified with more than one job.

When we consider the (i − 2) different jobs which were processed in Jj ’s slot in
blocks B1, . . . , Bi−2, and consider the jobs that were processed in their slots in Bi , we
see that with each job Jj unstarted at time iC∗

max, we can uniquely identify (i− 2)pj
units of work that was processed in block Bi. If all these slots were not full in block
Bi, then job Jj would have been started in one of them. Including the work processed
during job Jj ’s slot in block Bi, we obtain

WiC∗
max

≤ 1

i
W(i−1)C∗

max
.

Corollary 2.11. During time iC∗
max to (i+ 1)C∗

max at most m/(2i!) machines
are completely busy.

Proof. We have W0 ≤ mC∗
max. Therefore, by Lemma 2.10, we have WiC∗

max
≤

mC∗
max/(2i!). A machine that is completely busy from time iC∗

max to time (i+1)C∗
max

does C∗
max work during that time and therefore at most m/(2i!) machines can be

completely busy.
To get a stopping point for the recurrence, we require the following lemma.
Lemma 2.12. In any busy schedule, if at time t all remaining unprocessed jobs

originated on the same machine, the schedule is no longer than t+ 2C∗
max.

Proof. Let M be the one machine with remaining local jobs. Let W ∗
Mi

be the
amount of work from machine M that is done by machine Mi in the optimal schedule.
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Clearly
∑

iW
∗
Mi

equals the amount of work that originated on machine M . Because
there is no work left that originated on machines other than M , each machine Mi

can process at least W ∗
Mi

work from machine M in the next C∗
max time steps. If after

C∗
max steps, all the work originating on machine M is done, then we have finished.

Otherwise, some machine Mi processed less than W ∗
Mi

work during this time, which
means there was no more work for it to take. Therefore after C∗

max steps all the jobs
that originated on machine M have started. Because no job is longer than C∗

max,
another C∗

max time suffices to finish all the jobs that have started.
We are now ready to prove the upper bound.
Theorem 2.13. Let A be any busy scheduling algorithm and I an instance of the

identical machine network scheduling problem. Then CA
max(I) = O( logm

log logmC
∗
max(I)).

Proof. If a machine ever falls idle, all of its local work must be started. Otherwise
it would process remaining local work. Thus by Corollary 2.11, in O( lgm

lg lgm )C∗
max time,

the number of processors with local work remaining is reduced to 1. By Lemma 2.12,
when the number of processors with remaining local work is down to one, a constant
number of extra blocks suffice to finish.

2.4. Scheduling with origins and destinations. In this subsection we con-
sider a variant of the (unrelated machine) network scheduling problem in which each
job, after being processed, has a destination machine to which it must travel. Specif-
ically, in addition to having an origin machine Moj , job Jj also has a terminating
machine Mtj . Job Jj begins at machine Moj , travels distance d(Moj ,Mdj ) to machine
Mdj , the machine it gets processed on, and then proceeds to travel for d(Mdj ,Mtj )
units of time to machine Mtj . We call this problem the point-to-point scheduling
problem.

Theorem 2.14. There exists a polynomial-time 5
2 -approximation algorithm to

minimize makespan in the point-to-point scheduling problem.
Proof. We construct an unrelated machines scheduling problem as in the proof

of Theorem 2.2. In this setting the condition on when a job Jj can run on machine
Mi depends on the time for Jj to get to Mi, the time to be processed there, and the
time to proceed to the destination machine. Thus a characterization of when job Jj
is able to run on machine Mi in the optimal schedule is that

d(Moj ,Mi) + pij + d(Mi,Mtj ) ≤ D.(4)

Now, for a given job Jj , we define Q(Jj) to be the set of machines that satisfy (4).
We can then form a combinatorial unrelated machines scheduling problem as follows:

p
′
ij =

{
pij if Mi ∈ Q(Jj),
∞ otherwise.

(5)

We then approximately solve this problem using [17] to obtain an assignment of jobs
to machines. Pick any machine Mi and let Ji be the set of jobs assigned to machine
Mi. By Theorem 2.1 we know that the sum of the processing times of all of the jobs in
Ji except the longest is at most D. We partition the set of jobs Ji into three groups,
and place each job into the lowest numbered group which is appropriate:

1. J 0
i contains the job in Ji with the longest processing time,

2. J 1
i contains jobs for which d(Moj ,Mi) ≤ D/2,

3. J 2
i contains jobs for which d(Moj ,Mi) ≥ D/2.

Let p(J k
i ) be the sum of the processing times of the jobs in group J k

i , k = 1, 2.
As noted above, p(J 1

i ) + p(J 2
i ) ≤ D. We will always schedule J 1

i ∪ J 2
i in a block of
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D consecutive time steps, which we call B. The first p(J 1
i ) time steps will be taken

up by jobs in J 1
i while the last p(J 2

i ) time steps will be taken up by jobs in J 2
i . Note

that there may be idle time in the interior of the block.

We consider two possible scheduling strategies based on the relative sizes of p(J 1
i )

and p(J 2
i ).

Case 1. (p(J 1
i ) ≤ p(J 2

i )). In this case we first run the long job in J 0
i ; by

condition (4) it finishes by time D. We then run block B from time D to 2D. Since
p(J 1

i ) ≤ D/2, the jobs in J 1
i all finish by time 3D/2 and by condition (4) reach their

destinations by time 5D/2. By the definition of J 2
i , for any job Jj ∈ J 2

i , d(Mi,Mtj ) ≤
D/2. Since every Jj ∈ J 2

i is scheduled to complete processing by time 2D, it will
arrive at its destination by time 5D/2.

Case 2. (p(J 1
i ) ≥ p(J 2

i )). We first run block B from time D/2 to 3D/2. We then
start the long job in J 0

i at time 3D/2; by condition (4) it arrives at its destination
by time 5D/2. Since p(J 2

i ) ≤ D/2, machine Mi need not start processing any job
in J 2

i until time D and hence we are guaranteed that they have arrived at machine
Mi by that time. By definition of J 1

i all of its jobs are available by time D/2; it is
straightforward from condition (4) that all jobs arrive at their destinations by time
5D/2.

We can also show that the analysis of this algorithm is tight, for algorithms in
which we assign jobs to processors using the linear program defined in [17] using the
processing times specified by equation 5. Let D be the length of the optimal schedule.
Then we can construct instances for which any such schedule S has length at least
5/2D − 1. Consider a set of k + 1 jobs and a particular machine Mi. We specify
the largest of these jobs to have size D and to have Mi as both its origin and its
destination machine. We specify that each of the other k jobs are of size D/k and
have distance D(k − 1)/2k from Mi to both their origin and destination machines.
The combinatorial unrelated machines algorithm may certainly assign all of these jobs
to Mi, but it is clear that any schedule adopted for this machine will have completion
time at least ( 5

2 − 1
2k )D.

3. Average completion time.

3.1. Background. We turn now to the network scheduling problem in which
the objective is to minimize the average completion time. Given a schedule S, let
CS
j be the time that job Jj finishes running in S. The average completion time

of S is 1
n

∑
j C

S
j , whose minimization is equivalent to the minimization of

∑
j C

S
j .

Throughout this section we assume without loss of generality that n ≥ m.

We have noted in section 1 that our network scheduling model can be charac-
terized by a set of n jobs Jj and a set of release dates rij , where Jj is not available
on mi until time rij . We noted that this is a generalization of the traditional notion
of release dates, in which rij = ri′j ∀i, i′. We will refer to the latter as traditional
release dates; the unmodified phrase release date will refer to the general rij .

The minimization of average completion time when the jobs have no release dates
is polynomial-time solvable [3, 12], even on unrelated machines. The solution is based
on a bipartite matching formulation, in which one side of the bipartition has jobs
and the other side (machine, position) pairs. Matching Jj to (mi, k) corresponds to
scheduling Jj in the kth-from-last position on mi; this edge is weighted by kpij , which
is Jj ’s contribution to the average completion time if Jj is kth from last.

When release dates are incorporated into the scheduling model, it seems difficult
to generalize this formulation. Clearly it can not be generalized precisely for arbitrary
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release dates, since even the one machine version of the problem of minimizing average
completion time of jobs with release dates is strongly NP-hard [3]. Intuitively, even
the approximate generalization of the formulation seems difficult, since if all jobs are
not available at time 0, the ability of Jj to occupy position k on mi is dependent
on which jobs precede it on mi and when. Release dates associated with a network
structure do not contain traditional release dates as a subclass even for one machine, so
the NP-completeness of the network scheduling problem does not follow immediately
from the combinatorial hardness results; however, not surprisingly, minimizing average
completion time for a network scheduling problem is NP-complete.

Theorem 3.1. The network scheduling problem with the objective of minimum
average completion time is NP-complete even if all the machines are identical and
all edge lengths are 1.

Proof. For the proof see the appendix.

In what follows we will develop an approximation algorithm for the most general
form of this problem. We will follow the basic idea of utilizing a bipartite matching
formulation; however we will need to explicitly incorporate time into the formulation.
In addition, for the rest of the section we will consider a more general optimality
criterion: average weighted completion time. With each Jj we associate a weight

wj , and the goal is to minimize
∑j=n

j=1 wjCj . All of our algorithms handle this more
general case; in addition they allow the nm release dates rij to be arbitrary and not
necessarily derived from the network structure.

3.2. Unit-size jobs. We consider first the special case of unit-size jobs.

Theorem 3.2. There exists a polynomial-time algorithm to schedule unit-size
jobs on a network of identical machines with the objective of minimizing the average
weighted completion time.

Proof. We reduce the problem to minimum-weight bipartite matching. One side
of the bipartition will have a node for each job Jj , 1 ≤ j ≤ n, and the other side
will have a node [mi, t] for 1 ≤ i ≤ m, t ∈ Ti with Ti to be described below. An
edge (Jj , [mi, t]) of weight wj(t+ 1) is included if Jj is available on mi at time t, and
the inclusion of that edge in the matching will represent the scheduling of Jj on mi

from time t to t + 1. Release dates are included in the model by excluding an edge
(Jj , [mi, t]) if Jj will not be available on mi by time t.

To determine the necessary sets Ti, we observe that there is no advantage in
unforced idle time. Since each job is only one unit long, there is no reason to make
it wait for a job of higher weight that is about to be released. It is clear, therefore,
that setting Ti = {t|rij ≤ t ≤ rij +n ∀j} would suffice, since no job would need to be
scheduled more than n time later than its release date. This gives |Ti| = O(n2); this
can be reduced to O(n), but we omit the details for the sake of brevity.

By excluding edges which do not give job Jj enough time to travel between the
machine on which Jj runs and the destination machine Mdj , we can prove a similar
theorem for the point-to-point scheduling problem, defined in section 2.4.

Theorem 3.3. There exists a polynomial-time algorithm to solve the point-to-
point scheduling problem with the objective of minimizing the average weighted com-
pletion time of unit-size jobs.

3.3. Polynomial-size jobs. We now turn to the more difficult setting of jobs
of different sizes and unrelated machines. The minimization of average weighted
completion time in this setting is strongly NP-hard, as are many special cases. For
example, the minimization of average completion time of jobs with release dates on
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one machine is strongly NP-hard [16]; no approximation algorithms were known for
this special case, to say nothing of parallel identical or unrelated machines, or weighted
completion times. If there are no release dates, namely all jobs are available at time
0, then minimization of average weighted completion time is NP-hard for parallel
identical machines. A small constant factor approximation algorithm was known for
this problem [14], but no approximation algorithms were known for the more general
cases of machines of different speeds or unrelated machines. We introduce techniques
which yield the first approximation algorithms for several other problems as well,
which we discuss in section 3.5.

Our approximation algorithm for minimum average completion time begins by
formulating the scheduling problem as a hypergraph matching problem. The set of
vertices will be the union of two sets, J and M , and the set of hyperedges will be
denoted by F . J will contain n vertices Jj , one for each job, and M will contain mT
vertices, where T is an upper bound on the number of time units that will be needed
to schedule this instance. The time units will range over T = {t|∃rij with rij ≤
t ≤ rij + npmax}. M will have a node for each (machine, time) pair; we will denote
the node that corresponds to machine Mi at time t as [mi, t]. A hyperedge e ∈ F
represents scheduling a job Jj on machine Mi from time t1 to t2 by including nodes
Jj , [mi, t1], [mi, t1 + 1], . . . , [mi, t2]. The cost of an edge e, denoted by ce, will be the
weighted completion time of job Jj if it is scheduled in the manner represented by e.
There will be one edge in the hypergraph for each feasible scheduling of a job on a
machine; we exclude edges that would violate the release date constraints.

The problem of finding the minimum cost matching in the hypergraph can be
phrased as the following integer program I. We use decision variable xe ∈ {0, 1} to
denote whether hyperedge e is in the matching.

minimize
∑
e

xece

subject to ∑
Jj∈e

xe = 1, j = 1, . . . , n,

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(6)

xe ∈ {0, 1}.

Two considerations suggest that this formulation might not be useful. The formu-
lation is not of polynomial size in the input size, and in addition the following theorem
suggests that calculating approximate solutions for this integer program may be dif-
ficult.

Theorem 3.4. Consider an integer program in the form I which is derived
from an instance of the network scheduling problem with identical machines, with
the ce allowed to be arbitrary. Then there exists no polynomial-time algorithm A to
approximate I within any factor unless P = NP.

Proof. For an arbitrary instance of the network scheduling problem construct the
hypergraph matching problem in which an edge has weight W >> n if it corresponds
to a job being completed later than time 3 and give all other edges weight 1. If there
is a schedule of length 3 then the minimum weight hypergraph matching is of weight
n; otherwise the weight is at least W ; therefore an α-approximation algorithm with
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α < W
n would give a polynomial-time algorithm to decide if there was a schedule

of length 3 for the network scheduling problem, which by Theorem 2.4 would imply
P = NP.

In order to overcome this obstacle, we need to seek a different kind of approxi-
mation to the hypergraph matching problem. Typically, an approximate solution is a
feasible solution, i.e., one that satisfies all the constraints, but whose objective value
is not the best possible. We will look for a different type of solution, one that satisfies
a relaxed set of constraints. We will then show how to turn a solution that satisfies the
relaxed set of constraints into a schedule for the network scheduling problem, while
only introducing a bounded amount of error into the quality of the approximation.

We will assume for now that pmax ≤ n3. This implies that the size of program I is
polynomial in the input size. We will later show how to dispense with the assumption
on the size of pmax via a number of rounding and scaling techniques.

We begin by turning the objective function of I into a constraint. We will then
use the standard technique of applying bisection search to the value of the objective
function. Hence for the remainder of this section we will assume that C, the optimal
value to integer program I, is given. We can now construct approximate solutions to
the following integer linear program (J ):

∑
Jj∈e

xe = 1, j = 1, . . . , n,(7)

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(8)

∑
e

xece ≤ C,(9)

xe ∈ {0, 1}.
This integer program is a packing integer program, and as has been shown by

Raghavan [22], Raghavan and Thompson [23] and Plotkin, Shmoys, and Tardos [21],
it is possible to find provably good approximate solutions in polynomial time. We
briefly review the approach of [21], which yields the best running times.

Plotkin, Shmoys, and Tardos [21] consider the following general problem.
The Packing Problem: ∃?x ∈ P such that Ax ≤ b, where A is anm×n nonnegative

matrix, b > 0, and P is a convex set in the positive orthant of Rn.
They demonstrate fast algorithms that yield approximately optimal integral solu-

tions to this linear program. All of their algorithms require a fast subroutine to solve
the following problem.

The Separation Problem: Given an m-dimensional vector y ≥ 0, find x̃ ∈ P such
that cx̃ = min(cx : x ∈ P ), where c = ytA.

The subroutine to solve this problem will be called the separating subroutine.
An approximate solution to the packing problem is found by considering the

relaxed problem

∃?x ∈ P such thatAx ≤ λb

and approximating the minimum λ such that this is true. Here the value λ char-
acterizes the “slack” in the inequality constraints, and the goal is to minimize this
slack.

Our integer program can be easily put in the form of a packing problem; the
equality constraints (7) define the polytope P and the inequality constraints (8,9)
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make up Ax ≤ b. The quality of the integral solutions obtained depends on the width
of P relative to Ax ≤ b, which is defined by

ρ = max
i

max
x∈P

aix

bi
.(10)

It also depends on d, where d is the smallest integer such that any solution returned
by the separating routine is guaranteed to be an integral multiple of 1

d .

Applying equation (10) to compute ρ for polytope P (defined by (7)) yields a
value that is at least n, as we can create matchings (feasible schedules) whose cost
(average completion time) is much greater than C, the optimal average completion
time.

In fact, many other packing integer programs considered in [21] also, when first
formulated, have large width. In order to overcome this obstacle, [21] gave several
techniques to reduce the width of integer linear programs. We discuss and then use one
such technique here, namely that of decomposing a polytope into n lower-dimensional
polytopes, each of which has smaller width. The intuition is that all the nonzero
variables in each equation of the form (7) are associated with only one particular job.
Thus we will be able to decompose the polytope into n polytopes, one for each job.
We will then be able to optimize individually over each polytope and use only the
inequality constraints (8) and (9) to describe the relationships between different jobs.

We now proceed in more detail. We say that a polytope P can be decomposed
into a product of n polytopes P 1×P 2×· · ·×Pn if the coordinates of each vector x can
be partitioned into (x1, . . . , xn), and x ∈ P if and only if xl ∈ P l for l = 1, . . . , n. If
our polytope can be decomposed in this way, and we can solve the separation problem
for each polytope P l, then we can apply a theorem of [21] to give an approximately
optimal solution in polynomial time. In particular, let λ∗ be the minimum possible
value of λ for which there exists a feasible solution to the relaxed version of J .
The following theorem is a specialization of Theorem 2.11 in [21] to our problem
and describes the quality of integral solutions that can be obtained for such integer
programs.

Theorem 3.5 (see [21]). Let ρl be the width of P l and ρ̄ = maxl ρ
l. Let γ be

the number of constraints in Ax ≤ b, and let λ′ = max(λ∗, (ρ̄/d) log γ). Given a
polynomial-time separating subroutine for each of the P l, there exists a polynomial-

time algorithm for J which gives an integral solution with λ ≤ λ∗+O
(√

λ′(ρ̄/d) log(γnd)
)
.

We will now show how to reformulate J so that we will be able to apply this
theorem. Polytope P (from equation 6) can indeed be decomposed into n different
polytopes, P 1, P 2, . . . , Pn, where P j corresponds to those equality constraints which
include only Jj . In order to keep the width of the P j small, we also include into
the definition of P j the constraint xe = 0 for each edge e which includes Jj and has
ce > C; this does not increase the optimal value of the integer program. We integrate
each of these new constraints into the appropriate polytope P j , and decompose x =
(x1, x2, . . . , xn), where xj consists of those components of x which represent edges
that include Jj . In other words, P l is defined by

∑
Jl∈e

xe = 1,

xe = 0 if ce > C and Jl ∈ e.
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This yields the following relaxation L:

minimize λ

subject to

xl ∈ P l, 1 ≤ l ≤ n,∑
(i,t)∈e

xe ≤ λ ∀(i, t) ∈M,(11)

∑
e

xece ≤ λC,(12)

x = (x1, x2, . . . , xn) ∈ {0, 1}|F | .(13)

To apply Theorem 3.5 we must (1) demonstrate a polynomial-time separating
subroutine and (2) calculate ρ̄, d and γ. The decomposition of P into n separate
polytopes makes this task much easier. The separating subroutine must find xl ∈ P l

that minimizes cxl; however, since the vector that is 1 in the eth component and 0
in all other components is in P l for all e such that Jl ∈ e and ce ≤ C, the separating
routine reduces merely to finding the minimum component ce′ of c and returning the
vector with a 1 in position e′ and 0 everywhere else. An immediate consequence of
this is that d = 1. Recall as well that the assumption that pmax ≤ n3 implies that γ
is upper bounded by a polynomial in n.

To compute ρ̄, recall that we compute ρ̄ relative to the polytope defined by∑
(i,t)∈e xe ≤ 1 and

∑
e xece ≤ C, as the relaxed versions of these constraints ap-

pear in (11) and (12) above. It is thus not hard to see that ρ̄ is 1 and therefore

λ ≤ λ∗ +O
(√

(ρ̄/d) log γ(ρ̄/d) log(γnd)
)

≤ 1 +O(logn) = O(logn).

By employing binary search over C and the knowledge that the optimal solution
has λ = 1, we can obtain an invalid “schedule” in which as many as O(λ) jobs are
scheduled at one time. If pmax is polynomial in n and m then we have a polynomial-
time algorithm; therefore we have proven the following lemma.

Lemma 3.6. Let C∗ be the solution to the integer program I and assume that |M |
is bounded by mn4. There exists a polynomial-time algorithm that produces a solution
x∗ such that

∑
j∈e

x∗e = 1, j = 1, . . . , n,

∑
(i,t)∈e

x∗e = O(logn) ∀(i, t) ∈M,(14)

∑
e

x∗ece = O(C∗ logn),

x∗e ∈ {0, 1}.

This relaxed solution is not a valid schedule, since O(logn) jobs are scheduled
at one time; however, it can be converted to a valid schedule by use of the following
lemma.
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Lemma 3.7. Consider an invalid schedule S for a set of jobs with release dates on
m unrelated parallel machines, in which at most λ jobs are assigned to each machine
at any time. If W is the average weighted completion time of S, then there exists a
schedule of average weighted completion time at most λW , in which at most one job
is assigned to each machine at any time.

Proof. Consider a job Jj scheduled in S; let its completion time be CS
j . If we

schedule the jobs on each machine in the order of their completion times in S, never
starting one before its release date, then in the resulting schedule

1. Jj is started no earlier than its release date,
2. Jj finishes by time at most λCS

j .
Statement 1 is true by design of the algorithm. Statement 2 is true since at most

λCS
j − pij work from other jobs can complete no later than CS

j in schedule S, and
jobs run simultaneously in schedule S can run back-to-back with no intermediate idle
time in our expanded schedule. Therefore, job Jj is started by time λCS

j − pij and

completed by time λCS
j .

Combining the last two lemmas with the observation that pmax ≤ n3 implies
|M | ≤ mn4 yields the following theorem.

Theorem 3.8. There is a polynomial-time O(log2 n)-approximation algorithm for
the minimization of average weighted completion time of a set of jobs with machine-
varying release dates on unrelated machines, under the assumption that the maximum
job sizes are bounded by pmax ≤ n3.

3.4. Large jobs. Since the pij are input in binary and in general need not be
polynomial in n and m, the technique of the last section can not be applied directly
to all instances, since it would yield superpolynomial-size formulations. Therefore
we must find a way to handle very large jobs without impacting significantly on the
quality of solution.

It is a standard technique in combinatorial scheduling to partition the jobs into
a set of large jobs and a set of small jobs, schedule the large jobs, which are scaled to
be in a polynomially bounded range, and then schedule the small jobs arbitrarily and
show that their net contribution is not significant, (see, e.g., [24]). In the minimization
of average weighted completion time, however, we must be more careful, since the
small jobs may have large weights and can not be scheduled arbitrarily.

We employ several steps, each of which increases the average weighted completion
time by a small constant factor. With more care we could reduce the constants
introduced by each step; however, since our overall bound is O(log2 n) we dispense
with this precision for the sake of clarity of exposition.

The basic idea is to characterize each job by the minimum value, taken over all
machines, of its (release date + processing time) on that machine. We then group the
jobs together based on the size of their minimum rij +pij . The jobs in each group can
be scaled down to be of polynomial size and thus we can construct a schedule for the
scaled down versions of each group. We then scale the schedules back up, correct for
the rounding error, and show that this does not affect the quality of approximation
by more than a constant factor. We then apply Lemma 3.9 (see below) to show that
the makespan can be kept short simultaneously.

The resulting schedules will be scheduled consecutively. However, since we have
kept the makespan from growing too much, we have an upper bound on the start
time of each subsequent schedule and thus we can show that the net disturbance of
the initial schedules to the latter schedules will be minimal.

We now proceed in greater detail. Let m(Jj) = mini(pij + rij), and J i =
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{Jj |ni−1 ≤ m(Jj) ≤ ni}. Note that there are at most n nonempty J i, one for each of
the n jobs. We will employ the following lemma in order to keep the makespan from
growing too large.

Lemma 3.9. A schedule S for J k can be converted, in polynomial time, to a
schedule T of makespan at most 2nk+1 such that CT

j ≤ 2CS
j ∀j ∈ J k.

Proof. Remove all jobs from S that complete later than time nk+1, and, starting
at time nk+1, schedule them arbitrarily on the machine on which they run most
quickly. This will take at most nk+1 time, so therefore any rescheduled job Jj satisfies
CT
j ≤ 2nk+1 ≤ 2CS

j .

We now turn to the problem of scheduling each J l with a bounded guarantee on
the average completion time.

Lemma 3.10. There exists an O(log2 n)-approximation algorithm to schedule
each J l. In addition the schedule for J l has makespan at most 2nl+1.

Proof. Let A be the algorithm referred to in Theorem 3.8. We will use A to find
an approximately optimal solution Sl for each J l. A cannot be applied directly to J l

since the sizes of the jobs involved may exceed n3, so we apply A to a scaled version
of J l.

For all j such that Jj ∈ J l, and for all i, set p′ij = b pij
nl−2 c and r′ij = b rij

nl−2 c. Note

that on at least one machine i , for each job Jj , p
′
ij ∈ [0, n2] and r′ij ∈ [0, n2].

We use A to obtain an approximate solution to the scaled version of J l of average
weighted completion time W . Although some of the p′ij may still be large, Lemma
3.9 indicates that restricting the hypergraph formulation constructed by A to allow

completion times no later than time b 2nl+1

nl−2 c = 2n3 can only affect the quality of
approximation by at most a factor of 2. Therefore |M |, the number of (machine,
time) pairs, is O(mn3). Note that some of the p′ij may be 0, but it is still important
to include an edge in the hypergraph formulation for each job of size 0.

Now we argue that interpreting the solution of the scaled instance as a solution to
the original instance J l does not degrade the quality of approximation by more than
a constant factor. The conversion from the scaled instance to the original instance
is carried out by multiplying p∗ij = nl−2p′ij , r

∗
ij = nl−2r′ij (which has no impact on

quality of approximation) and then adding to each r∗ij and p∗ij the residual amount
that was lost due to the floor operation.

The additional residual amounts of the release dates contribute at most a total
of nl−1 time to the makespan of the schedule, since |rij − r∗ij | < nl−2, and therefore

the entire contribution to the makespan is bounded above by n × nl−2 = nl−1. By
a similar argument, the entire contribution of the residual amounts of the processing
times to the makespan is bounded above by nl−1.

So in the conversion from p∗ij , r
∗
ij to pij , rij we add at most 2nl−1 to the makespan

of the schedule for J l. However, nl−1 is a lower bound on the completion time of
any job in J l. Therefore, even if this additional time were added to the completion
time of every job, the restoration of the residual amounts of the rij and pij degrades
the quality of the approximation to average completion time by at most a constant
factor. Finally, to satisfy the makespan constraint, we apply Lemma 3.9.

We now construct two schedules So and Se. In So we consecutively schedule
S1, S3, S5, . . . , and in Se we consecutively schedule S2, S4, S6, . . . . For the sake of
clarity our schedule will have time of length 2ni+1 dedicated to each Si even if Si has
no jobs.

Lemma 3.11. Let J o be the set of jobs scheduled in So and J e the set of jobs
scheduled in Se. The average weighted completion time of So is within a factor of
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O(log2 n) of the best possible for J o, and similarly for Se and J e.
Proof. The subschedule for any set J i scheduled in So or Se begins by time

(2 + o(n))ni−1, since J i is scheduled after J i−2,J i−4, . . . , and the makespan of J l

is at most 2nl+1. Since ni−1 is a lower bound on the completion time of any job in
J i, in the combined schedule So or Se, each job completes within a small constant
factor of its completion time in Si.

We now combine So and Se by superimposing them over the same time slots.
This creates an infeasible schedule in which the sum of completion times is just the
sum of the completions times in So and Se, but in which there may be two jobs
scheduled simultaneously. We then use Lemma 3.7 to combine So and Se to obtain
a schedule Sα for all the jobs, whose average weighted completion time is within a
factor of O(log2 n) of optimal.

Theorem 3.12. There is a polynomial-time O(log2 n)-approximation algorithm
for the minimization of average weighted completion time of a set of jobs with machine-
varying release dates on unrelated machines.

3.5. Scheduling with periodic connectivity. The hypergraph formulation
of the scheduling problem can model time-varying connectivity between jobs and
machines; e.g., a job can only be processed during certain times on each machine. In
this section we show how to apply our techniques to scheduling problems of periodic
connectivity under some modest assumptions on the length of the period and job
sizes.

Definition 3.13. The periodic scheduling problem is defined by n jobs, m unre-
lated machines, a period P , and for each time unit of P a specification of which jobs
are allowed to run on which machines at that time.

Theorem 3.14. Let I be an instance of the periodic scheduling problem in which
pmax is polynomial in n and m, and let the optimum makespan of I be L. There exists
a polynomial-time algorithm which delivers a schedule of makespan O(logn)(L+P ).

Proof. As above, we assume that L is known in advance, and then use binary
search to complete the algorithm.

We construct the integer program∑
Jj∈e

xe = 1, j = 1, . . . , n,(15)

∑
(i,t)∈e

xe ≤ 1 ∀(i, t) ∈M,(16)

xe ∈ {0, 1},
where M = {(i, t)|1 ≤ i ≤ m, 1 ≤ t ≤ L}. We include an edge in the formulation
if and only if it is valid with respect to the connectivity conditions. We then use
Theorem 3.8 to produce a relaxed solution that satisfies

∑
j∈e

x∗e = 1, j = 1, . . . , n,

∑
(i,t)∈e

x∗e = O(logn) ∀(i, t) ∈M,

x∗e ∈ {0, 1}.
Let the length of this relaxed schedule be L; L ≤ L. We construct a valid schedule

of length O(logn)(L + P ) by concatenating O(logn) blocks of length L. At the end
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of each block we will have to wait until the start of the next period to begin the next
block; hence we obtain an overall bound of O(logn)(L+ P ).

Note that we are assuming that the entire connectivity pattern of P is input
explicitly; if it is input in some compressed form then we must assume that P is
polynomial in n and m.

One motivation for such problems is the domain of satellite communication sys-
tems [18, 26]. One is given a set of sites on Earth and a set of satellites (in Earth
orbit). Each site generates a sequence of communication requests; each request is
potentially of a different duration and may require communication with any one of
the satellites. A site can only transmit to certain satellites at certain times, based
on where the satellite is in its orbit. The connectivity pattern of communication
opportunities is periodic, due to the orbiting nature of the satellites.

The goal is to satisfy all communication requests as quickly as possible. We can
use our hypergraph formulation technique to give an O(logn)-approximation algo-
rithm for the problem under the assumption that the pj are bounded by a polynomial,
since the rounding techniques do not generalize to this setting.

Appendix.

Proof of Theorem 2.4. The reduction is similar to the techniques used by Lenstra,
Shmoys, and Tardos [17] to show that no algorithm can approximate the optimal
makespan for unrelated parallel machines by better than a factor of 3

2 unless P = NP.

Let A,B,C be disjoint sets, each with n elements, and let T be a set of m triples,
T = {(ai, bj , ck) : ai ∈ A, bj ∈ B, and ck ∈ C}. We say that triple (ai, bj , ck) covers
ai, bj , and ck, and define a perfect matching as a set of n triples that covers every
element of A,B, and C exactly once. The problem of determining whether there
exists a perfect matching given A,B,C, T is known as 3-dimensional matching and is
NP-complete [13]. We will refer to this problem as 3DM.

We will convert an instance M = (A,B,C, T ) of 3DM to an instance (G, `,J ) of
the network scheduling problem that has a schedule of length 3 if and only if instance
M has a perfect matching. We construct N = (G, `,J ) as follows. To construct
G = (V,E), we associate a machine with each triple t ∈ T (the triple machines) and
a machine with each element of sets A, B, and C (the A machines, B machines,
and C machines, respectively). Thus there are 3n + m machines. For each triple
t = (ai, bj , ck), we create three edges: one from machine t to machine ai of length 1,
one from machine t to machine bj of length 1, and one from machine t to machine ck
of length 2 (see Figure 3) This yields a network with 3m edges.

(In order to obtain a construction with only unit-length edges we introduce new
nodes ve, one for each edge of length 2, and replace each edge e from t to ck by a path
t to ve to ck. Each node ve receives a job of size 3 at time 0. Clearly, in a schedule
of length 3 this functions exactly as an edge of length 2, so for ease of exposition we
use edges of length 2.)

The initial job distribution J is defined as follows. For each element ai ∈ A, let
t(ai) be the number of triples which contain element ai. On A machine ai we place
t(ai) jobs:

1. t(ai)− 1 jobs Jj with pj = 2, the dummy jobs,
2. 1 job Jj with pj = 3.

On each B machine, we place 2 jobs:

1. 1 job Jj with pj = 1,
2. 1 job Jj with pj = 3.

On each C machine, we place 2 jobs:
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(i,j,k) (i,q,r) (x,y,k)

i j k q r x y

Fig. 3. Subgraph of N corresponding to two triples (i, j, k) and (p, q, r). Dark edges correspond
to edges of length 2.

1. 1 job Jj with pj = 1,
2. 1 job Jj with pj = 3.

The basic idea behind the construction is that in any schedule of length 3, each
machine corresponding to triple (ai, bj , ck) runs one of only two possible schedules:
either one dummy job from machine ai (a dummy schedule) or the two unit-size
jobs from machines bj and ck, respectively (a matching schedule). Each machine ai
is adjacent to exactly one machine running the latter schedule, and therefore these
machines correspond to a perfect matching. If there is no perfect matching, a schedule
of length 3 cannot exist. We now proceed in more detail.

We first argue that if M has a perfect matching, then the corresponding network
scheduling problem N has a schedule of length 3. Each A, B, and C machine runs
its job of size 3 from time 0 to 3. The remaining m − n jobs of size 2 from the A
machines (t(ai)− 1 from machine ai), the n unit-size jobs from the B machines and
the n unit-size jobs from the C machines are scheduled as follows. Let Tp ⊂ T be the
perfect matching. Each machine corresponding to t ∈ Tp runs a matching schedule,
specifically the unit-size job from machine bj and the unit-size job from machine ck.
Since these jobs are available to their triple machines at times 1 and 2, respectively,
this schedule is feasible, and all jobs starting on B or C machines have been scheduled.
Because the matching Tp contains exactly one triple for each ai, there are t(ai) − 1
unutilized machines adjacent to machine ai. Each such machine runs one of the size-2
jobs from machine ai starting at time 1. Since any job starting on machine ai can
arrive at these machines at time 1, this schedule is feasible and all jobs originating on
the A machines have been scheduled. Therefore we have scheduled every job validly
in 3 units of time.

We now show that if instance N has a schedule of length 3, then 3DM instance
M has a perfect matching. We argue that any schedule of length 3 must have the
form described above where each triple machine runs either a matching schedule or
a dummy schedule; the set of machines running matching schedules correspond to a
perfect matching for instance M .

First observe that in the schedule created above, each machine started processing
a job as early as possible, and then was busy until the schedule completed. We call
this property the nonidleness property. Clearly in any schedule of length 3 each A,
B, and C machine must run only the size 3 job that originates there. In addition, a
simple counting argument shows that the triple machines are idle for one unit of time
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and must be busy the remainder of the time. Thus in any schedule of length 3, all the
m−n size-2 dummy jobs from the A machines, n unit-size jobs from the B machines,
and the n unit-size jobs from the C machines must be run by the triple machines.

We also observe that each job that is not run on its originating machine must run
on an adjacent machine. We call this the locality property. The size 2 dummy jobs
cannot travel more than 1 unit away in a length 3 schedule. Because all edges adjacent
to each C machine have length 2, these unit-size jobs cannot travel more than one
edge in a length-3 schedule. Finally, the unit-size jobs from the B machines must
travel distance at least 3 to reach a nonadjacent triple machine, which is impossible
in a schedule of length 3.

We now argue that each triple machine must run either a dummy schedule or a
matching schedule. Each A machine ai must send all of its t(ai) − 1 size-2 jobs to
the triple machines adjacent to it. In a length-3 schedule, no machine can process
two size-2 jobs. Therefore, the t(ai) − 1 jobs will be sent to t(ai) − 1 distinct triple
machines. They will all run from time 1 through 3, and hence no other jobs can run
on those t(ai)− 1 machines.

There are now exactly n triple machines not running dummy jobs and by con-
struction of the network each has a different first element (the ai’s are all distinct).
There are 2n unit-size jobs remaining to be scheduled, so by the nonidleness prop-
erty, each such machine must run a unit-size job at time 1 and at time 2. Each edge
adjacent to a C machine has length 2. Therefore, no job originating at a C machine
can be processed elsewhere before time 2. Since there are n such jobs and n triple
machines remaining to process them, each triple machine t = (ai, bj , ck) must run a
job from a C machine at time 2. Furthermore, this C job must correspond to element
ck by the locality property. Therefore, each triple machine must process the job from
the B machine adjacent to it at time slot 1. Therefore, the set of machines which run
matching schedules cover all elements of sets A, B, and C.

Proof of Theorem 3.1. We show how to convert an instance M = (A,B,C, T )
of the 3-dimensional matching problem to an instance N = (G, `,J ) of the network
scheduling problem. Instance N will have an average completion time equal to a
certain value if and only if instance M has a perfect matching.

We construct N = (G, `,J ) as follows. To construct the graph G = (V,E), we
associate a machine with each triple t ∈ T (the triple machines), and a machine with
each element of sets A, B, and C. For each triple t = (ai, bj , ck), we create three
paths: one from machine t to machine ai of length 1, one from machine t to machine
bj of length 3, and one from machine t to machine ck of length 1. On the intermediate
nodes of the path of length 3 we place machines (called the path machines), thus
yielding a network with m+ 5n nodes (machines) and 5m edges.

The initial job distribution J is defined as follows. For each element x ∈ A∪B∪C,
let t(x) be the number of triples which contain element x. Let L = 10nm.

1. On each A machine ai, we place two jobs, one with processing time 2 and one
with processing time L.

2. On each B machine bj , we place two jobs, each with processing time L.
3. On each path machine, we place a job of length L.
4. On each C machine ck we place t(ck) jobs, all of length L.

Let Ij be the total idle time experienced by Jj before being processed. A schedule
of minimum average completion time will minimize β =

∑
j Ij , the sum of the idle

times. Because the value of L is so large, an optimal schedule will minimize the
number of times quantities with the value L contribute to β. In particular, to avoid
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any job experiencing an idle time of L, in an optimal schedule once a machine runs
a job of size L, it does not run any jobs afterward. Thus, at most one job of size L
runs on any machine, and that job must be the last one. Since there are m+ 5n jobs
of size L and m+ 5n machines, every machine must run exactly one size-L job.

We now compute a lower bound on β. First, observe that all but one of the jobs
that originate on a machine ck must run on another machine, since no machine can
run two jobs of size L. Thus, each of these jobs must travel at least one edge for a total
of m − n idle time. Next, observe that of the two jobs that start on an A machine
ai, they either both run on ai, with idle time at least 2, or one runs on another
machine for an idle time of at least 1, and n overall. Now consider a B machine
and its associated path machines. The combined idle time of the jobs originating on
these machines must be at least 3. Thus we have a lower bound on idle time β of
m− n+ n+ 3n = m+ 3n.

We now show that a schedule with total idle time of β can be achieved if and
only if there is a perfect 3D matching. If there is a matching, then each of the n
triple machines that correspond to a matched edge will run a size-2 job from the A
machine at time 1 and one of the size L jobs from the B machine at time 3. The m−n
unmatched triple machines will run a job from the corresponding C machine. Since
there is a perfect matching there are exactly t(ck)− 1 such machines. All other jobs
run on their originating machines at time 0, thus giving us a schedule with β = m+3n.

Now we show that this is the only such schedule of this length and hence must
imply that a perfect matching exists. By the above lower bound arguments, each C
machine ck must send out t(ck) − 1 jobs, thus contributing at least t(ck) − 1 to the
idle time. If any of these machines contributes more to the idle time, the total idle
time must exceed β. The only way this lower bound can be achieved is for each of
these jobs to travel exactly 1 edge and run at time 1. Therefore, in any schedule with
idle time β, m − n of the jobs of size L from C machines travel to adjacent triple
machines and are run at time 1. These triple machines cannot run any other jobs. By
construction of the network, the remaining set of triple machines T cover the set C.

Again by the above lower bound arguments, each A machine must contribute at
most 1 to the idle time. Keeping both jobs incurs an idle time of 2, and therefore the
global lower bound is exceeded. Thus in any schedule with m+ 3n idle time, exactly
one of the jobs from each A machine travels exactly 1 unit of time and is run at time
1. It must be the job of size 2, because each A machine must run a job of size L.
Because the only adjacent machines are triple machines, all of the size-2 A jobs run
on adjacent triple machines at time 1. Because there are exactly n machines in set T ,
each running exactly one A job, the set T covers set A.

Now consider a B machine and its associated path machines. The lower bound
argument above shows that the combined idle time of the jobs originating on these
machines must be at least 3. There are many ways to achieve this amount of idle time,
each one places a job of size L on a triple machine at time x, where x ∈ {1, 2, 3}. But
by the arguments above about the placement of the A jobs, we see that the size-L
job that makes it from one of the B or path machines cannot run before time 3. It is
straightforward to show that in an optimal schedule, a job arrives from a B or path
machine at a triple machine at exactly time 3, and this job must run immediately
upon arrival (otherwise the idle time would exceed 3). Therefore, each triple machine
in T processes exactly one size-L job from a B machine, as this is the only job that
can arrive at exactly time 3 without causing any additional idle time. This is only
possible if set T covers set B. Thus the set of triples in T is a perfect matching.



TASK SCHEDULING IN NETWORKS 597

Acknowledgments. We are grateful to Phil Klein for several helpful discussions
early in this research, to David Shmoys for several helpful discussions, especially about
the upper bound for average completion time, to David Peleg and Baruch Awerbuch
for explaining their off-line approximation algorithm to us, and to Perry Fizzano
for reading an earlier draft of this paper. We also thank the anonymous referee for
providing the example which demonstrates that Theorem 2.14 is tight.

REFERENCES

[1] N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer, Lower bounds on the competitive ratio
for mobile user tracking and distributed job scheduling, in Proceedings of the 33rd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1992, pp. 334–343.

[2] B. Awerbuch, S. Kutten, and D. Peleg, Competitive distributed job scheduling, in Proceed-
ings of the 24th Annual ACM Symposium on Theory of Computing, ACM, New York,
1992, pp. 571–580.

[3] J. Bruno, E. Coffman, and R. Sethi, Scheduling independent tasks to reduce mean finishing
time, Comm. ACM, 17 (1974), pp. 382–387.

[4] X. Deng, H. Liu, J. Long, and B. Xiao, Competitive analysis of network load balancing, J.
Parallel Distrib. Comput., 40 (1997), pp. 162–172.

[5] P. Fizzano, D. Karger, C. Stein, and J. Wein, Job scheduling in rings, in Proceedings of
the 1994 ACM Symposium on Parallel Algorithms and Architectures, ACM, New York,
1994, pp. 210–219.

[6] R. Graham, Bounds for certain multiprocessor anomalies, Bell System Technical Journal, 45
(1966), pp. 1563–1581.

[7] R. Graham, Bounds on multiprocessing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 263–
269.

[8] D. Gusfield, Bounds for naive multiple machine scheduling with release times and deadlines,
J. Algorithms, 5 (1984), pp. 1–6.

[9] L. Hall and D. B. Shmoys, Approximation schemes for constrained scheduling problems, in
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 134–141.

[10] D. Hochbaum and D. Shmoys, Using dual approximation algorithms for scheduling problems:
theoretical and practical results, J. ACM, 34 (1987), pp. 144–162.

[11] D. Hochbaum and D. Shmoys, A polynomial approximation scheme for machine scheduling
on uniform processors: using the dual approximation approach, SIAM J. Comput., 17
(1988), pp. 539–551.

[12] W. Horn, Minimizing average flow time with parallel machines, Oper. Res., 21 (1973), pp. 846–
847.

[13] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, Plenum Press, New York, 1972, pp. 85–103.

[14] T. Kawaguchi and S. Kyan, Worst case bound of an LRF schedule for the mean weighted
flow-time problem, SIAM J. Comput., 15 (1986), pp. 1119–1129.

[15] E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys, Sequencing and scheduling: Algorithms
and complexity, in Handbooks in Operations Research and Management Science, Vol. 4,
Logistics of Production and Inventory, S. Graves, A. R. Kan, and P. Zipkin, eds., North-
Holland, Amsterdam, 1993, pp. 445–522.

[16] J. Lenstra, A. R. Kan, and P. Brucker, Complexity of machine scheduling problems, Ann.
Discrete Math., 1 (1977), pp. 343–362.

[17] J. Lenstra, D. Shmoys, and E. Tardos, Approximation algorithms for scheduling unrelated
parallel machines, Math. Programming, 46 (1990), pp. 259–271.

[18] J. H. Lodge, Mobile satellite communication systems: Toward global personal communications,
IEEE Communications Magazine, 30 (1991), pp. 24–31.

[19] C. H. Papadimitriou and M. Yannakakis, Towards an architecture-independent analysis of
parallel algorithms, SIAM J. Comput., 19 (1990), pp. 322–328.

[20] D. Peleg, private communication, 1992.
[21] S. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for fractional

packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.
[22] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing

integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.



598 CYNTHIA PHILLIPS, CLIFFORD STEIN, AND JOEL WEIN

[23] P. Raghavan and C. D. Thompson, Randomized rounding: a technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[24] D. B. Shmoys, C. Stein, and J. Wein, Improved approximation algorithms for shop scheduling
problems, SIAM J. Comput., 23 (1994), pp. 617–632.

[25] D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment
problem, Math. Programming A, 62 (1993), pp. 461–474.

[26] P. Wood, Mobile satellite services for travelers, IEEE Communications Magazine, 30 (1991),
pp. 32–35.



STACK AND QUEUE LAYOUTS OF POSETS∗

LENWOOD S. HEATH† AND SRIRAM V. PEMMARAJU‡

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 4, pp. 599–625, November 1997 005

Abstract. The stacknumber (queuenumber) of a poset is defined as the stacknumber (queue-
number) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber
of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its
covering graph. A lower bound of Ω(

√
n) is shown for the queuenumber of the class of n-element

planar posets. The queuenumber of a planar poset is shown to be within a small constant factor of
its width. The stacknumber of n-element posets with planar covering graphs is shown to be Θ(n).
These results exhibit sharp differences between the stacknumber and queuenumber of posets as well
as between the stacknumber (queuenumber) of a poset and the stacknumber (queuenumber) of its
covering graph.
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1. Introduction. Stack and queue layouts of undirected graphs appear in a vari-
ety of contexts such as VLSI, fault-tolerant processing, parallel processing, and sorting
networks (Pemmaraju [16]). In a new context, Heath, Pemmaraju, and Ribbens [10]
use queue layouts as the basis of an efficient scheme to perform matrix computations
on a data driven network. Bernhart and Kainen [1] introduce the concept of a stack
layout, which they call book embedding. Chung, Leighton, and Rosenberg [3] study
stack layouts of undirected graphs and provide optimal stack layouts for a variety
of classes of graphs. Heath and Rosenberg [13] develop the notion of queue layouts
and provide optimal queue layouts for many classes of undirected graphs. Heath,
Leighton, and Rosenberg [8] study relationships between queue and stack layouts of
undirected graphs. In some applications of stack and queue layouts, it is more realistic
to model the application domain with directed acyclic graphs (dags) or with posets,
rather than with undirected graphs. Various questions that have been asked about
stack and queue layouts of undirected graphs acquire a new flavor when there are
directed edges (arcs). This is because the direction of the arcs imposes restrictions
on the node orders that can be considered. Heath and Pemmaraju [9] and Heath,
Pemmaraju, and Trenk [11, 12] initiate the study of stack and queue layouts of dags
and provide optimal stack and queue layouts for several classes of dags.

In this paper, we focus on stack and queue layouts of posets. Posets are ubiquitous
mathematical objects, and various measures of their structure have been defined.
Some of these measures are bumpnumber, jumpnumber, length, width, dimension,
and thickness [2, 7]. Nowakowski and Parker [15] define the stacknumber of a poset
as the stacknumber of its Hasse diagram viewed as a dag. They derive a general lower
bound on the stacknumber of a planar poset and an upper bound on the stacknumber
of a lattice. Nowakowski and Parker [15] conclude by asking whether the stacknumber
of the class of planar posets is unbounded. Hung [14] shows that there exists a planar
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poset with stacknumber 4; moreover, no planar poset with stacknumber 5 is known.
Sys lo [17] provides a lower bound on the stacknumber of a poset in terms of its
bumpnumber. He also shows that, while posets with jumpnumber 1 have stacknumber
at most 2, posets with jumpnumber 2 can have an arbitrarily large stacknumber.

The organization of this paper is as follows. Section 2 contains definitions. In
section 3, we derive upper bounds on the queuenumber of a poset in terms of its
jumpnumber, its length, its width, and the queuenumber of its covering graph. In
section 4, we show that the queuenumber of the class of planar posets is unbounded.
In a complementary upper bound result, we show that the queuenumber of a planar
poset is within a small constant factor of its width. In section 5, we show that the
stacknumber of the class of n-element posets with planar covering graphs is Θ(n). In
section 6, the decision problem of recognizing a 4-queue poset is defined; Heath and
Pemmaraju [9] and Heath, Pemmaraju, and Trenk [11] show that the problem is NP-
complete. In section 7, we present several open questions and conjectures concerning
stack and queue layouts of posets.

2. Definitions. This section contains the definitions of stack and queue layouts
of undirected graphs, dags, and posets. Other measures of the structure of posets are
also defined.

Let G = (V,E) be an undirected graph without multiple edges or loops. A k-stack
layout of G consists of a total order σ on V along with an assignment of each edge in
E to one of k stacks, s1, s2, . . . , sk. Each stack sj operates as follows. The vertices
of V are scanned in left-to-right (ascending) order according to σ. When a vertex v
is encountered, any edges assigned to sj that have v as their right endpoint must be
at the top of the stack and are popped. Any edges that are assigned to sj and have
left endpoint v are pushed onto sj in descending order (according to σ) of their right
endpoints. The stacknumber SN(G) of G is the smallest k such that G has a k-stack
layout. G is said to be a k-stack graph if SN(G) = k. The stacknumber of a class of
graphs C, denoted by SNC(n), is the function of the natural numbers that equals the
least upper bound of the stacknumber of all graphs in C with at most n vertices. We
are interested in the asymptotic behavior of SNC(n) or in whether SNC(n) is bounded
above by a constant.

A k-queue layout of G consists of a total order σ on V along with an assignment
of each edge in E to one of k queues, q1, q2, . . . , qk. Each queue qj operates as follows.
The vertices of V are scanned in left-to-right (ascending) order according to σ. When
a vertex v is encountered, any edges assigned to qj that have v as their right endpoint
must be at the front of the queue and are dequeued. Any edges that are assigned
to qj and have left endpoint v are enqueued into qj in ascending order (according to
σ) of their right endpoints. The queuenumber QN(G) of G is the smallest k such
that G has a k-queue layout. The queuenumber of a class of graphs C, denoted by
QNC(n), is the function of the natural numbers that equals the least upper bound
of the queuenumber of all graphs in C with at most n vertices. We are interested
in the asymptotic behavior of QNC(n) or in whether QNC(n) is bounded above by a
constant.

For a fixed order σ on V , we identify sets of edges that are obstacles to minimizing
the number of stacks or queues. A k-rainbow is a set of k edges {(ai, bi) | 1 ≤ i ≤ k}
such that

a1 <σ a2 <σ · · · <σ ak−1 <σ ak <σ bk <σ bk−1 <σ · · · <σ b2 <σ b1;

i.e., a rainbow is a nested matching. Any two edges in a rainbow are said to nest.
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A k-twist is a set of k edges {(ai, bi) | 1 ≤ i ≤ k} such that

a1 <σ a2 <σ · · · <σ ak−1 <σ ak <σ b1 <σ b2 <σ · · · <σ bk−1 <σ bk,

i.e., a twist is a fully crossing matching. Any two edges in a twist are said to cross.
A rainbow is an obstacle for a queue layout because no two edges that nest can

be assigned to the same queue, while a twist is an obstacle for a stack layout because
no two edges that cross can be assigned to the same stack. Intuitively, we can think
of a stack layout or a queue layout of a graph as a drawing of the graph in which the
vertices are laid out on a horizontal line and the edges appear as arcs above the line.
In a stack layout no two edges that intersect can be assigned to the same stack, while
in a queue layout no two edges that nest can be assigned to the same queue. Clearly,
the size of the largest twist (rainbow) in a layout is a lower bound on the number
of stacks (queues) required for that layout. Heath and Rosenberg [13] show that the
size of the largest rainbow in a layout equals the minimum queue requirement of the
layout.

Proposition 2.1 (Heath and Rosenberg, [Theorem 2.3, 13]). Suppose G =
(V,E) is an undirected graph, and σ is a fixed total order on V . If G has no rainbow
of more than k edges with respect to σ, then G has a k-queue layout with respect
to σ.

In contrast, the size of the largest twist in a layout may be strictly less than the
minimum stack requirement of the layout (see [13, Proposition 2.4]).

The definitions of stack and queue layouts are now extended to dags by requiring
that the layout order be a topological order. Following a common distinction, we
use vertices and edges for undirected graphs, but nodes and arcs for directed graphs.
Suppose that G = (V,E) is an undirected graph and that ~G = (V, ~E) is a dag whose

arc set ~E is obtained by directing the edges in E. A topological order of ~G is a total
order σ on V such that (u, v) ∈ ~E implies u <σ v. A k-stack (k-queue) layout of the

dag ~G = (V, ~E) is a k-stack (k-queue) layout of the graph G such that the total order

is a topological order of ~G. As before, SN(~G) is the smallest k such that ~G has a

k-stack layout, and QN(~G) is the smallest k such that ~G has a k-queue layout.
A partial order is a reflexive, transitive, antisymmetric binary relation. A poset

P = (V,≤) is a set V with a partial order ≤ (see Birkhoff [2] or Davey and Priestly [4]).
The cardinality |P | of a poset P equals |V |. We only consider posets with finite
cardinality in this paper. We write u < v if u ≤ v and u 6= v. The Hasse diagram
~H(P ) = (V, ~E) of a poset P = (V,≤) is a dag with arc set

~E = {(u, v) | u < v and there is no w such that u < w < v}
(see Davey and Priestly [4]). A Hasse diagram is a minimal representation of a poset
because it contains none of the arcs implied by transitivity of ≤. The stacknumber
SN(P ) of a poset P is SN( ~H(P )), the stacknumber of its Hasse diagram. Similarly,

the queuenumber QN(P ) of a poset P is QN( ~H(P )), the queuenumber of its Hasse
diagram. Figure 2.1 gives an example of a 2-stack poset, while Fig. 2.2 gives an
example of a 2-queue poset. The underlying undirected graph, H(P ), of ~H(P ) is
called the covering graph of P . Clearly, for any poset P , we have

SN(H(P )) ≤ SN(P )

and

QN(H(P )) ≤ QN(P ).
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Fig. 2.1. A 2-stack poset.
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Fig. 2.2. A 2-queue poset.

The stacknumber and the queuenumber of the covering graphs of the posets in both
Fig. 2.1 and Fig. 2.2 are 1. A poset P is planar if its Hasse diagram ~H(P ) has a
planar embedding in which all arcs are drawn as straight line segments with the tail
of each arc strictly below its head with respect to a Cartesian coordinate system; call
such an embedding of any dag an upwards embedding. Without loss of generality,
we may always assume that no two nodes of ~H(P ) are on the same horizontal line.
(If two nodes are on the same horizontal line, a slight vertical perturbation of either
of them yields another upwards embedding with the nodes on different horizontal
lines.) Given an upwards embedding of a dag, the y coordinates of the nodes give
a topological order on the nodes from lowest to highest called the vertical order.
Note that the covering graph H(P ) may be planar even though the poset P is not.
Figure 2.3 shows an example of a nonplanar poset whose covering graph is planar.

Let γ be a fixed topological order on ~H(P ). Two elements u and v are adjacent

in γ if there is no w such that u <γ w <γ v or v <γ w <γ u. A spine arc in ~H(P )

with respect to γ is an arc (u, v) in ~H(P ) such that u and v are adjacent in γ. A break

in ~H(P ) with respect to γ is a pair (u, v) of adjacent elements such that u <γ v and

(u, v) is not an arc in ~H(P ). A connection C in ~H(P ) with respect to γ is a maximal
sequence of elements u1 <γ u2 <γ · · · <γ uk such that (ui, ui+1) is a spine arc for all
i, 1 ≤ i < k; in other words a connection is a maximal path of spine arcs without a
break. Since ~H(P ) contains no transitive arcs, there can be no nonspine arcs between

nodes in a connection. The breaknumber BN(γ, P ) of a topological order γ of ~H(P )
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Fig. 2.3. A nonplanar poset whose covering graph is planar.

is the number of breaks in ~H(P ) with respect to γ. The jumpnumber of P , denoted

by JN(P ), is the minimum of BN(γ, P ) over all topological orders γ on ~H(P ).
A chain in a poset P is a set of elements {u1, u2, . . . , uk} such that u1 < u2 <

· · · < uk. The length L(P ) of a poset P is the maximum cardinality of any chain in P .
An antichain in a poset P is a subset of elements of S that does not contain a chain
of size 2. The width W (P ) of a poset P is the maximum cardinality of any antichain
in P .

3. Upper bounds on queuenumber. In this section we derive upper bounds
on the queuenumber of a poset in terms of its jumpnumber, its length, its width, and
the queuenumber of its covering graph.

3.1. Jumpnumber and queuenumber. Sys lo [17] proves the following rela-
tionship between the jumpnumber and the stacknumber of posets.

Proposition 3.1 (Sys lo [17]). For any poset P with JN(P ) = 1, we have
SN(P ) ≤ 2. If J2 is the infinite class of posets having jumpnumber 2, then SNJ2

(n) =
Ω(n).

In contrast, we show that, for any poset P , the queuenumber of P is at most the
jumpnumber of P plus 1. Moreover, we show that this bound is tight within a small
constant factor.

Theorem 3.2. For any poset P , QN(P ) ≤ JN(P ) + 1. For every n ≥ 2, there
exists a poset P such that |P | = 2n and JN(P )/2 < QN(P ).

Proof. For the upper bound on queuenumber, suppose that P is any poset and
that JN(P ) = k. Let γ be a topological order on ~H(P ) that has exactly k breaks

and k + 1 connections. Lay out ~H(P ) according to γ and label these connections
C0, C1, . . . , Ck from left to right. Let (u1, v1) and (u2, v2) be any two nonspine arcs
such that u1 and u2 are in Ci and v1 and v2 are in Cj , where 1 ≤ i < j ≤ k. If (u1, v1)
and (u2, v2) nest, then one of (u1, v1) and (u2, v2) (the arc that nests over the other
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arc) is a transitive arc. Since ~H(P ) contains no transitive arcs, (u1, v1) and (u2, v2)
do not nest. This suggests the following assignment of arcs to queues: Assign all
nonspine arcs between pairs of connections Ci and Cj , where |i− j| = `, 1 ≤ ` ≤ k, to
queue q`. Assign all the spine arcs to a queue q0. Hence, we use k queues for nonspine
arcs and one queue for spine arcs, for a total of k + 1 queues.

For the lower bound on queuenumber, construct the Hasse diagram of a poset
P from the complete bipartite graph Kn,n = (V1, V2, E) by directing all the edges

from vertices in V1 to vertices in V2. All topological orders on ~H(P ) yield isomorphic
layouts. Hence, JN(P ) = 2(n− 1), QN(P ) = n, and

QN(P ) =
n

2(n− 1)
JN(P ).

The lower bound follows.
Proposition 3.1 and Theorem 3.2 lead to the following corollary.
Corollary 3.3. There exists a class of posets P for which the ratio

SNP(n)

QNP(n)
= Ω(n).

Looking ahead, Theorem 4.2 shows the existence of a class of posets P for which
the reciprocal ratio QNP(n)/SNP(n) is unbounded.

3.2. Length and queuenumber. To prove the next theorem, we need the
following lemma that gives a bound on the queuenumber of a layout of a graph whose
vertices have been rearranged in a limited fashion.

Lemma 3.4 (Pemmaraju [16]). Suppose that σ is an order on the vertices of an
m-partite graph G = (V1, V2, . . . , Vm, E) that yields a k-queue layout of G. Let σ′ be
an order on the vertices of G in which the vertices in each set Vi, 1 ≤ i ≤ m, appear
consecutively and in the same order as in σ. Then σ′ yields a layout of G in 2(m−1)k
queues.

Theorem 3.5, the main result of this section, gives an upper bound on the queue-
number of a poset in terms of its length and the queuenumber of its covering graph.

Theorem 3.5. For any poset P ,

QN(P ) ≤ 2 · (L(P )− 1) ·QN(H(P )).

There exists an infinite class of posets P such that LP(n) = 2 and, for all P ∈ P,
⌈
QN(P )

2

⌉
= (L(P )− 1) ·QN(H(P )).

Proof. Suppose P is any poset, ~H(P ) = (V, ~E), and QN(H(P )) = k. Let σ be

a total order on V that yields a k-queue layout of H(P ). The nodes of ~H(P ) can be
labeled by a function l : V → {1, . . . , L(P )} such that l(u) < l(v) if u < v in P , as

follows. Let ~H0 = ~H(P ). Label all the nodes with indegree 0 in ~H0 with the label

1. Delete all the labeled nodes in ~H0 to obtain ~H1. In general, label the nodes with
indegree 0 in ~Hi with the label i+ 1. Delete the labeled nodes in ~Hi to obtain ~Hi+1.
By an inductive proof, it can be checked that the labeling so obtained satisfies the
required conditions. Let Vi = {u ∈ V | l(u) = i}. For any arc (u, v) ∈ ~E, if u ∈ Vi
and v ∈ Vj , then i < j. Therefore ~H(P ) = (V1, V2, . . . , VL(P ), ~E) is an L(P )-partite

dag. Define the total order γ on the nodes of ~H(P ) by the following:
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1. The elements in each set Vi, 1 ≤ i ≤ L(P ), occur contiguously and in the
order prescribed by σ.

2. The elements in Vi occur before the elements in Vi+1 for all i, 1 ≤ i < L(P ).

Since every arc in ~H(P ) is from a node in Vi to a node in Vj , 1 ≤ i < j ≤ L(P ), γ is

a topological order on ~H(P ). By Lemma 3.4 γ yields a layout that requires no more
than 2 · (L(P )− 1) · k queues.

We now prove the second part of the theorem. For each n ≥ 2, let p = bn/2 c and
q = dn/2 e. Let the complete bipartite graph Kp,q = (V1, V2, E) be such that |V1| = p
and |V2| = q. We get the Hasse diagram of a poset P of size n by directing the edges
in Kp,q from V1 to V2. Clearly, L(P ) = 2 and QN(P ) = p. Heath and Rosenberg [13]
and Pemmaraju [16] present different proofs of the following formula that gives the
precise queuenumber of an arbitrary complete bipartite graph:

QN(Kr,s) = min(d r/2 e, d s/2 e).
Since p ≤ q, QN(Kp,q) = d p/2 e. Therefore,

⌈
QN(P )

2

⌉
= (L(P )− 1) ·QN(H(P )).

Let P be the class of all posets constructed in the manner described above. The
second part of the theorem follows.

Note that Theorem 3.5 holds for dags as well as for posets as its proof does not
rely on the absence of transitive arcs. Theorem 3.5 leads to the following corollary.

Corollary 3.6. For any poset P ,

QN(H(P )) ≤ QN(P ) ≤ 2 · (L(P )− 1) ·QN(H(P )).

Suppose P is a class of posets such that there exists a constant K with L(P ) ≤ K,
for all P ∈ P. Then QNP(n) = Θ(QNH(P)(n)).

We conjecture, but have been unable to show, that the upper bound in Theorem
3.5 is tight, within constant factors, for larger values of L(P ) also.

3.3. Width and queuenumber. In this section, we establish an upper bound
on the queuenumber of a poset in terms of its width. We need the following result of
Dilworth.

Lemma 3.7 (Dilworth [5]). Let P = (V,≤) be a poset. Then V can be partitioned
into W (P ) chains.

For a poset P = (V,≤), let Z1, Z2, . . . , ZW (P ) be a partition of V into W (P )

chains. Define an i-chain arc as an arc in ~H(P ), both of whose end points belong to
chain Zi, 1 ≤ i ≤ W (P ). An (i, j)-cross arc, i 6= j, is an arc whose tail belongs to
chain Zi and whose head belongs to chain Zj .

Theorem 3.8. The largest rainbow in any layout of a poset P is of size no greater
than W (P )2. Hence, the queuenumber of any layout of P is at most W (P )2.

Proof. Fix an arbitrary topological order of ~H(P ). Let Z1, Z2, . . . , ZW (P ) be a

partition of V into W (P ) chains. For any i, no two i-chain arcs nest, since ~H(P )
contains no transitive arcs. Therefore, the largest rainbow of chain arcs has size no
greater than W (P ). If i 6= j then no two (i, j)-cross arcs can nest without one of
them being a transitive arc. Therefore, the largest rainbow of cross arcs has size no
greater than W (P )(W (P ) − 1). The size of the largest rainbow is at most W (P ) +

W (P )(W (P )− 1) = W (P )
2
. By Proposition 2.1, the theorem follows.



606 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

The bound established in the above theorem is not known to be tight. In fact, we
believe that the queuenumber of a poset is bounded above by its width (see Conjecture
1 in Section 7).

4. The queuenumber of planar posets. In this section, we first show that
the queuenumber of the class of planar posets is unbounded. We then establish an
upper bound on the queuenumber of a planar poset in terms of its width.

4.1. A lower bound on the queuenumber of planar posets. We construct
a sequence of planar posets Pn with |Pn| = 3n + 3 and QN(Pn) = Θ(

√
n). In fact,

we determine the queuenumber of Pn almost exactly. To prove the theorem, we need
the following result of Erdös and Szekeres.

Lemma 4.1 (Erdös and Szekeres [6]). Let (xi)
n
i=1 be a sequence of distinct el-

ements from a set X. Let δ be a total order on X. Then (xi)
n
i=1 either contains

a monotonically increasing subsequence of size d√n e or a monotonically decreasing
subsequence of size d√n e with respect to δ.

The proof of Theorem 4.2 constructs the desired sequence of posets.
Theorem 4.2. For each n ≥ 1, there exists a planar poset Pn with 3n + 3

elements such that

⌈√
n + 1

⌉ ≤ QN(Pn) ≤ ⌈√
n
⌉

+ 1.

Proof. Suppose n ≥ 1. Define three disjoint sets U, V , and W as follows:

U = {ui | 0 ≤ i ≤ n},
V = {vi | 0 ≤ i ≤ n},
W = {wi | 0 ≤ i ≤ n}.

Let S = U ∪ V ∪W . The planar poset Pn = (S,≤) is given by

ui < ui−1,

vi−1 < vi,

for 1 ≤ i ≤ n, and

ui < wi < vi,

for 0 ≤ i ≤ n. Figure 4.1 shows the Hasse diagram of P4. Let σ be an arbitrary
order on the elements of S. The elements of U ∪ V ∪ {w0} appear in the order
un, un−1, . . . , u0, w0, v0, v1, . . . , vn in σ, and all elements of W appear between un and
vn. Define a total order δ on the elements of W by wi <δ wj if i < j. Suppose that

wi1 , wi2 , . . . , wik

is an increasing sequence of nodes in W with respect to δ. Since wi1 appears after ui1
in any topological order of ~H(Pn), the following sequence of nodes is a subsequence
of σ:

uik , uik−1
, . . . , ui1 , wi1 , wi2 , . . . , wik .

Therefore, the set {(uij , wij ) | 1 ≤ j ≤ k} is a k-rainbow in σ. Similarly, if

wi1 , wi2 , . . . , wik
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Fig. 4.1. The planar poset P4.

is a decreasing sequence of nodes in W with respect to δ, then the set {(wij , vij ) | 1 ≤
j ≤ k} is a k-rainbow in σ. By Lemma 4.1, in σ, there is an increasing subsequence of
size

⌈√
n + 1

⌉
or a decreasing subsequence of size

⌈√
n + 1

⌉
with respect to δ. Thus

there is a rainbow of size
⌈√

n + 1
⌉

in any topological order on ~H(Pn). Therefore,

QN(Pn) ≥ ⌈√
n + 1

⌉
. This is the desired lower bound.

To prove the upper bound, we give a layout of Pn in d√n e + 1 queues. Let
s = d√n e, and let t = dn/se ≤ d√n e. Partition W − {w0} into s nearly equal-sized
subsets

W1,W2, . . . ,Ws

as follows:

Wi =

{ {wj | (i− 1)t + 1 ≤ j ≤ it}, 1 ≤ i ≤ s− 1,
{wj | (s− 1)t + 1 ≤ j ≤ n}, i = s.
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Fig. 4.2. Schematic layout of planar poset Pn.

Construct an order σ on the elements of S by first placing the elements in U ∪
V ∪ {w0} in the order

un, un−1, . . . , u0, w0, v0, v1, . . . , vn.

Now place the elements of W − {w0} between u0 and v0 such that the elements
belonging to each set Wi appear contiguously and the sets themselves appear in the
order

Ws,Ws−1, . . . ,W1.

Within each set Wi, 1 ≤ i ≤ s, place the elements in increasing order with respect
to δ. Figure 4.2 schematically represents the constructed order. The arcs from U to
W form s mutually intersecting rainbows each of size at most t. Therefore, t queues
suffice for these arcs. The arcs from W to V form s nested twists each of size at most
t. Therefore s queues suffice for these arcs. Since no two arcs, one from U to W and
the other from W to V nest, they can all be assigned to the same set of s queues. An
additional queue is required for the remaining arcs. This is a layout of Pn in d√n e+1
queues. Therefore, QN(Pn) ≤ d√n e+ 1, as desired.

We believe that the upper bound in the above proof can be tightened to exactly
match the lower bound. In fact, we have been able to show that for m2 ≤ n ≤
m(m + 1), QN(Pn) = m + 1 =

⌈√
n + 1

⌉
.

The situation for stacknumber of planar posets is somewhat different in that there
is no known example of a sequence of planar posets with unbounded stacknumber.
Two observations about the sequence Pn in Theorem 4.2 are in order. The first
observation is that SN(Pn) = 2. A 2-stack layout of ~H(P4) is shown in Fig. 4.3. The
second observation is that the stacknumber and the queuenumber of H(Pn) is 2. A
2-queue layout of H(P4) is shown in Fig. 4.4. Theorem 4.2 and the above observations
imply the following corollaries.

Corollary 4.3. There exists a class P of planar posets such that

QNP(n)

SNP(n)
= Ω

(√
n
)
.
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Fig. 4.3. A 2-stack layout of the planar poset P4.
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Fig. 4.4. A 2-queue layout of the covering graph of P4.

Corollary 4.4. There exists a class P of planar posets such that

QNP(n)

QNH(P)(n)
= Ω

(√
n
)
.

While Theorem 4.2 establishes a lower bound of Ω(
√
n) on the queuenumber

of the class of n-element planar posets, a matching upper bound is not known (see
Conjecture 2 in section 7).

4.2. An upper bound on the queuenumber of planar posets. In this
section, we show that the queuenumber of a planar poset is bounded above by a small
constant multiple of its width. The bound is a consequence of the following theorem,
the proof of which occupies the remainder of the section.

Theorem 4.5. For any planar poset P where ~H(P ) contains at least one arc and

for any upward embedding of ~H(P ), the layout of ~H(P ) given by the vertical order σ
has queuenumber less than 4W (P ).

Before the proof of Theorem 4.5, we present some definitions, some observations,
and a series of three lemmas. First, we fix notation and terminology to use throughout
the section. Suppose that P = (V,≤P ) is a planar poset with a given upwards

embedding of ~H(P ). Let σ be the vertical order on V . Now suppose that the size

of a largest rainbow in the vertical order of ~H(P ) is k ≥ 1. By Proposition 2.1, the
queuenumber of this layout is k. Focus on a particular k-rainbow whose arcs are
(a1, b1), (a2, b2), . . . , (ak, bk). Call these arcs the rainbow arcs; in particular, the arc
(ai, bi) is the rainbow arc of ai and of bi. The nodes in the set A = {a1, a2, . . . , ak}
are bottom nodes, and the nodes in the set B = {b1, b2, . . . , bk} are top nodes. Let y(v)
denote the y-coordinate of a node v in the upwards embedding. Suppose that (ai, bi)
and (aj , bj) are distinct rainbow arcs. Since these arcs nest in the vertical order σ,
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Fig. 4.5. An example of rainbow arcs.

we know that max{y(ai), y(aj)} < min{y(bi), y(bj)}. More generally,

y1 = max
1≤i≤k

y(ai) < min
1≤i≤k

y(bi) = y2.

The horizontal line defined by the equation y = (y1 +y2)/2 intersects every (ai, bi). In
moving along this line from left to right, we encounter these intersections in a definite
order. By re-indexing the rainbow arcs, we may assume that these intersections are
encountered in the order (a1, b1), (a2, b2), . . . , (ak, bk); call this the left-to-right order
of the rainbow arcs. Figure 4.5 illustrates an upwards embedding of a Hasse diagram
with k = 6. The arcs are indexed in left-to-right order.

Define the left-to-right total order ≤LR on A (respectively, B) by ai ≤LR aj
(respectively, bi ≤LR bj) if i ≤ j. If ai ≤LR aj , we say that ai is to the left of aj and
that aj is to the right of ai. These notions of left and right do not always correspond
to our normal understanding of these notions when looking at an upwards embedding.
For example, in Fig. 4.5, the x-coordinate of a1 is greater than that of a2, though
a1 <LR a2 and hence a1 is to the left of a2. We consistently use left and right with
respect to the order ≤LR.

A bottom chain is any chain of bottom nodes, and a top chain is any chain of top
nodes. In Fig. 4.5, the set {a1, a3, a4} is a bottom chain, while the set {a2, a3, a5} is
not. If C is a chain of P and u, v ∈ V , then the closed interval from u to v is the
subchain C[u, v] = {w ∈ C | u ≤P w ≤P v}, and the open interval from u to v is
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the subchain C(u, v) = {w ∈ C | u <P w <P v}. Subchains C(u, v] and C[u, v), the
corresponding half-open intervals, are defined analogously. For any bottom chain C,
the extent of C is

〈C〉 =

(
max
ai∈C

i

)
−
(

min
aj∈C

j

)
;

that is, the extent is the distance from the leftmost node in C to the rightmost node
in C, measured in rainbow arcs. The extent of a top chain is defined analogously.
Suppose C is any chain. We say that C covers the nodes it contains. If D is a path
in ~H(P ) that contains every node of C, then D covers C. Note that there must be

at least one path in ~H(P ) that covers C.
In what follows, we show that more than k/4 chains are required to cover the set

A∪B. Since W (P ) is the minimum number of chains required to cover all the nodes
in the poset, it follows that k/4 < W (P ) and therefore QN(P ) < 4W (P ). As the
proof is long and tedious, we give here an informal overview. Start with a partition
CA of A into bottom chains and a partition CB of B into top chains. Because each
element of CA ∪ CB is a chain, there is a path in ~H(P ) covering it. Thinking of
each such path as a vertex, we construct a graph G that contains an edge connecting
a pair of vertices if the corresponding paths in ~H(P ) are connected by a rainbow

arc. It is easy to see that G is planar if the paths in ~H(P ) covering the chains in
CA ∪ AB are pairwise nonintersecting. The construction of a collection of pairwise
nonintersecting paths that cover the chains of CA ∪ CB is not always possible. This
leads us to the weaker notion of a crossing of two chains and to the construction of
G from chains rather than paths. Since the final step of the proof requires G to be
planar, we first show (Lemmas 4.7 and 4.8) that all crossings between pairs of chains
can be eliminated. Applying Euler’s formula to the resulting planar G finally yields
the bound in Theorem 4.5.

At this point, we restrict our argument to bottom nodes, as the corresponding
argument for top nodes is similar. If C is any bottom chain, the order in which its
elements appear with respect to ≤P is constrained by the rainbow arcs. In particular,
we make the following observation.

Observation 1. Suppose that C is a bottom chain whose nodes occur in the
following order with respect to ≤P :

c1 ≤P c2 ≤P · · · ≤P ct.

For any i with 1 ≤ i ≤ t−1, if ci <LR ci+1, then ci <LR cj for all j ≥ i+1. Similarly,
for any i with 1 ≤ i ≤ t− 1, if ci >LR ci+1, then ci >LR cj for all j ≥ i + 1.

Intuitively, if the chain starts going to the right after ci, then the remainder of
the chain must be to the right of the rainbow arc of ci. The rainbow arc of ci is a
barrier to the chain reaching a bottom node to the left of ci. For example, in Fig. 4.5,
the rainbow arc (a5, b5) is a barrier to any path originating at a6. Since a5 <P a6 and
a5 <LR a6, no bottom chain containing both a5 and a6 has a node ai >P a6 to the
left of a5.

By Lemma 3.7, there is a partition of A into at most W (P ) chains. Let CA be
such a partition. Let C1 ∈ CA have the order

c1 ≤P c2 ≤P · · · ≤P cm,

and let C2 ∈ CA, C1 6= C2, have the order

d1 ≤P d2 ≤P · · · ≤P dn.
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Fig. 4.6. The region R.

These two bottom chains cross if there exist cp, cq ∈ C1 and dr, ds ∈ C2 such that
cp <LR dr <LR cq <LR ds or cp >LR dr >LR cq >LR ds; in such a case, the 4-tuple
(cp, cq, dr, ds) is a crossing of C1 and C2. Since cp and cq are related by ≤P , there is

a directed path D1 in ~H(P ) between cp and cq that covers C1[cp, cq]. Similarly, there

is a directed path D2 in ~H(P ) between dr and ds that covers C2[dr, ds].
Lemma 4.6. D1 and D2 have at least one node in common.
Proof. Without loss of generality, assume that cp <LR dr <LR cq <LR ds. Con-

sider the polygonal path consisting of the horizontal ray from cp to −∞, followed by
the line segments (cp, dr), (dr, cq), and (cq, ds), and completed by the horizontal ray
from ds to ∞. Let R be the region of the plane consisting of this polygonal path
and all points below it. (Figure 4.6 illustrates the region R derived from Fig. 4.5
with crossing (a1, a4, a2, a5).) Topologically, R is a 2-dimensional ball with a single
boundary point removed. Topologically, D1 and D2 are paths in the plane with end-
points on the boundary of R. By Observation 1, neither path can cross either of
the two infinite rays. Also, neither path can pass above the rainbow arc of cq or dr,
because every top node is higher than any bottom nodes in the upwards embedding
of ~H(P ). Hence, if either path crosses one of the three line segments of the polygonal
path and proceeds outside of R, then that path must return to the polygonal path
at a higher point on the same line segment. In essence, we can disregard any excur-
sions outside of R and assume, from a topological viewpoint, that both paths remain
within R. The nodes of D1 and D2 alternate along the polygonal path. Hence, these
paths must intersect topologically, and D1 and D2 must have at least one node in
common.

A node that D1 and D2 have in common is an intersection of C1 and C2. Note
that an intersection need not be a bottom node. In Fig. 4.5, the chains {a1, a3, a4}
and {a5, a2} cross and have the intersection v, which is not a bottom node.

Observation 2. Since, with respect to ≤P , an intersection associated with the
crossing (cp, cq, dr, ds) is between cp and cq and between dr and ds, we have these
relations:

minP {cp, cq} <P maxP {dr, ds},
minP {dr, ds} <P maxP {cp, cq}.



STACK AND QUEUE LAYOUTS OF POSETS 613

The following observation is helpful in constructing pairs of noncrossing chains.
Observation 3. Suppose that C1 − {ci} and C2 do not cross. If no dj ∈ C2 is

between ci−1 and ci with respect to ≤LR or if no dj ∈ C2 is between ci and ci+1 with
respect to ≤LR, then C1 and C2 do not cross.

We wish to be able to assume that CA does not contain a pair of crossing chains.
The first of two steps in justifying that assumption is to show that we can replace
two crossing chains with two noncrossing chains according to the following lemma.
The replacing pair is further constrained to satisfy the five properties in the lemma.
The need for properties 1, 2, and 3 is clear. Property 4 states that, if the original
pair crosses, then the replacing pair is smaller, in a precise technical sense, than the
original pair; hence the process of replacement of a crossing pair by a noncrossing
pair cannot be repeated forever. Property 5 allows us to identify the minima in the
replacing pair; this property is a technical condition useful only within the inductive
proof of the lemma.

Lemma 4.7. Suppose C1 and C2 are disjoint bottom chains. Then there exists
a function NC that yields a pair of bottom chains (C ′1, C

′
2) = NC(C1, C2) with these

properties:
1. C ′1 ∪ C ′2 = C1 ∪ C2;
2. C ′1 and C ′2 are disjoint;
3. C ′1 and C ′2 do not cross;
4. the sum of extents does not increase:

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1〉+ 〈C2〉;
if equality holds and if C1 and C2 cross, then the minimum extent decreases:

min{〈C ′1〉, 〈C ′2〉} < min{〈C1〉, 〈C2〉};
and

5. chain minima are preserved:

c1 = minP C
′
1 = minP C1,

d1 = minP C
′
2 = minP C2.

Proof. In addition to our previous notation for C1 and C2, we define

α = minLR C1,

β = maxLR C1,

γ = minLR C2,

δ = maxLR C2.

By Observation 1, either c1 = α or c1 = β, and either d1 = γ or d1 = δ. If c1 = α,
choose a path D1 from c1 to β that covers the subchain C1[c1, β]; if c1 = β, choose a
path D1 from c1 to α that covers the subchain C1[c1, α]. Similarly, if d1 = γ, choose
a path D2 from d1 to δ that covers the subchain C2[d1, δ]; if d1 = δ, choose a path
D2 from d1 to γ that covers the subchain C2[d1, γ]. By Observation 1, both paths are
monotonic with respect to ≤LR.

We proceed to show the lemma by induction on the pair (m,n). Recall that m
is the cardinality of C1 and n is the cardinality of C2. The base cases are all pairs
(m,n) with either m = 1 or n = 1. In these cases, C1 and C2 do not cross, and setting
NC(C1, C2) = (C1, C2) yields the desired pair of bottom chains.
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For the inductive case, we assume that m ≥ 2, that n ≥ 2, and that the lemma
holds for (m′, n′) whenever m′ < m and n′ ≤ n or whenever m′ ≤ m and n′ < n.
We show that the lemma then holds for C1 and C2. Without loss of generality, we
assume α <LR γ. There are now three main cases depending on the relative order of
α, β, γ, and δ with respect to <LR.

Case 1. α <LR β <LR γ <LR δ. In this case, C1 and C2 do not cross and the
lemma trivially holds.

Case 2. α <LR γ <LR β <LR δ. In this case, C1 and C2 necessarily cross. There
are four subcases.

Case 2.1. c1 = α and d1 = γ. Paths D1 and D2 necessarily contain at least one
intersection. Let v be the intersection that occurs first in going from α to β on D1.
The subpath D′

1 of D1 from c1 to v does not meet the subpath D′
2 of D2 from d1 to

v until v. Hence, unless D′
2 consists only of d1 (that is, d1 = v), one of D′

1 and D′
2

is above the other in the upwards embedding. D′
1 cannot be above D′

2, because the
rainbow arc of d1 is a barrier to D′

1 going above d1. Hence, either D′
2 consists only of

d1 or D′
2 is above D′

1. There are two subcases, depending on the relative order of c2
and v according to P .

Case 2.1.1. c2 <P v. Since c2 is on D′
1 and the rainbow arc of c2 must not be a

barrier for D′
2, we have c2 <LR d1. Let (C ′1, C

′
2) = NC(C1−{c2}, C2). Since c1 ∈ C ′1,

we set NC(C1, C2) = (C ′1 ∪ {c2}, C ′2). For this case only, we provide a full proof that
the lemma holds for NC(C1, C2), leaving the details for the remaining cases to the
reader. We employ the properties that hold for (C ′1, C

′
2) by the inductive hypothesis.

By property 5 of the inductive hypothesis, C ′1 and C ′2 are bottom chains with c1 ∈ C ′1
and d1 ∈ C ′2. We must show that C ′1 ∪ {c2} is a bottom chain. If dj ∈ C2[v, dn], we

have c2 <P dj . If dj ∈ C2[d1, v) and c1 <P dj , then c2 <P dj , since any path in ~H(P )
between c1 and dj must cross D′

1 between c2 and v. In any case, for any dj ∈ C ′2,
if c1 <P dj , then c2 <P dj . Hence, (C ′1 ∪ {c2}, C ′2) is a pair of bottom chains, as
required. We now establish that NC(C1, C2) satisfies the 5 properties.

1. By property 1 of the inductive hypothesis, C ′1∪C ′2 = (C1−{c2})∪C2. Hence,
(C ′1 ∪ {c2}) ∪ C ′2 = C1 ∪ C2.

2. By property 2 of the inductive hypothesis, C ′1 and C ′2 are disjoint. Since
c2 6∈ C ′1 ∪ C ′2, C ′1 ∪ {c2} and C ′2 are disjoint.

3. By property 3 of the inductive hypothesis, C ′1 and C ′2 do not cross. Since
c2 <LR d1, there is no node of C2 between c1 and c2. Also, by Observation 1
there is no node in C1 that is between c1 and c2. Therefore there is no node
in C ′2 between c1 and c2 and hence by Observation 3, C ′1 ∪ c2 and C ′2 do not
cross. Since there is no node of C ′2 between c1 and c2 with respect to ≤LR,
C ′1 ∪ {c2} and C ′2 do not cross by Observation 3.

4. To be definite, let α = ap, β = aq, γ = ar, and δ = as. Then, by property 4
of the induction hypothesis and the fact that c1 <LR c2 <LR β, we have

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1 − {c2}〉+ 〈C2〉
= (q − p) + (s− r)

= 〈C1〉+ 〈C2〉,
and, if equality holds and if C1 − {c2} and C2 cross,

min{〈C ′1〉, 〈C ′2〉} < min{〈C1 − {c2}〉, 〈C2〉}.
If 〈C ′1〉 + 〈C ′2〉 < 〈C1〉 + 〈C2〉, then we are done. So assume that 〈C ′1〉 +
〈C ′2〉 = 〈C1〉 + 〈C2〉. Calculate 〈C1〉 = q − p and 〈C2〉 = s − r. We obtain
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〈C ′1〉 + 〈C ′2〉 = (q − p) + (s − r). If δ ∈ C ′2, then 〈C ′2〉 = s − r = 〈C2〉,
〈C ′1〉 = 〈C1〉 = q − p, and aq = β ∈ C ′1, a contradiction to C ′1 and C ′2 not
crossing. Hence, δ ∈ C ′1, 〈C ′1〉 = s− p, 〈C ′2〉 = q− r, and 〈C ′1 ∪ {c2}〉 = s− p.
Then we have

min{〈C ′1 ∪ {c2}〉, 〈C ′2〉} = min{s− p, q − r}
= q − r

< min{q − p, s− r}
= min{〈C1〉, 〈C2〉}.

Hence, property 4 holds for (C ′1 ∪ {c2}, C ′2).
5. By property 5 of the inductive hypothesis, c1 = minP C

′
1 = minP C1 − {c2}

and d1 = minP C
′
2 = minP C2. Since c1 <P c2, we obtain c1 = minP C

′
1 ∪

{c2} = minP C1 and d1 = minP C
′
2 = minP C2, as required.

This completes the full proof for the case c2 <P v.
Case 2.1.2. v ≤P c2. Hence, d1 <LR c2. For this case, let c1 = ap, c2 = aq,

β = ax, d1 = ar, d2 = as, and δ = ay. We have p < r < q ≤ x < y and r < s ≤ y.
Consider the relative left-to-right positions of c2 and d2.

First suppose that d2 <LR c2. Since d2 <LR c2 <LR δ, no node in C2(d2, dn] is
between d1 and d2. Since the subpath of D2 from d2 to δ must go below or through
c2, c2 must be above d2 in the vertical order. Hence, no node of C1 is between d1

and d2. Let (C ′1, C
′
2) = NC(C1, C2[d2, dn]). By Observation 3, (C ′1, C

′
2 ∪ {d1}) is a

pair of noncrossing chains. Set NC(C1, C2) = (C ′1, C
′
2 ∪ {d1}). We need to show that

(C ′1, C
′
2 ∪ {d1}) satisfies property 4. By property 4 of the inductive hypothesis,

〈C ′1〉+ 〈C ′2〉 ≤ 〈C1〉+ 〈C2[d2, dn]〉.

Calculate 〈C1〉 = x− p, 〈C2〉 = y − r, 〈C2[d2, dn]〉 = y − s, and

〈C ′1〉+ 〈C ′2 ∪ {d1}〉 = 〈C ′1〉+ 〈C ′2〉+ (s− r)

≤ 〈C1〉+ 〈C2[d2, dn]〉+ (s− r)

= (x− p) + (y − s) + (s− r)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉.

If 〈C ′1〉 + 〈C ′2 ∪ {d1}〉 < 〈C1〉 + 〈C2〉, then property 4 holds. So assume 〈C ′1〉 + 〈C ′2 ∪
{d1}〉 = 〈C1〉+〈C2〉. If |C ′1| = 1 (that is C ′1 = {c1}), then 1 = min{〈C ′1〉, 〈C ′2∪{d1}〉} <
2 ≤ min{〈C1〉, 〈C2〉}, and again property 4 holds. Otherwise, |C ′1| ≥ 2. Since d2 ∈ C ′2
and C ′1 and C ′2 do not cross, δ ∈ C ′1. Hence, 〈C ′1〉 = y − p, 〈C ′2〉 = x − s, and
〈C ′2 ∪ {d1}〉 = x− r. We have

min{〈C ′1〉, 〈C ′2 ∪ {d1}〉} = x− r

< min{x− p, y − r}
= min{〈C1〉, 〈C2〉}.

Hence, property 4 holds.
Now suppose that c2 <LR d2. There are finally three subcases to consider.
Case 2.1.2.1. d2 <LR δ and c2 <LR β. Let (C ′1, C

′
2) = NC({c1} ∪

C2[d2, dn], C1[c2, cm]). There are no nodes of C1 ∪ C2 between d1 and c2. So set
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NC(C1, C2) = (C ′1, C
′
2 ∪ {d1}). By Observation 3, {d1} ∪ C ′2 is a chain that does not

cross C ′1. By property 4 of the inductive hypothesis,

〈C ′1〉+ 〈C ′2〉 ≤ 〈{c1} ∪ C2[d2, dn]〉+ 〈C1[c2, cm]〉,
and, if equality holds, then either {c1} ∪ C2[d2, dn] and C1[c2, cm] do not cross, or

min{〈C ′1〉, 〈C ′2〉} < min{〈{c1} ∪ C2[d2, dn]〉, 〈C1[c2, cm]〉}.
We proceed to show that property 4 holds for C ′1 and {d1} ∪C ′2. Since 〈{d1} ∪C ′2〉 =
〈C ′2〉+ (q − r), we have

〈C ′1〉+ 〈{d1} ∪ C ′2〉 = 〈C ′1〉+ 〈C ′2〉+ (q − r)

≤ 〈{c1} ∪ C2[d2, dn]〉+ 〈C1[c2, cm]〉+ (q − r)

= (〈C2〉 − (s− r) + (s− p)) + (〈C1〉 − (q − p)) + (q − r)

= 〈C1〉+ 〈C2〉,
and hence

〈C ′1〉+ 〈{d1} ∪ C ′2〉 ≤ 〈C1〉+ 〈C2〉.
If this inequality is strict, then property 4 holds. If equality holds, then one of two
possibilities holds. First suppose that {c1} ∪ C2[d2, dn] and C1[c2, cm] do not cross.
In that case, we have β <LR d2 <LR δ and

min{〈C ′1〉, {d1} ∪ 〈C ′2〉} = min{y − p, x− r}
= x− r

< min{x− p, y − r}
= min{〈C1〉, 〈C2〉}.

Second suppose that

min{〈C ′1〉, 〈C ′2〉} < min{〈{c1} ∪ C2[d2, dn]〉, 〈C1[c2, cm]〉}
= x− q.

Then

min{〈C ′1〉, 〈{d1} ∪ C ′2〉} ≤ min{〈C ′1〉, 〈C ′2〉}+ (q − r)

< (x− q) + (q − r)

= x− r

< min{〈C1〉, 〈C2〉}.
For both possibilities, property 4 holds. We conclude that NC(C1, C2) = (C ′1, {d1} ∪
C ′2) gives the desired pair of chains.

Case 2.1.2.2. d2 <LR δ and c2 = β. Since c1 <LR d2 and d1 <LR c2, both
{c1} ∪ C2[d2, dn] and {d1} ∪ C1[c2, cm] are chains, and they do not cross. Setting
NC(C1, C2) = ({c1} ∪ C2[d2, dn], {d1} ∪ C1[c2, cm]) gives the desired pair of chains.
Since

〈{c1} ∪ C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉 = (y − p) + (q − r)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉,
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and

min{〈{c1} ∪ C2[d2, dn]〉, 〈{d1} ∪ C1[c2, cm]〉} = min{y − p, q − r}
= q − r

< min{q − p, y − r}
= min{〈C1〉, 〈C2〉},

property 4 holds.
Case 2.1.2.3. d2 = δ. Let (C ′1, C

′
2) = NC(C2[d2, dn], {d1} ∪ C1[c2, cm]). Since c1

is leftmost and d2 rightmost in C1 ∪ C2, the pair (C ′1 ∪ {c1}, C ′2) is also noncrossing.
Let az = minLR C2[d2, dn]. We have r < z ≤ y and 〈C2[d2, dn]〉 = y− z. By property
4 of the inductive hypothesis, we have

〈C ′1〉+ 〈C ′2〉 ≤ 〈C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉
= (y − z) + (x− r).

We proceed to show property 4 for (C ′1 ∪ {c1}, C ′2). First,

〈C ′1 ∪ {c1}〉+ 〈C ′2〉 = 〈C ′1〉+ 〈C ′2〉+ (z − p)

≤ 〈C2[d2, dn]〉+ 〈{d1} ∪ C1[c2, cm]〉+ (z − p)

= (y − z) + (x− r) + (z − p)

= (x− p) + (y − r)

= 〈C1〉+ 〈C2〉.

If this inequality is strict, then we are done. Otherwise, 〈C ′1 ∪ {c1}〉 + 〈C ′2〉 = (x −
p) + (y − r) and 〈C ′2〉 = x− r. We have

min{〈C ′1 ∪ {c1}〉, 〈C ′2〉} = min{y − p, x− r}
= x− r

< min{y − r, x− p}
= min{〈C1〉, 〈C2〉}.

Hence, Property 4 holds for (C ′1 ∪ {c1}, C ′2).
Case 2.2. c1 = α and d1 = δ. In this case, C1 and C2 always cross. If we succeed

in replacing these with two noncrossing chains C ′1 and C ′2 having the same nodes,
then maxLR C

′
1 < minLR C

′
2. Hence, property 4 follows easily for every (C ′1, C

′
2) =

NC(C1, C2) constructed for this case.
Again, let v be the first intersection of D1 and D2. If v ∈ A, then all of C1(v, cm]

is to the right of v, and all of C2(v, dn] is to the left of v. If v 6∈ C1 ∪C2, then setting
NC(C1, C2) = (C1[c1, v) ∪ C2(v, dn], C2[d1, v) ∪ C1(v, cm]) gives the desired pair of
chains. If v ∈ C1 ∪ C2, then setting NC(C1, C2) = (C1[c1, v] ∪ C2(v, dn], C2[d1, v) ∪
C1(v, cm]) gives the desired pair of chains. In either case, C ′1 and C ′2 do not cross.

If v 6∈ A, then the argument is a bit more involved. Otherwise, if c2 <LR γ,
then let (C ′1, C

′
2) = NC(C1 − {c2}, C2). Setting NC(C1, C2) = (C ′1 ∪ {c2}, C ′2) gives

the desired pair of chains. If β <LR d2, then let (C ′1, C
′
2) = NC(C1, C2 − {d2}).

Setting NC(C1, C2) = (C ′1, C
′
2∪{d2}) gives the desired pair of chains. Hence, suppose

γ <LR c2 and d2 <LR β. Since the rainbow arcs of c2 and d2 are barriers, we have
v ≤P c2, d2 ≤P v, and d2 <LR c2. By Observation 1, there are four possibilities.
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Case 2.2.1. C1(c2, cm] is to the left of c2 and C2(d2, dn] is to the left of d2. If
C1(c2, cm] remains to the right of d2, then set NC(C1, C2) = ({c1}∪C2[d2, dn], {d1}∪
C1[c2, cm]). Otherwise, (c2, cm, d1, d2) is a crossing, and, by Observation 2, c2 <P dj ,
for all j ≥ 2. Hence C2 ∪ {c2} is a chain, and there are no nodes of C1 ∪ C2 between
c2 and d1. Let (C ′1, C

′
2) = NC(C1 − {c2}, C2). Setting NC(C1, C2) = (C ′1, C

′
2 ∪ {c2})

gives the desired pair of chains.

Case 2.2.2. C1(c2, cm] is to the left of c2 and C2(d2, dn] is to the right of d2. Let
(C ′1, C

′
2) = NC(C1[c2, cm], C2[d2, dn]). Setting NC(C1, C2) = ({c1} ∪ C ′2, {d1} ∪ C ′1)

gives the desired pair of chains.

Case 2.2.3. C1(c2, cm] is to the right of c2 and C2(d2, dn] is to the left of d2. Here
C1[c2, cm] and C2[d2, dn] do not cross. Setting NC(C1, C2) = ({c1}∪C2[d2, dn], {d1}∪
C1[c2, cm]) gives the desired pair of chains.

Case 2.2.4. C1(c2, cm] is to the right of c2 and C2(d2, dn] is to the right of d2.
This is the left-to-right mirror image of 2.2.1. The same argument applies, mutatis
mutandis.

Case 2.3. c1 = β and d1 = γ. This case cannot occur because the rainbow arcs of
c1 and d1 are barriers to the paths D1 and D2. It would require both D1 to go below
d1 and D2 to go below c1, which is impossible.

Case 2.4. c1 = β and d1 = δ. This case is the left-to-right mirror image of Case
2.1. The same argument applies, mutatis mutandis.

Case 3. α <LR γ <LR δ <LR β. In this case, C1 and C2 may cross. There are
again four subcases.

Case 3.1. c1 = α and d1 = γ. First suppose c2 <LR d1. Let (C ′1, C
′
2) =

NC(C1 − {c1}, C2). The desired pair of chains is NC(C1, C2) = (C ′1 ∪ {c1}, C ′2).
Suppose that d1 <LR c2 <LR δ. Then D1 and D2 necessarily have an intersection
before c2 and before δ. This is handled as in Case 2.1. Suppose that δ <LR c2
and c2 6= β. Then C1(c2, cm] is to the right of c2, C2 is between c1 and c2, and
C1 and C2 do not cross. Finally, suppose δ <LR c2 and c2 = β. Let (C ′1, C

′
2) =

NC(C1 − {c1}, C2). Since all of C1(c2, cm] ∪ C2 is between c1 and c2 with respect to
≤LR, and since c2 ∈ C ′1, it follows that C ′1 ∪ {c1} and C ′2 do not cross. The desired
pair of chains is NC(C1, C2) = (C ′1 ∪ {c1}, C ′2). It is necessary to justify property
4. Let τ = min2≤i≤m ci, where min is taken with respect to ≤LR. There are three
subcases.

Case 3.1.1. τ <LR γ. Note that all of C2(d1, dn] is to the right of d1 = γ. If τ and
γ are unrelated with respect to ≤P or if τ <P γ, then τ 6∈ C ′2, since γ = minP C

′
2. If

γ <P τ , then τ , being to the left of γ, is unrelated to every node in C2[d2, dn]; again
τ 6∈ C ′2. Since τ ∈ C ′1, we have 〈C ′1〉 = 〈C1[c2, cm]〉. Applying property 4, we must have
〈C ′2〉 < 〈C2〉 if C1[c2, cm] and C2 cross. It follows that 〈C ′1∪{c1}〉+〈C ′2〉 < 〈C1〉+〈C2〉
if C1 and C2 cross.

Case 3.1.2. γ <LR τ <LR δ. For C2[c2, cm] and C1, this case is the same as Case
2.2. For all the possibilities in that case, we get that 〈C ′2〉 < 〈C2〉. Hence,

〈C ′1 ∪ {c1}〉+ 〈C ′2〉 = (β − α) + 〈C ′2〉
< (β − α) + 〈C2〉
= 〈C1〉+ 〈C2〉,

as desired.

Case 3.1.3. δ <LR τ . In this case, C ′1 = C1[c2, cm] and C ′2 = C2 do no cross.
Hence, neither do C ′1 ∪ {c1} and C ′2.
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Case 3.2. c1 = α and d1 = δ. In this case, C1 and C2 do not cross, as the rainbow
arc of d1 is a barrier to D1 crossing D2.

Case 3.3. c1 = β and d1 = γ. This case is the left-to-right mirror image of Case
3.2.

Case 3.4. c1 = β and d1 = δ. This case is the left-to-right mirror image of Case
3.1.

The second and last step in justifying the assumption converts any CA into a C′A
that has no pair of crossing chains.

Lemma 4.8. Suppose CA is a set of disjoint bottom chains of minimum cardinality
that covers A. Then there exists a set C′A of disjoint bottom chains that covers A such
that |C′A| = |CA| and no pair of chains in C′A cross.

Proof. If CA contains no pair of crossing chains, then C′A = CA is the set required
for the lemma.

Otherwise, let C1, C2 ∈ CA be a pair of chains that cross. By Lemma 4.7, there
exist chains C ′1 and C ′2 such that by substituting these chains for C1 and C2, we
get the set C′′A = CA ∪ {C ′1, C ′2} − {C1, C2}, which is also a set of bottom chains of
minimum cardinality that covers A. By property 4, either

(i) the sum of the extents of chains in C′′A is strictly less than the sum of the
extents of chains in CA or,

(ii) min{〈C ′1〉, 〈C ′2〉} < min{〈C1〉, 〈C2〉}.
Since every chain has extent at least 0, repeated substitution of a pair of crossing
chains by a pair of noncrossing chains must eventually reduce the sum of the extents
of the chains. Again, since every chain has extent at least 0, the sum of the extents
of the chains cannot reduce infinitely, and hence we must eventually arrive at a set
C′A that contains no pair of noncrossing chains. This set C′A is the set required for the
lemma.

We are finally prepared to prove our main result.
Proof of Theorem 4.5. By Lemma 4.8, we may assume that CA contains no pair of

crossing chains. Now let CB be a partition of B into at most W (P ) chains. Similarly,
we may assume that CB contains no pair of crossing chains.

Consider an arbitrary bottom chain C and an arbitrary top chain C ′. It is possible
that a rainbow arc connects a node in C to a node in C ′. However, it is not possible
for more than one rainbow arc to connect C and C ′, for then one of the rainbow arcs
(the “longest” one) would be a transitive arc in ~H(P ). For example, in Fig. 4.5, we
cannot have a bottom chain C = {a1, a2} and a top chain C ′ = {b1, b2}, for then
there is a path from b2 to b1 and (a1, b1) is a transitive arc.

We now construct a bipartite graph G = (CA, CB , E), where E contains an edge
between C ∈ CA and C ′ ∈ CB if there is a rainbow arc connecting C to C ′. Since
every rainbow arc connects exactly one bottom chain to exactly one top chain, there
is exactly one edge in G for every rainbow arc; that is, |E| = k. Since there is no
pair of crossing bottom chains and no pair of crossing top chains, G is planar. As
an example, Fig. 4.7 illustrates a graph G = (CA, CB , E) obtained from the poset of
Fig. 4.5. In particular,

CA =
{
{a1, a2}, {a3, a4}, {a5, a6}

}

and

CB =
{
{b1, b5}, {b2}, {b3}, {b4}, {b6}

}
.
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Fig. 4.7. A bipartite planar graph G = (CA, CB , E) corresponding to the poset in Fig. 4.5.

According to Euler’s formula for planar graphs, we have

|CA|+ |CB | − |E|+ f = 1 + t,(4.1)

where f is the number of faces in a planar embedding of G and t is its number of
connected components. If G consists of a single edge, then k = 1 ≤ W (P ) and k <
4W (P ), as desired. Otherwise, since G is bipartite, we have the following inequality:

4f ≤ 2|E|,(4.2)

f ≤ |E|
2
.

Combining equations 4.1 and 4.2, we obtain

|CA|+ |CB | − |E|+ |E|
2

≥ 1 + t,(4.3)

|CA|+ |CB | ≥ 1 + t +
|E|
2
,

2 +
|E|
2

≤ |CA|+ |CB |.

We know that |E| = k and that both |CA| and |CB | are at most W (P ). Substituting
into equation 4.3, we obtain

k + 4 ≤ 4W (P ).

Hence, the queuenumber of ~H(P ) with respect to σ is less than 4W (P ).

Corollary 4.9. For any planar poset P where ~H(P ) contains at least one arc,
QN(P ) < 4W (P ).

We believe that this result can be improved to show that, for any poset P , there
exists a W (P )-queue layout of ~H(P ); see Conjecture 1 in section 7.

5. Stacknumber of posets with planar covering graphs. In this section we
construct, for each n ≥ 1, a 3n-element poset Rn such that H(Rn) is planar and hence
has stacknumber at most 4 (see Yannakakis [21]), but such that the stacknumber of
the class R = {Rn | n ≥ 1} is not bounded.
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Theorem 5.1. For each n ≥ 1, there exists a poset Rn such that |Rn| = 3n,
H(Rn) is planar, and

⌈n
2

⌉
≤ SN(Rn) ≤ n.

Proof. Suppose n ≥ 1. Define three disjoint sets U , V , and W as follows:

U = {ui | 1 ≤ i ≤ n},
V = {vi | 1 ≤ i ≤ n},
W = {wi | 1 ≤ i ≤ n}.

The poset Rn = (U ∪ V ∪W,≤) is given by

ui < ui+1,

vi < vi+1,

wi < wi+1,

for 1 ≤ i ≤ n− 1,

ui < wi < vi,

for 1 ≤ i ≤ n, and

un < v1.

Figure 5.1 shows H(R4).
Aside. While the covering graph H(Rn) is clearly planar, the poset Rn is not

planar. This can be seen as follows. In any upward embedding of ~H(Rn) in the plane,
the nodes

u1, u2, . . . , un, v1, v2

have increasing y-coordinates. Thus, any point in the plane whose y-coordinate is
between the y-coordinates of u1 and v2 lies either on the left or on the right of the
path

D = u1, u2, . . . , un−1, un, v1, v2.

Now add the nodes w1 and w2 to the embedding. Their y-coordinates are between
the y-coordinates of u1 and v2 because of u1 < w1 < v1 < v2 and u1 < u2 < w2 < v2.
If both w1 and w2 are embedded on the same side of D, then the paths u1, w1, v1 and
u2, w2, v2 must cross somewhere. If w1 and w2 are embedded on different sides of D,
then the line segment (w1, w2) crosses a line segment in D. End Aside.

To prove the lower bound on SN(Rn), let σ be any topological order on ~H(Rn).
The order σ contains the elements of U ∪ V in the order u1, u2, . . . , un, v1, v2, . . . , vn,
and the elements of W in the order w1, w2, . . . , wn. The elements of W are mingled
among the elements of U ∪ V . Suppose w1, w2, . . . , wk occur before un in σ, while
wk+1, wk+2, . . . , wn occur after un. Then the arcs

(w1, v1), (w2, v2), . . . , (wk, vk)
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Fig. 5.1. The covering graph of R4.

form a k-twist, while the arcs

(uk+1, wk+1), (uk+2, wk+2), . . . , (un, wn)

form an (n− k)-twist. Hence,

SN(Rn) ≥ max(k, n− k) ≥ dn/2e .
Therefore, SN(Rn) ≥ dn/2e, as desired.

The proof of the upper bound is constructive. An n-stack layout of Rn is obtained
by laying out the elements of U ∪ V in the only possible order, and then placing each
wi immediately after ui for all i, 1 ≤ i ≤ n. The assignment of arcs to stacks is as
follows. Assign each arc in the set {(ui, wi), (wi, vi), (wi, wi+1)} to stack si for all i,
1 ≤ i ≤ n − 1 and assign each arc in the set {(un, wn), (wn, vn)} to stack sn. Note
that no two arcs assigned to the same stack intersect. The only arcs remaining to be
assigned are the arcs in the set

{(ui, ui+1) | 1 ≤ i ≤ n− 1} ∪ {(vi, vi+1) | 1 ≤ i ≤ n− 1} ∪ {(un, v1)}.
The arcs (vi, vi+1) for i, 1 ≤ i ≤ n − 1, do not intersect any other arc and can be
assigned to any stack. Each arc (ui, ui+1), 1 ≤ i ≤ n−1, is assigned to stack si+1 and
arc (un, v1) is assigned to stack s1. An n-stack layout of Rn is obtained. The upper
bound follows.

Two observations about the poset Rn constructed in the above proof are in order.
The first observation is that QN(Rn) = 2. A 2-queue layout of R4 is shown in Fig. 5.2.
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In general, the total order used in the n-stack layout of Rn described in the above
proof yields a 2-queue layout of Rn. The second observation is that the stacknumber
and the queuenumber of the covering graph H(Rn) is 2. A 2-stack layout of H(R4)
is shown in Fig. 5.3. In general, a 2-stack layout of H(Rn) can be obtained because
H(Rn) is a hamiltonian planar graph [1].

Theorem 5.1 and the above observations lead to the following corollaries.
Corollary 5.2. There exists a class R = {Rn | n ≥ 1} of posets such that

|Rn| = 3n, H(Rn) is planar, and

SNR(n)

QNR(n)
= Ω(n).

Corollary 5.3. There exists a class R = {Rn | n ≥ 1} of posets Rn such that
|Rn| = 3n, H(Rn) is planar and

SNR(n)

SNH(R)(n)
= Ω(n).

6. NP-completeness results. Heath and Rosenberg [13] show that the prob-
lem of recognizing a 1-queue graph is NP-complete. Since a 1-stack graph is an outer-
planar graph, it can be recognized in linear time (Sys lo and Iri [18]). But Wigderson
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[19] shows that the problem of recognizing a 2-stack graph is NP-complete. Heath
and Pemmaraju [9] and Heath, Pemmaraju, and Trenk [11] show that the problem
of recognizing a 4-queue poset is NP-complete. They also show that the problem
of recognizing a 6-stack dag is NP-complete. We have not been able to extend this
NP-completeness result for stack layouts of dags to an analogous result for posets.

Formally, the decision problem for queue layouts of posets is POSETQN.
POSETQN
INSTANCE: A poset P .
QUESTION: Does P have a 4-queue layout?

Theorem 6.1 ([1, 9]). The decision problem POSETQN is NP-complete.

Since the Hasse diagram of a poset is a dag, this result hold for dags in general.
This result is in the spirit of the result of Yannakakis [20] that recognizing a 3-
dimensional poset is NP-complete.

7. Conclusions and open questions. In this paper, we have initiated the
study of queue layouts of posets and have proved a lower bound result for stack
layouts of posets with planar covering graph. The upper bounds on the queuenumber
of a poset in terms of its jumpnumber, its length, its width, and the queuenumber of
its covering graph, proved in section 3, may be useful in proving specific upper bounds
on the queuenumber of various classes of posets. We believe that the upper bound
of W (P )2 on the queuenumber of an arbitrary poset P , proved in section 3, and the
upper bound of 4W (P ) on the queuenumber of any planar poset P , proved in section
4 are not tight. We have the following conjecture.

Conjecture 1. For any poset P , QN(P ) ≤W (P ).

We have established a lower bound of Ω(
√
n) on the queuenumber of the class

of planar posets. We believe that this bound is tight and come to the following
conjecture.

Conjecture 2. For any n-element planar poset P , QN(P ) = O(
√
n).

We conjecture that another upper bound on the queuenumber of a planar poset P
is given by its length L(P ). We believe that it is possible to embed a planar poset in
an “almost” leveled-planar fashion with L(P ) levels. (See Heath and Rosenberg [13]
for a definition of leveled-planar embeddings.) From such an embedding, a queue
layout of P in L(P ) queues should be obtainable. Therefore we have the following
conjecture.

Conjecture 3. For any planar poset P , QN(P ) ≤ L(P ).

In section 5, we show that the stacknumber of the class of n-element posets having
planar covering graphs is Θ(n). However the stacknumber of the more restrictive class
of planar posets is still unresolved.
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Abstract. Multimatroids are combinatorial structures that generalize matroids and arise in
the study of Eulerian graphs. We prove, by means of an efficient algorithm, a covering theorem for
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1. Introduction. Jackson [16, 15] recently solved the following problem in graph
theory due to Kotzig [17]. Say that two Euler tours of a connected 4-regular graph
are disjoint if no pair of edges is consecutive in both of them. Since there are precisely
six pairs of edges incident to each vertex of G and any Euler tour of G uses two of
them as consecutive pairs of edges, G has at most three pairwise disjoint Euler tours.
The problem is to characterize the 4-regular graphs that realize this upper bound.
Jackson’s solution implies that the property of having three pairwise disjoint Euler
tours is in NP ∩ co − NP , but it does not give an efficient algorithm to actually
construct these Euler tours. The proof relies on an extended submodular inequality
and involves quite long computations. Later we presented a structural proof of Jackson
theorem with a related efficient algorithm [8]. A generalization of the latter proof is
presented here.

A second motivation underlying this paper is the unification of two combinatorial
structures, analogous to matroids, which we recently introduced: isotropic systems
[6] (used in Jackson’s original proof) and delta-matroids [5]. The theory of isotropic
systems can be considered as an extension of the theory of binary matroids, whereas
delta-matroids extend arbitrary matroids. However delta-matroids do not generalize
isotropic systems. For example, a delta-matroid admits two kinds of minors, which
correspond to deletions and contractions, whereas an isotropic system admits three
kinds of minors.

In section 3 we introduce a new combinatorial structure, which we call multima-
troid. For each integer q ≥ 1 there is a subclass of multimatroids called q-matroids. In
particular, 1-matroids can be identified to matroids, 2-matroids are somehow equiva-
lent to delta-matroids, and isotropic systems are particular cases of 3-matroids.

Independent sets, bases, and circuits can be defined in a multimatroid, and they
play the same kind of role as in matroid theory. Some multimatroids can be con-
structed by means of Eulerian graphs. Thus a natural extension of Jackson’s theorem
is to search for a covering of the ground-set of a multimatroid by a minimal number
of independent sets. This problem has been solved by Edmonds [14] for matroids. In
the new setting Jackson’s theorem and Edmonds’ theorem can be seen as identical
results for different types of multimatroids. We extend Edmonds’ theorem to a large
class of multimatroids, which includes q-matroids with q ≥ 3. Very little is currently
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known about the extension of Edmonds’ theorem for q = 2, and we state some open
problems.

The study of multimatroids will be completed in a series of papers [3, 4, 2].

2. Splitters and detachments. Nash-Williams [21, 20] has studied the opera-
tion which consists of replacing a vertex v of a graph G by a set of vertices {v1, v2, . . . ,
vk}, each edge initially incident to v becoming incident to one of the new vertices v1,
v2, . . . , vk. He defined a detachment of G as a graph obtained by making the preced-
ing operation on the vertices of a subset W ⊆ V (G). We restrict our attention to the
case where G is Eulerian and each vertex is replaced by two vertices of even degree.
The increase in the number of components, after making the detachment, allows to
define a rank function. The properties of this rank function will serve as axioms to
define a multimatroid in section 3.

The cardinality of a finite set X is denoted by |X|. A set {x}, of cardinality 1, is
often denoted by x.

Basic definitions in graph theory. Our graphs are finite and may contain
loops and multiple edges. It is convenient to consider that each edge is incident to
two half-edges, each half-edge being incident to precisely one vertex. So the ends of
an edge e are the vertices incident to the half-edges incident to e. The vertex-set and
the edge-set of G are denoted by V and E, respectively. For each v ∈ V , we denote
by h(v) the set of half-edges incident to v. The degree of v is deg v = |h(v)|. The
graph G is said to be Eulerian (respectively, 4-regular) if deg v is even (respectively,
equal to 4) for all v ∈ V .

Given a subset W ⊆ V (respectively, F ⊆ E) the subgraph induced by G on
W (respectively, F ), which is denoted by G[W ] (respectively, G[F ]), is obtained by
deleting every vertex not in W and every edge whose ends are not in W (respectively,
every edge not in F and every vertex that is not an end of an edge in F ). If W is
a minimal nonempty subset of vertices such that no edge has an end in both W and
V \W , then G[W ] is called a component of G. The number of components of G is
denoted by k(G). A graph is connected if it has just one component. A vertex v of G
is called a cut vertex if E(G) can be partitioned into two nonempty subsets E1 and
E2 such that G[E1] and G[E2] have just the vertex v in common. A connected graph
that has no cut vertex is called a block. A block of G is a subgraph of G that is a
block and is maximal with respect to this property.

Rank of a splitter. We now assume that G is Eulerian. A local splitter of G,
incident to a vertex v, is a pair sv = {s′v, s′′v}, where s′v and s′′v are complementary
subsets of h(v) having even cardinalities. We call {∅, h(v)} the null local splitter. If sv
is nonnull the detachment of G along sv is the graph, denoted by G||sv, constructed by
replacing v by a vertex v′ incident to the half-edges of s′v and a vertex v′′ incident to the
half-edges of s′′v . Two local splitters incident to the same vertex v, say sv = {s′v, s′′v}
and tv = {t′v, t′′v}, are skew if |s′v ∩ t′v| is odd (the definition clearly does not depend
on the choice of s′v in sv and t′v in tv).

A splitter of G is a set s = {sv : v ∈ W}, where W ⊆ V (G) is the set of vertices
incident to s and sv is a nonnull local splitter incident at v. The detachment of
G along s is the Eulerian graph G||s = G||sv1 ||sv2 || · · · ||svn , where v1v2 · · · vn is an
enumeration of W (changing the order of the enumeration does not change G||s). The
rank of s is the integer r(s) = |s| − k(G||s) + k(G).

The union of two disjoint subsets, X and Y , of a set Z is often denoted as X+Y .
For x ∈ Z \X we simplify the notation X ∪ {x} into X + x.
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Proposition 2.1. Let s be a splitter of an Eulerian graph G. Let v be a vertex
of G not incident to s. The following properties are satisfied:

(i) r(∅) = 0.
(ii) If sv is a nonnull local splitter incident to v, then

r(s) ≤ r(s+ sv) ≤ r(s) + 1.

(iii) If t is a splitter such that s ∪ t is also a splitter, then

r(s ∪ t) + r(s ∩ t) ≤ r(s) + r(t).

(iv) If sv and tv are skew local splitters incident to v, then

r(s+ sv)− r(s) + r(s+ tv)− r(s) ≥ 1.

Proof. Property (i) is obvious. Let s = {sv : v ∈ W} and G′ = G||s. Property
(ii) is equivalent to

k(G′) ≤ k(G′||sv) ≤ k(G′) + 1.

The first inequality is obvious, and the second one holds because when splitting a
vertex into two vertices we augment the number of components by at most 1.

To prove (iii), it is sufficient to verify that

(v) r(s+ sv + sw)− r(s+ sv) ≤ r(s+ sw)− r(s)

holds for any pair of local splitters sv and sw incident to distinct vertices v, w 6∈ W .
Indeed, if we let s′ = s ∩ t, a = s \ t, and b = t \ s, then (iii) can be written

r(s′ + a+ b)− r(s′ + a) ≤ r(s′ + b)− r(s′),

which can be derived from (v) by induction (first on |a|, assuming |b| = 1, then on
|b|). Inequality (v) is equivalent to

(vi) k(G′||sv||sw)− k(G′||sv) ≥ k(G′||sw)− k(G′).

Assume first that v and w belong to distinct components of G′. We may decompose
G′ into two proper subgraphs H1 and H2, each of them being a union of components,
such that v is a vertex of H1 and w is a vertex of H2. Then we have

k(G′||sv||sw)− k(G′) = k(H1||sv)− k(H1) + k(H2||sw)− k(H2)

= k(G′||sv)− k(G′) + k(G′||sw)− k(G′),

which implies (vi). We now assume that v and w belong to the same component Γ
of G′. Inequality (vi) is obvious if k(G′||sw) = k(G′). Otherwise w is a cut-vertex
of G′, and Γ is split into two components Γ′ and Γ′′ in G′||sw. The vertex w is split
into two vertices w′ and w′′ in G′||sw, and we may assume that w′ ∈ V (Γ′) and
w′′ ∈ V (Γ′′). The vertex v is incident to precisely one of the components Γ′ and
Γ′′, say Γ′. When constructing G′||sw||sv from G′||sw, Γ′ is split into at most two
components, say Γ′1 and Γ′2, allowing Γ′1 = Γ′2. One of these components, say Γ′1, is
incident to w′. We can reconstruct G′||sv from G′||sv||sw by identifying w′ and w′′

into a single vertex w, which merges the two components Γ′′ and Γ′1 into a single
component. Thus k(G′||sv||sw) = k(G′||sv) + 1, which implies (vi).
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Property (iv) is equivalent to

k(G′||sv)− k(G′) + k(G′||tv)− k(G′) ≤ 1.

Suppose that the inequality does not hold. Then we have k(G′||sv) > k(G′) and
k(G′||tv) > k(G′). Let Γ1,Γ2, . . . ,Γk be the blocks of G′ incident to v. For 1 ≤ i ≤ k
let Hi be the set of half-edges of Γi that are incident to v. The set Hi has an even
cardinality; otherwise there would be only one vertex of odd degree in Γi. Since G′||sv
has more components than G′, there exists I ⊆ {1, 2, . . . , k} such that sv = {s′v, s′′v}
with s′v =

⋃
(Xi : i ∈ I). Similarly there exists J ⊆ {1, 2, . . . , k} such that tv = {t′v, t′′v}

with t′v =
⋃

(Hi : i ∈ J). Thus |s′v ∩ t′v| =
∑

(|Hi| : i ∈ I ∩ J) is even, which is a
contradiction because sv and tv are skew.

We say that s is independent if r(s) = |s| (so k(G||s) = k(G)). We say that s is
complete if every vertex of G is incident to s (so every vertex of G is split into two
vertices in G||s). If U is a set of nonnull local splitters of G, then we define a base of
U as a maximal independent splitter included in U .

Corollary 2.2. Let U be a set of nonnull local splitters of an Eulerian graph
G. Assume that each vertex is incident to at least two skew local splitters in U . Then
every base of U is complete.

Proof. Consider a base s. We have r(s) = |s|. Assume that s is not complete.
Then there exists a vertex v that is not incident to s. According to the assumptions
there exist two skew local splitters, sv and tv, incident to v. It follows from (iv) in
Proposition 2.1 that either r(s+sv) ≥ r(s)+1 = |s+sv| or r(s+tv) ≥ r(s)+1 = |s+tv|,
and so s is not a maximal independent splitter, which is a contradiction.

Splitters and Euler tours of a 4-regular graph. We now assume, until the
end of this section, that G is a connected 4-regular graph. A pair of half-edges incident
to the same vertex is called a transition. So each local splitter of G is made of two
disjoint transitions. There are precisely three local splitters incident to any vertex
and these splitters are pairwise skew. We denote by U the set of all the local splitters
of G.

Let T be an Euler tour of G. A transition of T , incident to a vertex v, is any pair
of half-edges successive in T and incident to v. Since v has degree 4, there are precisely
two transitions of T incident to v, say s′v and s′′v . We say that the local splitter {s′v, s′′v}
is used by T . The set of the local splitters used by T , which is a complete splitter, is
denoted by s(T ). The succession of the half-edges of T is a circuit in the detachment
G||s(T ). So we have k(G) = k(G||s(T )) = 1, and s(T ) is a base of U . Conversely, if
s is any base of U , then G||s is a circuit and the succession of the half-edges along
this circuit is an Euler tour of G, say T , such that s = s(T ). Therefore the mapping
T 7→ s(T ) is a bijection from the set of the Euler tours of G onto the set of the bases
of U .

Consider now any complete splitter F . Since U − F still satisfies conditions (i)
and (ii) of Proposition 2.1, the bases of U − F are complete splitters of G. Note that
an Euler tour of G uses no transition in F if and only if it corresponds to a base of
U − F . So we have the following classical result.

Corollary 2.3 (see Kotzig [18]). Let F be a complete splitter of a connected
4-regular graph G. There exists a Euler tour of G that uses no local splitter in F .

We say that two Euler tours, T1 and T2, are disjoint if s(T1) ∩ s(T2) = ∅. Since
each vertex is incident to precisely three nonnull local splitters there are at most three
pairwise disjoint Euler tours in G.



630 ANDRÉ BOUCHET

Theorem 2.4 (see Jackson [15]). A connected 4-regular graph G admits three
pairwise disjoint Euler tours if and only if

3(k(G||s)− 1) ≤ 2|s|
holds for all splitters s of G.

This result will be implied by Theorem 6.1 proved in the sequel.

3. Definition of a multimatroid. Consider a partition Ω of a finite set U .
Each class ω ∈ Ω is called a skew class. Each pair of distinct elements belonging to
the same skew class is called a skew pair. A subtransversal (respectively, transversal)
of Ω is a subset S ⊆ U such that |S ∩ ω| ≤ 1 (respectively, |S ∩ ω| = 1) holds for
all ω ∈ Ω. We denote by S(Ω) (respectively, T (Ω)) the set of all subtransversals
(respectively, transversals) of Ω.

A multimatroid is a triple Q = (U,Ω, r) with a partition Ω of a finite set U and a
rank function r : S(Ω) → N satisfying the four following axioms:

3.1. r(∅) = 0.
3.2. For A ∈ S(Ω) and x ∈ U such that A is disjoint from the skew class contain-

ing x,

r(A) ≤ r(A+ x) ≤ r(A) + 1.

3.3. Submodularity inequality: For A,B ∈ S(Ω) such that A ∪B ∈ S(Ω),

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).

3.4. For A ∈ S(Ω) and any skew pair {x, y} included in a skew class disjoint from
A,

r(A+ x)− r(A) + r(A+ y)− r(A) ≥ 1.

The pair (U,Ω) is called the carrier of Q. The restriction of Q to a subset U ′ ⊆ U ,
which we denote by Q[U ′], is the multimatroid (U ′,Ω′, r′) such that Ω′ = {ω ∩ U ′ 6=
∅ : ω ∈ Ω} and r′ is the restriction of r to S(Ω′). Where q ≥ 1 is an integer, we call
Q a q-matroid if all the skew classes have a cardinality equal to q.

Eulerian multimatroids. Let G be an Eulerian graph on the vertex-set V .
Choose a set U of local splitters of G such that any two local splitters of U incident
to the same vertex are skew. Let Ωv denote the set of the local splitters of U that are
incident to a vertex v. Let Ω = {Ωv : v ∈ V,Ωv 6= ∅}. Note that S(Ω) is equal to the
set of the splitters of G included in U . Let r be the restriction to S(Ω) of the rank
function defined on the set of the splitters of G. It follows from Proposition 2.1 that
Q(G,U) = (U,Ω, r) is a multimatroid. We call Q(G,U) an Eulerian multimatroid.

The results of the preceding section, when G is 4-regular, can be interpreted as
follows. There are precisely three local splitters incident to any vertex of G and these
local splitters are pairwise skew. So if we let U be the set of all the local splitters of
G, then Q(G,U) is a 3-matroid. If F is any complete splitter of G, then Q(G,U −F )
is a 2-matroid. If G is connected, then the bases of Q(G,U) correspond to the Euler
tours of G, whereas the bases of Q(G,U−F ) correspond to the Euler tours of G using
no local splitter in F .

4. Comparison with other combinatorial structures. In this section we
show that multimatroids involve matroids, delta-matroids, and isotropic systems. We
consider a multimatroid Q = (U,Ω, r).
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Matroids. Let us recall that a matroid is a pair M = (E, r) with a finite set E
and a rank function, r : P(E) → N, that satisfies the three following axioms:

4.1. r(∅) = 0.
4.2. For A ∈ P(E) and x ∈ E −A,

r(A) ≤ r(A+ x) ≤ r(A) + 1.

4.3. Submodularity inequality: For A,B ∈ P(E)

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).

Assume that Q is a 1-matroid. So axiom 3.4 is void, S(Ω) = P(U), and r(A) is defined
for all A ⊆ U . The first three axioms amount to say that r is the rank function of
a matroid. We identify Q to the matroid on U defined by the rank function r. The
inverse construction that associates a 1-matroid to a matroid is obvious.

Independent sets, bases and circuits. The similarity between multimatroids
and matroids leads us to define independent sets, bases, and circuits, which play
similar roles. An independent set of Q is a subtransversal I such that r(I) = |I|. A
base is a maximal independent set. A circuit is a minimal subtransversal that is not
independent. Let I(Q), B(Q), and C(Q) be the sets of the independent sets, bases,
and circuits of Q, respectively. For any A ∈ S(Ω),

4.4. r(A) = max(|I| : I ⊆ A, I ∈ I)

is satisfied. Therefore Q is determined when I(Q) is known. Accordingly Q is deter-
mined when either B(Q) or C(Q) is known.

Multimatroid sheltered by a matroid. There is another way to compare
multimatroids and matroids. Is it possible to extend the rank function of multi-
matroid Q = (U,Ω, r) into a submodular function R defined for every subset of
U? Then R is the rank function of a matroid M on U , and we say that M shel-
ters Q. The following example, due to Duchamp [13], shows that it is not always
possible. Let U = {a, a′, b, b′, c, c′, d, d′}, Ω = {{a, a′}, {b, b′}, {c, c′}, {d, d′}}, and
C(Q) = {{a, b′, c′}, {a′, b, c′}, {a′, b′, c}, {a, b, c, d′}}. It is not very difficult to check
that R cannot exist.

It can be verified that the main applications—for example, to Eulerian graphs—
involve multimatroids (U,Ω, r) that can be sheltered by matroids. So, when a problem
is stated in terms of multimatroids, it is understood that the sole consideration of the
sheltering matroid and the partition matroid associated to Ω does not help to solve
the problem. The first remark in section 6 gives a specific example.

Delta-matroids. For two sets A and B we let A∆B = (A \B)∪ (B \A) be the
symmetric difference of A and B. A set system is a pair (X,F) with a finite set X and
a subset F ⊆ P(X). The set system is said to be nonempty if F 6= ∅. A delta-matroid
is a nonempty set system (X,F) satisfying the following symmetric exchange axiom:

4.5. If F ′, F ′′ ∈ F , and x ∈ F ′∆F ′′, then there is y ∈ F ′∆F ′′ such that F ′∆{x, y} ∈
F .

Delta-matroids, and similar structures, have been independently introduced by
Chandrasekaran and Kabadi [9], Dress and Havel [11], Qi [22], and Bouchet [5].

Proposition 5.5 in the next section states that any base of a nondegenerate mul-
timatroid on (U,Ω) is a transversal of Ω, provided that each skew class has at least
two elements. The following theorem will also be proved in the next section.
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Theorem 4.1. Let (U,Ω) be a 2-matroid carrier. A nonempty set of transversals
B of Ω is the base-set of a 2-matroid on (U,Ω) if and only if it satisfies the following
axiom.

4.6. Transversal exchange: If A′, A′′ ∈ B, and p ⊆ A′∆A′′ is a skew pair, then
there is a skew pair q ⊆ A′∆A′′ such that A′∆(p ∪ q) ∈ B.

Remark. The preceding theorem implies that the structure of a 2-matroid is
identical to the structure of a symmetric matroid, introduced in [5].

Given a 2-matroid Q on the carrier (U,Ω) and a transversal X of Ω, the set system
Q ∩ X = (X,F), where F = {A ∩ X : A ∈ B(Q)}, is called the section of Q by X.
The 2-matroid Q can be reconstructed, up to an isomorphism, when Q∩X is known.
Indeed, consider a copy X̃ of X satisfying X ∩ X̃ = ∅. Denote by x̃ the copy of any
x ∈ X, and, for F ⊆ X, let F̃ = {x̃ : x ∈ F}. Define the 2-matroid carrier (U,Ω) by

U = X ∪ X̃ and Ω = {{x, x̃} : x ∈ X}. Then {F ∪ ( ˜X − F ) : F ∈ F} is the base-set
of a 2-matroid isomorphic to Q (we recall that a multimatroid is determined by its
base-set). Using the preceding theorem and the present correspondence between 2-
matroids and their sections, it is easy to prove the following result (see [5] for details).

Proposition 4.2. A set system is a delta-matroid if and only if it is equal to the
section of a 2-matroid by a transversal.

So 2-matroids are another view of delta-matroids.

Isotropic systems. A bilinear form (A,B) 7→ 〈A,B〉, defined on a vector space
E, is called a symplectic form if 〈A,A〉 = 0 holds for all A ∈ E and no B ∈ E − {0}
satisfies 〈B,A〉 = 0 for all A ∈ E. Assume that such a symplectic form is given.
Two vectors A and B are said to be orthogonal (respectively, skew) if 〈A,B〉 = 0
(respectively, 〈A,B〉 6= 0). A subspace L of E is said to be totally isotropic if any
two vectors in L are orthogonal. A classical result says that, if L is a maximal totally
isotropic subspace of E, dim(L) = dim(E)/2.

A binary hyperbolic plane is a 2-dimensional vector space over GF(2) provided
with a symplectic form (a, b) 7→ 〈a, b〉. For a direct product of binary hyperbolic
planes, E =

∏
(Ev : v ∈ V ), and A,B ∈ E let

〈A,B〉 =
∑

(〈Av, Bv〉 : v ∈ V ).

The mapping (A,B) 7→ 〈A,B〉 is a symplectic form over E.

An isotropic system is defined by a direct product, E =
∏

(Ev : v ∈ V ), of binary
hyperbolic planes and a maximal totally isotropic subspace L of E. We represent
such an isotropic system by the notation S = (E,L, V ). (In our original paper [6] we
fixed a particular binary hyperbolic plane, denoted by K, and we took E = KV .)

We construct a triple Q(S) = (U,Ω, r) as follows. Say that a vector A ∈ E is an
atom if there exists precisely one element v ∈ V , called the support of A, such that
Av 6= 0. We let U be the set of the atoms of E. For v ∈ V we let Ωv be the set of the
atoms supported by v and we note that |Ωv| = 3 (a binary hyperbolic hyperplane,
which has dimension 2, has precisely three nonnull vectors). We let Ω = {Ωv : v ∈ V }.
For any s ∈ S(Ω) we let r(s) = |s| − dim 〈s〉 ∩ L, where 〈s〉 denotes the subspace of
E generated by s.

Remark. There is a bijective mapping α : E → S(Ω). It satisfies A =
∑

(u : u ∈
α(A)).

Proposition 4.3. If S = (E,L, V ) is an isotropic system, then Q(S) is a 3-
matroid.
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Proof. We have to verify that Q = Q(S) satisfies axioms 3.1 to 3.4. This is
obvious for 3.1. Axiom 3.2 holds because the dimension of 〈A〉 is increased by at most
1 when replacing A by A+ x. Axiom 3.3 follows from

dim(L ∩ 〈A〉) + dim(L ∩ 〈B〉) = dim(L ∩ 〈A〉+ L ∩ 〈B〉)
+ dim(L ∩ 〈A〉 ∩ L ∩ 〈B〉)

≤ dim(L ∩ 〈A ∪B〉) + dim(L ∩ 〈A ∩B〉).

Suppose that axiom 3.4 does not hold. Then we can find a subset of atoms A ∈ S(Ω)
and a pair of skew atoms, {x, y}, included in a skew class disjoint from A, such that

dim(L ∩ 〈A+ x〉)− dim(L ∩ 〈A〉) + dim(L ∩ 〈A+ y〉)− dim(L ∩ 〈A〉) ≥ 2.

Consider a vector P ∈ L∩ 〈A+ x〉 −L∩ 〈A〉 and a vector Q ∈ L∩ 〈A+ y〉 −L∩ 〈A〉.
Since the atoms x and y are a skew pair, they have the same support, say w. For
v ∈ V let us denote by Av the atom contained in A and supported by v if it exists,
otherwise let Av = 0. There exists λ ∈ 2V such that P =

∑
(λvAv : v ∈ V −w)+λwx

because P ∈ 〈A+x〉. We have λw 6= 0 because P 6∈ 〈A〉. Similarly there exists µ ∈ 2V

such that Q =
∑

(µvAv : v ∈ V − w) + µwy and µw 6= 0. Then

〈P,Q〉 =
∑

(λvµv〈Av, Av〉 : v ∈ V − w) + λwµw〈x, y〉
= λwµw〈x, y〉

because 〈Av, Av〉 = 0. Since the atoms x and y have a same support w, we have
〈x, y〉 = 〈xw, yw〉, which is nonnull because xw and yw are distinct nonnull elements
and 〈., .〉 is a symplectic form over GF(2). This implies 〈P,Q〉 6= 0, whereas P,Q ∈ L,
which is a contradiction.

Contrary to 1-matroids and 2-matroids, which are new views of already known
combinatorial structures, every 3-matroid cannot be derived from an isotropic system.
The reader will find details in [3].

Remark. The term multimatroid, which we choose to name the structure, reflects
that each restriction Q[S], where S is a subtransversal, is a matroid. This property
also occurs by assuming only axioms 3.1 to 3.3. The construction of a multimatroid
associated to an isotropic system gives an algebraic interpretation of axiom 3.4. We
show in [3] that any two matroids, Q[s] and Q[t], where s and t are disjoint transver-
sals, are somehow orthogonal. Accordingly, a more appropriate name of the full
structure is isotropic multimatroid. The qualificative isotropic will be implicit (the
structure defined by axioms 3.1 to 3.3 is too weak to be interesting).

5. Properties of independent sets, bases, and circuits. Let us recall two
classical characterizations of a matroid (see [23] for details).

Proposition 5.1. A subset I ⊆ P(E) is the set of independent sets of a matroid
on E if and only if

(a) ∅ ∈ I,
(b) if I ∈ I and J ⊆ I, then J ∈ I,
(c) Augmentation: if I, J ∈ I and |I| < |J |, then I + x ∈ I for some x ∈ J \ I.
Proposition 5.2. A subset C ⊆ P(E) is the set of circuits of a matroid on E if

and only if
(a) ∅ 6∈ C,
(b) if C′, C ′′ ∈ C and C ′ ⊆ C ′′, then C ′ = C ′′,



634 ANDRÉ BOUCHET

(c) Elimination: if C ′, C ′′ ∈ C and x ∈ C ′∩C ′′, then C ⊆ (C ′∪C ′′)−x for some
C ∈ C.

The two following characterizations of a multimatroid, by means of independent
subsets and circuits, consist of four properties. The first three ones correspond to
axioms 3.1 to 3.3, and they amount to say that Q[S] is a matroid for all S ∈ S(Ω).
The fourth property corresponds to axiom 3.4. Some ideas used in the proofs of
Propositions 5.3, 5.4, and 4.6 come from the thesis of Duchamp [12] on symmetric
matroids.

We say that two subtransversals A and B of Ω are compatible if A ∪ B is also a
subtransversal of Ω.

Proposition 5.3. Let (U,Ω) be a multimatroid carrier. A subset I ⊆ S(Ω) is
the set of the independent sets of a multimatroid on (U,Ω) if and only if the following
properties are satisfied:

(a) ∅ ∈ I,
(b) if I ∈ I and J ⊆ I, then J ∈ I,
(c) Augmentation: if I, J ∈ I are compatible and |I| < |J |, then I + x ∈ I for

some x ∈ J \ I,
(d) for any I ∈ I and any pair {x, y} included in a class ω ∈ Ω disjoint from I,

either I + x ∈ I or I + y ∈ I.

Proof. Suppose that I is the set of the independent subsets of a multimatroid
whose rank function is r. Axiom 3.1 implies (a). Proposition 5.1 (b), applied to the
matroid Q[I], implies (b). Proposition 5.1 (c), applied to the matroid Q[I∪J ], implies
(c). If condition (d) is not satisfied, we have

r(I + x)− r(I) + r(I + y)− r(I) = 0,

which contradicts axiom 3.4.

Conversely suppose that I satisfies (a) to (d). Define r by formula 4.4.

Property (a) implies axiom 3.1. According to (a), (b), (c), and Proposition 5.1,
for every X ∈ S(Ω) there is a matroid, say MX , whose set of independent sets is
equal to {I : I ⊆ X, I ∈ I}. According to formula 4.4, the rank function of MX is
equal to the restriction of r to X. Axiom 3.2 is verified in the matroid MA. Axiom
3.3 is verified in the matroid MA∪B . We now verify axiom 3.4. Let I be a maximal
member of I included in A. According to (d), either I + x or I + y belongs to I. We
may suppose I + x ∈ I. Since I + x ⊆ A+ x, we have r(A+ x) ≥ |I|+ 1 = r(A) + 1,
which implies axiom 3.4.

Proposition 5.4. Let (U,Ω) be a multimatroid carrier. A subset C ⊆ S(Ω) is
the set of circuits of a multimatroid on (U,Ω) if and only if the following properties
are satisfied:

(a) ∅ 6∈ C,
(b) if C ′, C ′′ ∈ C and C ′ ⊆ C ′′, then C ′ = C ′′,
(c) Elimination: if C ′, C ′′ ∈ C are compatible and x ∈ C ′ ∩ C ′′, then C ⊆ (C ′ ∪

C ′′)− x for some C ∈ C,
(d) if C1, C2 ∈ C, then C1 ∪ C2 cannot include precisely one skew pair.

Proof. Suppose that C is the set of the circuits of a multimatroid of rank function
r. Property (a) holds because r(∅) = 0. Proposition 5.2 (b), applied to the matroid
Q[C ′′], implies (b). Proposition 5.2 (c), applied to the matroid Q[C ′ ∪ C ′′], implies
(c). Suppose for a contradiction that (d) is not satisfied. Let {x1, x2} be the skew
pair included in C1 ∪ C2, and suppose xi ∈ Ci for i = 1, 2. Let Di = Ci − xi. Since
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Ci is a circuit,

(i) r(Ci) = r(Di + xi) = r(Di)

is satisfied. Note that D1 ∪D2 + xi is a subtransversal of Ω for i = 1, 2 since {x1, x2}
is the only skew pair in C1 ∪ C2. The submodular inequality 3.3 and (i) imply

r(D1 ∪D2 + xi) = r(D1 ∪D2),

which contradicts axiom 3.4 applied to the subtransversal D1 ∪D2 and the skew pair
{x1, x2}.

Conversely, suppose that C satisfies (a) to (d). Let I = {I : I 6⊇ C for all C ∈ C}.
We verify that I satisfies (a) to (d) in Proposition 5.3, and so C will be the set of
the circuits of the multimatroid on (U,Ω) whose set of independent sets is equal to
I. Let S ∈ Ω. Conditions (a), (b), and (c) imply that {C ∈ C : C ⊆ S} is the
set of the circuits of a matroid MS on S. It follows that {I ∈ I : I ⊆ S} is the
set of the independent sets of MS . So I satisfies (a), (b), and (c) in Proposition 5.3.
Suppose for a contradiction that I does not satisfy (d) in Proposition 5.3. Then I+x,
which does not belong to I, includes some Cx ∈ C. We have x ∈ Cx otherwise Cx
would be a subset of I. Similarly I + y includes some Cy ∈ C such that y ∈ Cy. So
{x, y} ⊆ Cx ∪ Cy. Since Cx ∪ Cy ⊆ I + {x, y}, no skew pair distinct from {x, y} is
included in Cx ∪ Cy, which contradicts (d).

We say that a multimatroid Q is nondegenerate if no skew class of Q is a singleton.
Proposition 5.5. The bases of a nondegenerate multimatroid are transversal.
Proof. Suppose that a base B of a nondegenerate multimatroid Q = (U,Ω, r) is

not transversal. Take any ω ∈ Ω disjoint from B. Since Q is nondegenerate we can
chose distinct elements x and y in ω. Condition (d) of Proposition 5.3 implies that
either B + x or B + y is independent, and so B cannot be a base.

Corollary 5.6. Every base of a q-matroid is a transversal if q ≥ 2.
Proposition 5.7. Let B be a base and let ω be a skew class of a multimatroid.

Then B ∪ ω includes at most one circuit.
Proof. Suppose that a circuit C ′ is included in B ∪ ω. Since B is independent,

C ′ must intersect ω \ B. Let p′ ∈ C ′ ∩ (ω \ B). Suppose that a second circuit C ′′ is
included in B ∪ω. Let p′′ ∈ C ′′ ∩ (ω \B). Suppose first p′ = p′′. Then C ′ and C ′′ are
included in T = (B \ ω) + p′, which is a transversal. So C ′ and C ′′ are compatible,
and, by an elimination of p′ ∈ C ′ ∩ C ′′, we obtain a circuit C ⊆ (C ′ ∪ C ′′)− p′ ⊆ B,
a contradiction since B is independent. So p′ 6= p′′. This implies that {p′, p′′} is a
skew pair included in C ′∪C ′′. No other skew pair can be included in C ′∪C ′′ because
(C ′ ∪ C ′′) \ ω ⊆ B \ ω and B is transversal. This contradicts Proposition 5.4.

The unique circuit included in B ∪ω, if it exists, will be denoted by C(B,ω) and
called a fundamental circuit. We often say that C(B,ω) is not defined if there is no
circuit in B ∪ ω.

Proposition 5.8. The set of bases of a nondegenerate multimatroid satisfies the
transversal exchange axiom.

Proof. Consider a nondegenerate multimatroid Q = (U,Ω, r) and the set B of
its bases. We use the notation of the transversal exchange axiom. If A′∆p is a
base of Q, the property is proved with q = p. Suppose that A′∆p is not a base of
Q. There exists a circuit C ⊆ A′∆p. Let p = {p′, p′′} and assume p′ ∈ A′ and
p′′ ∈ A′′. So A′∆p = A′ − p′ + p′′, p′′ ∈ C, and p′ 6∈ C. There exists a skew pair
q = {q′, q′′} ⊆ A′ ∪ A′′ such that q′ ∈ C ∩ A′ and q′′ ∈ A′′, otherwise every element
q′ ∈ C ∩ A′ would also belong to A′′ and the circuit C would be included in A′′, a



636 ANDRÉ BOUCHET

contradiction since A′′ is independent. Let A = A′−p′+p′′−q′. The subset A does no
longer include C and, since C is the (uniquely defined) fundamental circuit included
in A′ ∪ω, A is independent. The subset A+ q′ is not independent because it includes
C. Therefore A+ q′′ is independent by Proposition 5.3, so that A+ q′′ = A′∆(p ∪ q)
is a base of Q, which completes the proof.

The converse of the preceding proposition is false. For a counterexample, consider
the carrier (U = {x1, x2, y1, y2, y3},Ω = {{x1, x2}, {y1, y2, y3}}), and suppose that B
contains only {x1, y1}. Since |B| = 1, the transversal exchange axiom is satisfied.
Suppose that B is the set of the bases of a multimatroid. According to axiom 3.4
applied to ∅ ∈ S(Ω) and the skew pair {y2, y3}, either y2 or y3 is independent, a
contradiction since no member of B contains either y2 or y3.

Proof of Theorem 4.1. According to Proposition 5.8 it remains to prove that any
nonempty subset B ⊆ T (Ω) satisfying the transversal exchange axiom is the set of
bases of a 2-matroid on (U,Ω). For that we prove that I = {I : I ⊆ A for some A ∈ B}
satisfies conditions (a) to (d) of Proposition 5.3. We pass through the intermediate
of the set C of (inclusionwise) minimal members of S(Ω) \ I.

The set C clearly satisfies conditions (a) and (b) of Proposition 5.4. We now
verify that (c) is satisfied. Consider any two compatible members C1 and C2 of C
and an element x ∈ C1 ∩ C2. We have to find a member C ∈ C that is included in
I ′ = C1 ∪ C2 − x. Suppose that C cannot be found. Then I ′ ⊆ A′ for some A′ ∈ B.
Let p = {x, y} be the skew pair that contains x. The intersection of p and A′ is
nonempty because A′ is transversal. The element x does not belong to A′, otherwise
A′ would include C1 and C2. So y ∈ A′ and C1 ∪ C2 ⊆ A′∆p. The set I ′′ = C1 ∩ C2

includes no member of C. Then I ′′ ⊆ A′′ for some A′′ ∈ B. The element x, which
belongs to I ′′, also belongs to A′′, so that p ⊆ A′∆A′′. According to the transversal
exchange axiom there exists a skew pair q ⊆ A′∆A′′ such that A = A′∆(p ∪ q) ∈ B.
If we assume p = q then C1 ∪C2 ⊆ A′∆p = A, a contradiction. So we have p 6= q and
A = A′∆p∆q. Suppose q∩C1 = ∅. Then C1∩A = C1∩ (A′∆p) = C1, a contradiction
because C1 is not included in A, which is a member of B. So q∩C1 6= ∅ and, similarly,
q ∩ C2 6= ∅. Since C1 ∪ C2 ∈ S(Ω), there is at most one element of q, say z, that can
belong to C1 ∪ C2. So z ∈ C1 ∩ C2, which implies z ∈ A′ ∩ A′′, a contradiction with
q ⊆ A′∆A′′.

Since C satisfies conditions (a) to (c) of Proposition 5.4, I satisfies conditions (a)
to (c) of Proposition 5.3 (consider, for each S ∈ S(Ω) the matroid whose circuits are
the members of C included in S). Any I ∈ I is, by definition, included in some A ∈ B.
If {x, y} is a skew pair disjoint from I, then I + x or I + y is included in B, and
so belongs to I. Therefore, I also satisfies condition (d) of Proposition 5.3, which
completes the proof.

Circuit indicators and fundamental graphs. Given a multimatroid carrier
(U,Ω) it will be useful to define a surjective mapping sp : U → V such that Ω =
{sp−1(v) : v ∈ V }. We say that (U,Ω), and any multimatroid Q defined on (U,Ω),
is indexed on V . For v ∈ V we let Ωv = sp−1(v). For X ∈ S(Ω) and v ∈ V , we say
that Xv is defined if X ∩ Ωv 6= ∅, and in this case Xv denotes the unique element of
X ∩ Ωv.

Example. If Q = Q(G,U) is a Eulerian multimatroid then, where V is the vertex-
set of G, there is a natural indexation of Q by V such that Ωv is the set of the local
splitters of U incident to v, for any v ∈ V .

Let A be a base of Q. We define a subtransversal Ā ∈ S(Ω) and a set Arc(A) ⊆
V × V as follows:
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5.1. Āv is defined if and only if C(A,Ωv) is defined.
5.2. If C(A,Ωv) is defined, then Āv = C(A,Ωv)v (which implies Āv 6= Av).
5.3. If C(A,Ωv) is defined, then {w : (v, w) ∈ Arc(A)} = sp(C(A,Ωv))− v.
5.4. If C(A,Ωv) is not defined, then {w : (v, w) ∈ Arc(A)} = ∅.

We call Ā the circuit indicator of A and the pair (V,Arc(A)), which is a digraph, the
fundamental graph of A.

6. Covering theorem and applications. Let us distinguish two kinds of cov-
ering problems, the first one being an instance of the second one.

Simple covering problem. A multimatroid Q is given with an integer k ≥ 2.
We search for k independent sets whose union have maximum cardinality.

Multiple covering problem. A finite family of multimatroids Q = (Qj : j ∈ J)
defined on a common carrier (U,Ω) is given. We denote by I(Q) the set of the
families (Ij : j ∈ J), where Ij is an independent set of Qj . For I ∈ I(Q), we let
Cov(I) =

⋃
(Ij : j ∈ J). An element x ∈ U (respectively, subset X ⊆ U) is said

to be covered by I if x ∈ Cov(I) (respectively, X ⊆ Cov(I)). We search for an
I ∈ I(Q) that maximizes |Cov(I)|. Then I is called an optimal covering of U (by the
independent sets of Q).

Remark. If each Qj is sheltered by a matroid M j , then every I in I(Q) is a
covering of U where each Ij is an independent set of M j . In that case we can
reformulate the problem as maximizing |Cov(I)|, I = (Ij : j ∈ J), where Ij is an
independent set of M j and a subtransversal of Ω. This is an instance of the covering
problem for matroids solved by Edmonds [14] with an additional constraint. However
this property does not seem to help in finding a solution.

For algorithmic purposes we will use a rank-oracle to compute the rank function
rj of Qj , for each j ∈ J , and we assume that the time-complexity to compute rj(S),
for any S ∈ S(Ω), is equal to O(1).

Our main result is the following one, which partially solves the multiple covering
problem.

Theorem 6.1. Let Q = (Qj : j ∈ J) be a finite family of multimatroids defined on
a common carrier (U,Ω). Where rj is the rank function of Qj, let r(S) =

∑
(rj(S) :

j ∈ J) for all S ∈ S(Ω). If every skew class ω satisfies 3 ≤ |ω| ≤ |J |, then

min(|U | − |Cov(I)| : I ∈ I(Q)) = max(|S| − r(S) : S ∈ S(Ω)).

A pair of solutions, I ∈ I(Q) and S ∈ S(Ω), satisfying the equality can be found in
polynomial time.

Corollary 6.2. Let Q = (U,Ω, r) be a multimatroid where each skew class has
at least three elements. Let k ≥ 3 be an integer. The set U can be covered by k
independent sets of Q if and only if

|ω| ≤ k ∀ω ∈ Ω

and

kr(S) ≥ |S| ∀S ∈ S(Ω).

This corollary, which partially solves the simple covering problem, also holds
when Q is a matroid and k is any positive integer (recall that a matroid is identified
to a 1-matroid); it is a theorem proved by Edmonds [14].
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Removing large skew classes. We show that the assumption |ω| ≤ |J | in
Theorem 6.1 is not essential. It only stands to concentrate the attention on the
main difficulties. Say that a skew class ω is large (respectively, small) if |ω| > |J |
(respectively, |ω| ≤ |J |). For I, I ′ ∈ I(Q), we write I ⊇ I ′ if Ij ⊇ I ′j for all j ∈ J .

Proposition 6.3. For any I ′ ∈ I(Q) there exists I ⊇ I ′, I ∈ I(Q), with the
following properties satisfied for each skew class ω disjoint from Cov(I ′):

if ω is large, then |ω ∩ Cov(I)| = |J |,
if ω is small, then |ω ∩ Cov(I)| ≥ |ω| − 1.

Moreover, I can be derived from I ′ in polynomial time.
Proof. Identify J with the set of integers {1, 2, . . . , t}. Let Ω′ = {ω ∈ Ω :

ω∩Cov(I ′) = ∅}. Choose any ω ∈ Ω′. If ω is large, let p = t; otherwise let p = |ω|−1.
We construct a sequence of pairwise distinct elements of ω, say x1, x2, . . . , xp, such
that Ij = I ′j + xj is an independent set of Qj for any j = 1, 2, . . . , p. Assume
that x1, x2, . . . , xj−1 has been determined and consider any skew pair {x, y} ⊆ ω −
{x1, x2, . . . , xj−1}, which exists by the definition of p. Since I ′j is independent in Qj ,
it follows from Proposition 5.3 that either I ′j +x or I ′j + y is also independent in Qj .
So we may take either xj = x or xj = y. We construct the sequence x1, x2, . . . , xp by
letting j be successively equal to 1, 2, . . . , p. Finally we let Ij = I ′j for each integer j
such that p < j ≤ t. So I = (Ij : j ∈ J) clearly satisfies I ⊇ I ′ and the two properties
stated in the proposition for the particular ω that has been chosen in Ω′.

We let Ω′ = Ω′ − ω, I ′ = I and we repeat the preceding construction if Ω′ 6= ∅.
Divide Ω into a subset Ω′ of small skew classes and a subset Ω′′ of large skew

classes. Let U ′ be the union of the small skew classes. Assume that we know an
optimal covering I ′ of Q[U ′]. So I ′ ∈ I(Q). By applying the preceding proposition to
I ′ we get some I ∈ I(Q) satisfying I ⊇ I ′ and |ω ∩ Cov(I)| = |J | for all large skew
class ω. Clearly I is an optimal covering of Q.

It follows that, to search for an optimal covering, we may reduce the problem to
the set of the small skew classes. A particular extremal case is when every skew class
is large. Then the problem is trivially reduced to the empty multimatroid and we can
find an optimal covering I ∈ I(Q) such that |ω∩Cov(I)| = |J | for every skew class ω.

Parity problem. We now discuss the assumption |ω| ≥ 3, which is essential for
the validity of Theorem 6.1. Indeed we show that the parity problem for matroids
can be expressed as a multiple covering problem involving two 2-matroids. Lovász
[19] has shown that this problem is nonpolynomial in general. We already discussed
a similar question in [7]. For the sake of completeness, we adapt this discussion to
2-matroids.

Given a matroid M = (X, r) and a partition P of X into pairs, the parity problem
is to find an independent set I ofM , having maximal cardinality, that can be expressed
as a union of pairs in P . Let X̃ be a copy of X. Assume X ∩ X̃ = ∅. For x ∈ X let x̃
denote the copy of x. For A ⊆ X let Ã = {x̃ : x ∈ A}. Consider the 2-matroid carrier
(U,Ω), where U = X ∪ X̃ and Ω = {{x, x̃} : x ∈ X}. Every subtransversal of Ω is
uniquely expressible as a union A ∪ B̃, where A and B are disjoint subsets of X. Let

rM (A ∪ B̃) = r(A) + r∗(B),

rP (A ∪ B̃) = |A|+ |B| − p(A,B),

where r∗ is the rank function of the matroid dual of M and p(A,B) denotes the
number of the pairs in P that intersect A and B. It is not difficult to verify that rM
and rP satisfy axioms 3.1 to 3.4. Therefore QM = (U,Ω, rM ) and QP = (U,Ω, rP )
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are 2-matroids. If BM is a base of QM and BP is a base of QP , then |BM ∪ BP | is
maximal if and only if BM is a solution to the parity problem.

Application to Eulerian graphs. Consider a connected Eulerian graph of
minimum degree 2d ≥ 4. For any integer k ≤ 2d−1 we can find a set Ωv of k pairwise
skew local splitters incident to any vertex v (for example, if h1, h2, . . . , h2d are the
half-edges incident to v, then {{h1, hi}, h(v)−{h1, hi} : 2 ≤ i ≤ 2d} is a set of pairwise
skew local splitters). Let U =

⋃
(Ωv : v ∈ V ). Define a base of U as a splitter T ⊆ U

incident to every vertex of G and such that G||T is still connected. Apply Corollary
6.2 to the Eulerian multimatroid Q(G,U). We see that U is a disjoint union of bases
of U if and only if

k(G||s) ≤ 1 + |s|(1− 1/k).

In particular, if d = 2 and k = 3, U is necessarily equal to the set of all the local
splitters of G. Any base of U can be identified to an Euler tour. We retrieve Jackson’s
Theorem 2.4.

Note also the following property, which follows from Proposition 6.3. If |Ωv| > k
holds for all v ∈ V then we can find k pairwise disjoint complete splitters s1, s2, . . . ,
sk such that G||s1, G||s2, . . . , G||sk are connected. This is the trivial case where each
skew class is large.

Application to isotropic systems. Consider an isotropic system S = (E,L, V )
and its associated 3-matroid Q(S) = (U,Ω, r). We also consider the bijective mapping
α : E → S(Ω) satisfying A =

∑
(u : u ∈ α(A)). For A ∈ E let ρ(A) = r(α(A)), which

is called the rank of A, and say that A is Eulerian if α(A) is a base of Q(S).

Corollary 6.4 (of Theorem 6.1). Consider a direct product of hyperbolic planes
E =
∏

(Ev : v ∈ V ) and, for j ∈ J = {1, 2, 3}, an isotropic system Sj = (E,Lj , V )
of rank function ρj. Denote by A the set of the triples (A1, A2, A3), where Aj is an
Eulerian vector of Sj for j ∈ J . Then

min(3|V | − |α(A1) ∪ α(A2) ∪ α(A3)|) = max(|B| − ρ1(B)− ρ2(B)− ρ3(B)),

where the maximum is taken for (A1, A2, A3) ∈ A and the minimum is taken for
B ∈ E.

Say that two Eulerian vectors, A and B, of the isotropic system S are disjoint if
Av 6= Bv holds for all v ∈ V . Equivalently A is disjoint from B if α(A) ∩ α(B) = ∅.
(The term compatible is used in place of disjoint in [8, 16, 15].)

Corollary 6.5. An isotropic system S = (E,L, V ), of rank function ρ, has three
pairwise disjoint Eulerian vectors if and only if 3ρ(B) ≥ |B| holds for all B ∈ E.

The preceding corollary has been proved by Jackson [16], who used it in [15] to
establish Theorem 2.4. Corollary 6.4 has been proved by Bouchet in [8].

7. Proof of Theorem 6.1. From now on we follow the notation defined in
Theorem 6.1. So every skew class ω satisfies |ω| ≤ |J |. A family I ∈ I(Q) will be
called a suboptimal covering if |ω ∩ Cov(I)| ≥ |ω| − 1 is satisfied for all ω ∈ Ω.

Proposition 7.1. Every optimal covering is suboptimal.

Proof. Let I ′′ be an optimal covering and let ω ∈ Ω. Suppose for a contradiction
that |ω ∩Cov(I ′′)| < |ω| − 1. Apply Proposition 6.3 to I ′ := (I ′′j \ω : j ∈ J). We get
a new family I ∈ I(Q) such that I ⊇ I ′, ω′ ∩Cov(I) = ω′ ∩Cov(I ′) for all ω′ ∈ Ω−ω
and |ω ∩ Cov(I)| ≥ |ω| − 1. So |Cov(I)| > |Cov(I ′′)|, which is a contradiction.
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Let I be a suboptimal covering. Denote by ν(I) the number of the skew classes
that are not covered by I, that is ν(I) = |{ω ∈ Ω : |ω ∩ Cov(I)| = |ω| − 1}|. Clearly,
we have axiom 7.1.

7.1. |Cov(I)| = |U | − ν(I).
For each j ∈ J , let Aj be a base of Qj that includes Ij . Clearly (Aj : j ∈ J) is still
a suboptimal covering of Q, which is optimal if I is optimal. Denote by B(Q) the set
of the suboptimal coverings A = (Aj : j ∈ J), where Aj is a base of Qj . According to
axiom 7.1, to solve the covering problem it is sufficient to find a suboptimal covering
A ∈ B(Q) for which ν(A) is minimal.

Proposition 7.2. For any suboptimal covering A ∈ B(Q) and any S ∈ S(Ω) we
have

ν(A) ≥ |S| − r(S).

Proof. We have

r(S) =
∑

(rj(S) : j ∈ J)

≥
∑

(rj(Aj ∩ S) : j ∈ J)

=
∑

(|Aj ∩ S| : j ∈ J)

≥ |S| − ν(A).

So to prove Theorem 6.1 it is sufficient to find A ∈ B(Q) and S ∈ S(Ω) such that
ν(A) = |S| − r(S). The proof will follow an algorithm that maintains a suboptimal
covering A ∈ B(Q). Eventually, A will be optimal.

We first define some procedures whose purpose, at the exception of the first one, is
to modify A in order to cover a new skew class that previously was not covered. Each
of these procedures will leave covered every skew class that was previously covered.
We assume that (U,Ω) is indexed on a set V and we use the notation introduced at
the end of section 5.

Let M = (Mij : 1 ≤ i ≤ s, 1 ≤ j ≤ t) be a binary matrix. Assume s ≤ t. An
allowed permutation of M is a sequence (i1, j1), (i2, j2), . . . , (is, js) such that Mipjp = 0
for 1 ≤ p ≤ s and each of the sequences i1, i2, . . . , is and j1, j2, . . . , js is made of
pairwise distinct elements (and so every row index appears exactly once in the first
sequence).

Procedure FIND ALLOWED PERMUTATION(M). It yields an allowed permutation
of a binary matrix M = (Mij : 1 ≤ i ≤ s, 1 ≤ j ≤ t) satisfying the following
conditions:

(i) s ≤ t;
(ii) every column of M has at most one nonnull entry;
(iii) every row of M has at least one null entry.

The algorithm runs as follows.
Let q = 1.
Choose a row with a maximal number of nonnull entries, and let iq be the index

of that row. By (iii) there exists a null entry in the row indexed by iq, say Miqjq .
Let M ′ be the submatrix obtained by deleting the row indexed by iq and the column
indexed by jq. We claim that M ′, if it is nonempty, still satisfies (i) to (iii). This is
obvious for (i) and (ii). Suppose that (iii) does not hold. So there exists a row of M ′,
indexed by some i, which has only nonnull entries. Since the row of M indexed by iq
has a maximal number of nonnull entries, it must be equal to the row of M indexed
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by i, a contradiction with (ii). We increase q by 1, we replace M by M ′ and we repeat
the sequence of instructions as long as q ≤ s.

The sequence (i1, j1), (i2, j2), . . . , (is, js), constructed by the procedure, is an al-
lowed permutation.

We say that a skew class Ωv is obstructed if there exists x ∈ Ωv such that Āj
v = x

for all j ∈ J .

Procedure COVER NONOBSTRUCTED(Ωv). A skew class Ωv that is not obstructed
and not covered by A is given. The procedure returns with Ωv covered without
modifying Aj

w for all 1 ≤ j ≤ t and w ∈ V − v. The algorithm runs as follows.

Label the elements of Ωv as x1, x2, . . . , xs. Construct the binary matrix, M =
(Mij : 1 ≤ i ≤ s, 1 ≤ j ≤ t), such that Mij = 1 if and only if Āj

v = xi. Conditions (i)
and (ii) of Procedure FIND ALLOWED PERMUTATION(M) are clearly satisfied. Condi-
tion (iii) is also satisfied because Ωv is nonobstructed. We call the procedure, and so
we obtain an allowed permutation (i1, j1), (i2, j2), . . . , (is, js). For each jq, 1 ≤ q ≤ s,

we let A′jq be the transversal of Ω obtained from Ajq by replacing its element A
jq
v by

xiq . The transversal A′jq is still a base of Q because it does not contain the funda-

mental circuit C(A
jq
v ,Ωv). Since A′jq contains xiq , for 1 ≤ q ≤ s, and every row index

of M appears in the sequence i1i2, . . . , is, the subset of the bases {A′j1 , A′j2 , . . . , A′js}
covers Ωv.

A skew class Ωv is said to be j-critical, where j ∈ J , if Āk
v is defined for all

k ∈ J − j and Āk
v = Aj

v.

Procedure COVER CRITICAL(Ωv, j1, j2). A j1-critical skew class Ωv and an
index j2 ∈ J − j1 are given. The procedure covers Ωv without modifying either Aj1

or Aj2 or Ai
w for 1 ≤ i ≤ t, w ∈ V − v. The algorithm runs as follows.

We label the elements of Ωv as in Procedure COVER NONOBSTRUCTED(Ωv), and
we construct the same matrix M . Let xi1 = Aj1

v and xi2 = Aj2
v . Since Ωv is j1-

critical, we have xi1 = Aj1
v = Āj2

v 6= Aj2
v = xi2 , which implies i1 6= i2. Let M ′ be the

submatrix of M obtained by deleting the rows i1 and i2 and the columns j1 and j2.
Since Ωv is j1-critical every column of M , not indexed by j1, has a nonnull entry in
row i1. Accordingly every entry of M ′ is null, and so the conditions to call Procedure
FIND ALLOWED PERMUTATION(M ′) are obviously satisfied. Then we get an allowed
permutation of M ′, which can be used to determine new bases A′j3 , A′j4 , . . . , A′js .
These bases cover Ωv − {xi1 , xi2}. So, by adding Aj1 and Aj2 , the whole class Ωv is
covered.

Procedure COVER OBSTRUCTED(Ωv, j,Ωw). An obstructed skew class Ωv and
a non-j-critical skew class Ωw are given with the property (v, w) ∈ Arc(Aj). The
procedure returns with Ωv and Ωw covered, and Ai

u unchanged for 1 ≤ i ≤ t, u ∈
V − {v, w}.

Let X = Aj
w. Since Ωw is not j-critical, there exists k ∈ J − j such that Āk

w 6= X.

In the case where C(Aj ,Ωw) is defined, let Y = Āj
w. Choose Z ∈ Ωw − X

if C(Aj ,Ωw) is not defined, Z ∈ Ωw − {X,Y } otherwise (Z can always be chosen
because |Ωw| ≥ 3). The transversal A′j = Aj∆{X,Z} is a base of Qj because it does
not include the fundamental circuit C(Aj ,Ωw), if it is defined. Let x = Aj

v, denote by
y the element of Ωv such that Āi

v = y for all i ∈ J , let A′′j = A′j∆{x, y}. We claim
that A′′j is a base of Qj .

Suppose not. Then the fundamental circuit C ′ = C(A′j ,Ω)v is defined and in-
cluded in A′′j , which implies C ′v = A′′v

j = y. Consider also the fundamental cir-
cuit C = C(Aj ,Ωv), which satisfies Cv = Āj

v = y. Note that Cw = X because
(v, w) ∈ Arc(Aj). For any u ∈ V − {v, w}, each of the values Cu and C ′u is either
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nondefined or equal to Aj
u. Therefore there can exist at most one skew pair included

in C ∪C ′, and this skew pair is included in Ωw. Since C ∪C ′ cannot include precisely
one skew pair, by Proposition 5.4, either C ′w is not defined or C ′w = Cw. If C ′w is
not defined, then C ′ is included in Aj ∪ Ωv, so that C ′ = C(Aj ,Ωv), a contradiction
since Cw is defined. Suppose finally that Cw = C ′w. Since C ′ = C(A′j ,Ωv) we have
C ′w = A′jw = Z. Since C = C(Aj ,Ωv) we have Cw = Aj

w = X, which contradicts
Cw = C ′w. So A′′j is actually a base. Note that C is now included in A′′j ∪ Ωw, so
that C = C(A′′j ,Ωw).

The procedure runs as follows. It replaces Aj by A′′j , so that we now have Aj
v = y

and C = C(Aj ,Ωw). It can be seen that Ωv is now j-critical. Furthermore we have
Āj
w = Cw = X 6= Āk

w. The procedure calls Procedure COVER CRITICAL(Ωv, j, k),
which returns with Ωv covered without modifying Aj and Ak, so that Āj

w 6= Āk
w

is still satisfied. Therefore Ωw is nonobstructed and we can call Procedure COVER

NONOBSTRUCTED(Ωw).

Let Γ = (v0, j1, v1, . . . , jq, vq) be a sequence of (not necessarily distinct) vertices
v0, v1, . . . , vq and elements j1, j2, . . . , jq in J . We call Γ a critical sequence if
it satisfies the following properties: (i) Ωv0 is obstructed; (ii) Ωvs is covered by A,
Ωvs is js-critical, and (vs−1, vs) ∈ Arc(Ajs) for s = 1, 2, . . . , q; (iii) js 6= js+1 for
s = 1, 2, . . . , q − 1. We shall say that each of the vertices vs, 0 ≤ s ≤ q, is accessible.

We call Γ an improving sequence if it satisfies the same conditions as a critical
sequence at the exception of Ωvq which is now required to be not jq-critical and
possibly not covered by A (all the other conditions in (i) to (iii) must be satisfied).
A shortcut of Γ is a triple (vr, j, vq) such that j ∈ J , 0 ≤ r ≤ q − 2 and the sequence
(v0, j1, v1, . . . , vr, j, vq) is an improving sequence (so Ωvq is not j-critical).

Procedure COVER SEQUENCE(Γ). An improving sequence Γ = (v0, j1, v1, . . . ,
jq, vq) is given. The procedure returns with Ωv0 covered and leaves covered every
previously covered skew class.

If q = 1 the conditions to call Procedure COVER OBSTRUCTED(Ωv0 , j1,Ωv1) are
satisfied. We make this call and we return.

If q > 1 we first search for shortcuts of Γ and shorten Γ in accordance. Thus we
suppose that Γ has no shortcut. We shall determine a subset J ′ ⊆ J and a suboptimal
covering A′ = (A′j : j ∈ J) in such a way that A′j = Aj for all j ∈ J − J ′ and the
following properties hold:

(i) jq ∈ J ′;
(ii) for every j ∈ J ′, Ωvq is not j-critical with respect to A;
(iii) A′jvq 6= Aj

vq and A′jv = Aj
v for all v ∈ V − vq and all j ∈ J ′;

(iv) A′ covers Ωvq ;
(v) Ωvq−1 is not jq−1-critical with respect to A′;
(vi) (vr−1, vr) ∈ Arc(A′jr ) for 1 ≤ r ≤ q − 2.

According to (iii) and (iv), the skew classes covered by A and A′ will be the same
ones. If Ωv0 is no longer obstructed with respect to A′, then we call Procedure COVER

NONOBSTRUCTED(Ωv0) and we return. Otherwise we consider the minimal value r > 0
such that Ωvr is not jr-critical with respect to A′, which exists by (v). The sequence
Γ′ = (v0, j1, v1, . . . , jr, vr) is improving with respect to A′ by (vi). By recursively
calling Procedure COVER SEQUENCE(Γ′), Ωv0 is eventually covered and every skew
class that was previously covered remains covered.

It may happen in the sequel that we refer to some element Xv, for X ∈ S(Ω)
and v ∈ V , which may possibly not defined. In order to properly speak of Ωv, we
implicitly consider a new element θ 6∈ U , and we let Xv = θ.
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We now determine J ′ and A′j for each j ∈ J ′, and we show that (i) to (iv) hold.

Let X = A
jq
vq . Since Ωvq is not jq-critical, there exists k ∈ J − jq such that Āk

vq 6= X.
We distinguish four cases.

Case 1. Ak
vq = X. We let J ′ = {jq}. Conditions (i) and (ii) are obviously

satisfied. Consider any Z ∈ Ωvq − {X, Ājq
vq} (which exists because |Ωvq | ≥ 3). Let

A′jq = Ajq∆{X,Z}. The set A′jq is a base because the condition Ā
jq
vq 6= Z implies

that the fundamental circuit C(Ajq ,Ωvq ), if it exists, is not included in A′jq . So (iii)
is satisfied. When replacing Ajq by A′jq , the new base no longer covers X, but the
base Ak already covered X, and so (iv) is satisfied.

From now on we suppose Ak
vq 6= X and we let Z = Ak

vq .

Case 2. Ā
jq
vq 6= Z. We let J ′ = {jq, k}, A′jq = Ajq∆{X,Z}, and A′k =

Ak∆{X,Z}. Clearly (i) is satisfied. The vertex vq is not k-critical with respect

to A because Ak
vq = Z 6= Ā

jq
vq . So (ii) is satisfied. As above A′jq is a base because

Ā
jq
vq 6= Z. Similarly A′k is a base because Āk

vq 6= X. So (iii) is satisfied. Finally we

have {A′jqvq , A′kvq} = {Z,X} = {Ak
vq , A

jq
vq}, so that (iv) is satisfied.

From now on we assume Ā
jq
vq = Z. Choose an element Y ∈ Ωvq − {X,Z}, which

is possible because |Ωvq | ≥ 3. Since A covers Ωvq there exists l ∈ J−{jq, k} such that
Al
vq = Y .

Case 3. Āl
vq = Z. We let J ′ = {jq, l}, A′jq = Ajq∆{X,Y }, and A′l = Al∆{X,Y }.

It is clear that (i) is satisfied. The vertex vq is not l-critical with respect to A because

Al
vq = Y 6= Z = Ā

jq
vq . So (ii) is satisfied. The sets A′jq and A′l are bases because

Z = Ā
jq
vq 6= Y and Z = Āl

vq 6= X are satisfied. So (iii) holds. Finally we have

{A′jqvq , A′lvq} = {Y,X} = {Al
vq , A

jq
vq}, so that (iv) is satisfied.

Case 4. Āl
vq 6= Z. We let J ′ = {jq, k, l}, A′jq = Ajq∆{X,Y }, A′k = Ak∆{Z,X},

and A′l = Al∆{Y, Z}. Condition (i) is satisfied. The vertex vq is not k-critical with
respect to A because Ak

vq = Z 6= Āl
vq . The vertex vq is not l-critical with respect to

A because Al
vq = Y 6= Z = Ā

jq
vq . So (ii) holds. The sets A′jq , A′k and A′l are bases

because Z = Ā
jq
vq 6= Y , Āk

vq 6= X and Āl
vq 6= Z are satisfied. So (iii) holds. Finally we

have {A′jqvq , A′kvq , A′lvq} = {Y,X,Z} = {Al
vq , A

jq
vq , A

k
vq}, so that (iv) is satisfied.

We now prove that (v) and (vi) are satisfied.
Suppose that (v) is not satisfied. Since Ωvq−1

is jq−1-critical with respect to A
and A′, we have

(vii) A
jq−1
vq−1 = Ā

jq
vq−1 and A

′jq−1
vq−1 = Ā

′jq
vq−1 .

So the fundamental circuits C = C(Ajq ,Ωvq−1) and C ′ = C(A′jq ,Ωvq−1) exist. Since
A′jq and Ajq coincide on any skew class Ωv, v ∈ V − {vq−1, vq}, the pair {Cv, C ′v}
cannot be a skew pair included in C ∪ C ′. The pair {Cvq−1

, C ′vq−1
} cannot be a

skew pair because we have A
′jq−1
vq−1 = A

jq−1
vq−1 by (iii), which implies Cvq−1

= Ā
jq
vq−1 =

Ā
′jq
vq−1 = C ′vq−1

by using (vii). So the pair {Cvq , C ′vq} cannot be skew by Proposition

5.4. Since (vq−1, vq) ∈ Arc(Ajq ), the value Cvq is defined and we have Cvq = A
jq
vq .

Since {Cvq , C ′vq} is not skew, either C ′vq is not defined or C ′vq = Cvq . If C ′vq is not

defined we have C ′ ⊆ Ajq ∪Ωvq−1
, so that C ′ = C and C ′vq = Cvq , a contradiction. If

C ′vq is defined, we have C ′vq = A
′jq
vq and Cvq = A

jq
vq . But jq ∈ J ′ implies A

′jq
vq 6= A

jq
vq

by (iii), and so C ′vq 6= Cvq , again a contradiction.

Let us prove (vi). We have (vr−1, vr) ∈ Arc(Ajr ). Therefore C = C(Ajr ,Ωvr−1
)



644 ANDRÉ BOUCHET

exists and Cvr = Ajr
vr . If A′jr = Ajr , the two preceding conditions are still satisfied

with respect to A′, and so (vr−1, vr) ∈ Arc(A′jr ) actually holds. Assume now A′jr 6=
Ajr . So we have jr ∈ J ′, which implies Ωvq is not jr-critical by (ii). Since Γ has
no shortcut, (vr−1, vq) 6∈ Arc(Ajr ). Therefore Cvq is not defined, which implies C ⊆
A′jr ∪ Ωvr−1 . So C(A′jr ,Ωvr−1) is defined and (vr−1, vr) ∈ Arc(A′jr ).

The global algorithm runs as follows. We first construct a suboptimal covering
A by using Proposition 6.3 with I ′ = (∅ : j ∈ J). As long as a condition is satisfied
to call one of the three procedures COVER NONOBSTRUCTED, COVER OBSTRUCTED, and
COVER SEQUENCE, we call this procedure. When it is no longer possible to call one of
the procedures, we construct S ∈ S(Ω) according to the following proposition. Since
ν(A) = |S| − r(S) is satisfied, A is an optimal covering.

Proposition 7.3. At the end of the algorithm, let X = {v : Ωv is obstructed}
and, for each j ∈ J , let Xj = {v : Ωv is accessible and j-critical}. Let S ∈ S(Ω) be
defined as follows:

Sv = Āj
v, j ∈ J, v ∈ X (we recall that Āj

v does not depend on j when
Ωv is obstructed),
Sv = Aj

v = Āk
v , j ∈ J, v ∈ Xj , k ∈ J − j (we recall that Āk

v does not
depend on k when Ωv is j-critical),
Sv is not defined otherwise.

Then

ν(A) = r(S)− |S|.

Proof. We first verify that ν(A) = |X|. For any v 6∈ X, Ωv is not obstructed,
and so Ωv is covered by A; otherwise Procedure COVER NONOBSTRUCTED(Ωv) could be
called. For v ∈ X, Ωv is obstructed, and so there exists x ∈ Ωv that satisfies Āj

v = x
for all j ∈ J . Since Aj

v 6= Āj
v holds for all j ∈ J , the element x cannot be covered by

A. This completes the verification.
Let X̄ = X

⋃
(Xj : j ∈ J).

Claim 7.4. Let j ∈ J and v ∈ X̄ − Xj. For any (v, w) ∈ Arc(Aj) we have
w ∈ Xj.

Proof. Suppose that we can find v ∈ X̄ − Xj and w 6∈ Xj such that (v, w) ∈
Arc(Aj). Consider a critical sequence Γ = (v0, j1, v1, . . . , jq, vq) such that vq = v. Let
Γ′ = (v0, j1, v1, . . . , jq, vq, j, w). If w is not j-critical, then Γ′ is an improving sequence,
so that we may call Procedure COVER SEQUENCE(Γ′), which is a contradiction. If w is
j-critical, then Ωw cannot be obstructed. This implies that Ωw is covered, otherwise
Procedure COVER NONOBSTRUCTED(Ωw) could be called. Therefore Γ′ is a critical
sequence that leads from v0 ∈ X to w. So w is accessible, which implies w ∈ Xj , a
final contradiction.

Consider any j ∈ J and any v ∈ X̄−Xj . The fundamental circuit C = C(Aj ,Ωv)
is defined because either v ∈ X (and so Āj

v is defined for all j ∈ J) or v ∈ Xk for
some k ∈ J − j (and so Āj

v is defined because Ωv is k-critical). It also follows from
the definition of S that Cv = Sv. Decompose S into two subsets, S′ = {Sv : v ∈ Xj}
and S′′ = {Sv : v ∈ X̄ − Xj}. So Cv ∈ S′′. By axiom 5.3 and the claim we have
sp(C) − v = {w : (v, w) ∈ Arc(Aj)} ⊆ Xj . This implies C − Cv ⊆ S′. Consider
the matroid M j = Qj [S] (since S is a subtransversal, M j is a 1-matroid). The
properties Cv ∈ S′′ and C −Cv ⊆ S′ imply that C is a circuit of M j (recall that C is
a fundamental circuit in Qj). Since C is a circuit and C ∩ S′′ = Sv, the element Sv
belongs to the closure of S′ in the matroidM j . This property holds for all the elements
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of S′′. Therefore S = S′ ∪S′′ is included in the closure of S′ in the matroid M j . This
implies rj(S) ≤ rj(S′) ≤ |Xj |. So |S| − r(S) = |S| −∑(rj(S) : j ∈ J) ≥ |X| = ν(A).
We have ν(A) ≥ |S| − r(S) by Proposition 7.2. Therefore |S| − r(S) = ν(A).

Where n = |Ω| and k = |J |, we let the reader verify that the time-complexity
and the space-complexity, to find a pair of solutions (I, S) satisfying Theorem 6.1, are
equal to O(max(n, k)(n+ k)n2) and O(n2k), respectively.

8. Open problems. One knows very little about the simple covering problem
for 2-matroids. The basic question is the following one: Does there exist a good
characterization of the 2-matroids that can be covered by two bases?

The problem can be specialized to Eulerian multimatroids. Consider a connected
4-regular graph G. Let U be the set of the nonnull local splitters of G and F be a
complete splitter of G. Then Q(G,U − F ) is a 2-matroid. The question, stated for
Q(G,F ), is to search for two disjoint Euler tours using no local splitters in F . Jackson
[15] shows that Corollary 6.2 cannot hold in general for Q(G,U − F ).

There is another interesting way to specialize the problem by using tightness
and separators, two notions defined and studied in [10]. Consider a multimatroid
Q = (U,Ω, r). A separator of Q is a subset X ⊆ U that is a union of skew classes and
satisfies r(S ∩X) + r(S \X) = r(X) for all S ∈ S(Ω). This notion clearly generalizes
the similar one for matroids. We denote by k(Q) the number of minimal nonempty
separators of Q. The multimatroid Q is said to be tight if the union of any base
with any skew class includes a circuit. For example the preceding Eulerian 2-matroid
Q(G,U −F ) is tight if and only if it is possible to provide each half-edge with a sign,
+ or −, in such a way that any two half-edges incident to the same edge have distinct
signs and any two half-edges belonging to any pair in any local splitter of F have the
same sign. We may imagine that the signs define a direction on each edge, from the
positive half-edge towards the negative one, in such a way that precisely two edges
leave any vertex. Since G is connected, it is easy to verify that the local splitters of F
(which are said to be antidirected) define the directions up to a global reversing. Thus
tight Eulerian 2-matroids correspond to oriented 4-regular graphs (with the implicit
condition that precisely two directed edges leave any vertex).

Proposition 8.1. If B1 and B2 are two bases of a tight 2-matroid Q = (U,Ω, r)
and S ∈ S(Ω), then |U − (B1 ∪B2)| ≥ k(Q||S).

The proof of the proposition will be published later. It implies the inequality
kr(s) ≥ |s| of Corollary 6.2. The reader will see an adaptation of the proposition to
the case of oriented 4-regular graphs in a paper with Andersen and Jackson [1]. We
do not know whether the min-max equality holds in general.
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Abstract. We consider the amount of randomness used in private distributed computations.
Specifically, we show how n players can compute the exclusive-or (xor) of n boolean inputs t-privately,
using only O(t2 log(n/t)) random bits (the best known upper bound is O(tn)). We accompany this
result by a lower bound on the number of random bits required to carry out this task; we show that
any protocol solving this problem requires at least t random bits (again, this significantly improves
over the known lower bounds).

For the upper bound, we show how, given m subsets of {1, . . . , n}, to construct in (deterministic)
polynomial time a probability distribution of n random variables (i.e., a probability distribution
over {0, 1}n) such that (1) the parity of random variables in each of these m subsets is 0 or 1 with
equal probability, and (2) the support of the distribution is of size at most 2m. This construction
generalizes previously considered types of sample spaces (such as k-wise independent spaces and
Schulman’s spaces [Sample spaces uniform on neighborhoods, in Proc. of the 24th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1992, pp. 17–25]). We believe that this
construction is of independent interest and may have various applications.

Key words. randomness, small probability spaces, privacy, xor function
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1. Introduction. There has been a great effort devoted to the study of random-
ization. Initially, the main application of randomization was for solving problems to
which deterministic solutions are impossible (e.g., in distributed computing and in
cryptography) or unknown (e.g., efficient primality testing). Furthermore, random-
ization is used to construct both more efficient and, not less significant, much simpler
algorithms.

Randomness as a resource was extensively studied in the last decade. One line
of research was devoted to a quantitative study of the role of randomness in specific
contexts, e.g., [35, 28, 5, 12, 8, 9, 32]; another direction was developing general-purpose
methods for saving random bits. These methods range over pseudo-random generators
[38, 7, 34], techniques for recycling random bits [22, 19], sources of weak randomness
[18, 37, 40], and construction of various kinds of small probability spaces [33, 1, 36, 27,
25, 23]. A particular goal was to allow derandomization, i.e., to completely eliminate
the use of randomness. For some problems, the best known deterministic algorithms
are randomized algorithms which are later derandomized (see, e.g., [24]).

We consider the role of randomness in t-private protocols. Informally, a t-private
protocol P for computing a function f is a protocol that allows n players, Pi (1 ≤ i ≤
n), each holding an individual secret input, xi, to compute the value of f(~x) in such
a way that no coalition of at most t players learns about the initial inputs of other
players more than what is revealed by the value of f(~x) and their own inputs. The

∗ Received by the editors June 12, 1996; accepted for publication (in revised form) September 20,
1996.

http://www.siam.org/journals/sidma/10-4/30613.html
† Department of Computer Science, Technion, Technion-City, Haifa 32000, Israel (eyalk@

cs.technion.ac.il). The research of this author was supported in part by MANLAM Fund 120-865.
‡ Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (mansour@cs.tau.

ac.il). The research of this author was supported in part by the Israel Science Foundation adminis-
tered by the Israel Academy of Science and Humanities and by a grant from the Israeli Ministry of
Science and Technology.

647



648 EYAL KUSHILEVITZ AND YISHAY MANSOUR

players are assumed to be honest but curious; namely, they all follow the prescribed
protocol P, but they could try to get additional information from the messages they
receive during the execution of the protocol. The study of private computations in
this setting was initiated by [6, 13] and was the subject of a considerable amount of
work, e.g., [3, 14, 31, 4, 20, 15, 16, 17, 29, 30].1 The use of randomness is a crucial
ingredient in private protocols; without randomness only degenerate functions can be
computed privately.

Protocols for the xor (exclusive-or) function (and, more generally, protocols for the
modular sum function) are basic building blocks in most private protocols currently
known. As a result (and due to its relative simplicity), the task of computing xor
t-privately was the subject of previous research [20, 15, 32, 10]. We investigate the
amount of randomness required to compute the xor of n input bits t-privately. The
known upper bound uses O(tn) random bits.2 Better upper bounds were known only
for the case t = 1 (see [32]) in which a single random bit is sufficient. As for lower
bounds, Blundo et al. [10] proved that if t ≥ n− c (for some constant c) then Ω(n2)
random bits are required and if t ≥ (2−√2)n then Ω(n) bits are required. For smaller
values of t it was only known that no deterministic protocol for this task exists.

We significantly improve both the upper bound and the lower bound for this
problem. We present a protocol for this task that uses only O(t2 log(nt )) random bits.
On the other hand, we prove that any t-private protocol for xor requires at least t
random bits. This is the best known lower bound for most values of t (i.e., excluding
the case where t is very close to n).

For our upper bound, we develop a new construction of small sample spaces that
naturally generalizes k-wise independent sample spaces and sample spaces of the type
studied by Schulman [36].3 More precisely, given subsets T1, . . . , Tm ⊆ {1, . . . , n} we
look for a small sample space over {0, 1}n in which the parity of the bit positions in
every subset Tj gets the values 0 and 1 with equal probability, i.e., 1

2 . We present
a deterministic polynomial-time algorithm that allows constructing such a space for
any collection of such subsets (in particular, it is important for our application that
there is no restriction on the size of the sets). This is a uniform space (i.e., a space
that consists of a multiset S and the uniform distribution over S) whose size is linear
in m (at most 2m vectors). We also show how to find such spaces in parallel (in NC).
We believe that these constructions are of independent interest and may have various
applications.

Relation to other work. The above-mentioned result of Schulman [36] was gen-
eralized in various ways [27, 25, 23]. In particular, Karger and Koller [23], presented a
construction that can handle parity requirements as in our work. However, there is a
significant difference between their construction (as well as those in [27, 25]) and the

1 This setting is different from the one studied in [39, 21] in which the computational power of
the players is restricted and hence intractability assumptions can be used.

2 This upper bound works as follows. In the first round, each player Pi (1 ≤ i ≤ n) picks t
random bits ri,1, . . . , ri,t and sends the bit ri,j to Pj (1 ≤ j ≤ t). Player Pi also sends xi + ri,1 +
· · · + ri,t modulo 2 to Pn. In the second round, each of P1, . . . , Pt sends the sum (modulo 2) of the
random bits it received in the first round to Pn. Finally, Pn computes the sum (modulo 2) of all the
bits he received during the protocol which is exactly the xor of all input bits. The privacy property
of this protocol is easy to verify.

3 Schulman [36] initiated the study of sample spaces that satisfy a list of specific independence
constraints. He showed that if we are interested in having n random variables (i.e., a probability
distribution over {0, 1}n) such that only m subsets H1, . . . , Hm of them, each of size at most k, will
behave uniformly, then one can get a sample space of size O(m · 2k) (in particular, if k = O(logn)
then the sample space is of polynomial size).
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construction presented in this paper: our construction builds a uniform sample space,
while the constructions of [27, 25, 23] build nonuniform sample spaces (i.e., each s ∈ S
is selected with a different probability ps). While nonuniformity does not matter if
the goal is derandomization, it has many disadvantages if we have other applications
in mind. In particular, if we want to sample in the space then nonuniform sample
spaces may not be useful for saving random bits (the goal of the current paper): for
sampling in a uniform space dlog2 |S|e random bits are enough, while for sampling in
a nonuniform space we may need much more (depending on the actual values ps for
s ∈ S)4 and in some cases will not be able to create exactly the same distribution (see
[26]). Sampling is needed if, for example, we do not want to pay the |S| penalty in
the running time involved with derandomizing an algorithm, but we just want to run
the algorithm once. In such a case a nonuniform space does not necessarily reduce
the number of random bits required.

In addition, as mentioned, randomness is not only used for achieving efficient
algorithms. For example, in cryptographic protocols randomness is used to maintain
the secrecy of information. In such applications, we cannot completely eliminate the
use of randomness while maintaining the secrecy, so we are just interested in reducing
the number of random bits used. For such applications, other constructions such
as ε-bias (uniform) sample spaces [33, 1] are not useful, as they only guarantee that
parities are “almost” balanced. In cryptographic settings this could mean information
leakage.5

Organization. In section 2 we present the construction of small sample spaces
required for our results (its parallel version appears in section 2.4 and other extensions
appear in section 2.5). In section 3 we study the question of randomness in private
computations. The upper bound that builds on the construction of small sample
spaces, appears in section 3.2, while the lower bound appears in section 3.3. (Sec-
tion 3.1 includes some required definitions.) Finally, the appendix briefly describes an
alternative protocol, due to Canetti, to compute xor with a small number of random
bits which does not rely on our small sample spaces construction.

2. Constructing small spaces immune to parity tests.

2.1. Preliminaries. Let S ⊆ {0, 1}n be a collection of (not necessarily distinct)
binary vectors of length n. We denote by s ∈R S a choice of an element of S uniformly
at random. The distribution generated by S is the distribution induced by picking
s ∈R S.

We say that a set S is immune to a parity test T ⊆ {1, . . . , n} if

Pr
s∈RS

[⊕i∈T si = 1] =
1

2
.

Informally, this means that when considering the distribution generated by S, the
parity of variables in T is unbiased; i.e., the probability that the parity is 0 (or 1)
is exactly 1

2 . Let T1, . . . , Tm be m (nonempty) subsets of {1, 2, . . . , n}. A set S is
immune to T1, . . . , Tm if it is immune to each Ti. (Note that this does not mean that
S is immune to combinations of tests; such spaces are considered in section 2.5.)

4 In the above-mentioned work the values ps (s ∈ S) are obtained via a solution of linear systems
(over the reals) and hence they have no particular guarantee.

5 One can work with ε-bias sample spaces and argue (by using the statistical distance measure)
that although this does not give a perfect privacy, the information leakage is “small”; note, however,
that the cost of making ε negligible is in increasing the size of the sample space to super polynomial.
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In the sequel, whenever there are operations between elements of {0, 1}n they are
done in GF (2n). For example, x + y is simply the bitwise xor of x and y; the inner
product is defined by 〈x, y〉 =

∑n
i=1 xiyi mod 2. The following definition and lemma

play a central role in our constructions.

Definition 2.1. Let M be an n× ` 0–1 matrix. We define the following multiset
of size 2`:

space(M) =
{
M · ~vT | ~v ∈ {0, 1}`} .

That is, space(M) contains 2` (not necessarily distinct) vectors/strings where each is
n-bit long. The matrix M is referred to as the generating matrix of space(M). We
denote the rows of this matrix by M1, . . . ,Mn and its columns by M1, . . . ,M `.

Lemma 2.2. Consider a set Ti, and let M be a matrix as above such that∑
j∈Ti Mj 6= ~0. Then space(M) is immune to the set Ti.

Proof. We need to show that the probability of the parity of the bits in Ti is zero
is exactly 1

2 . Note that the parity of the bits of the vector M · ~vT whose indices are
in Ti is simply 1Ti ·M · ~vT , where 1Ti stands for the characteristic vector of the set
Ti. Since

∑
j∈Ti Mj 6= ~0, then 1Ti ·M = ~u, where ~u 6= ~0. The probability that the

parity of the bits in Ti is zero is the probability that 〈~u,~v〉 = 0, where ~v ∈ {0, 1}`.
Since ~u 6= ~0, this probability is exactly 1

2 .

Using this lemma, we reduce the problem of constructing a space which is im-
mune to T1, . . . , Tm to the problem of constructing a matrix M such that the rows
corresponding to each Ti do not sum up to ~0. We call such a matrix M good (with
respect to T1, . . . , Tm). All our constructions make use of this observation; i.e., their
aim is to find a good matrix M .

2.2. Randomized construction. Here we present a randomized construction
of immune spaces. While a randomized construction is not very useful in the appli-
cations, this construction exhibits the possibility of finding such spaces.

Let ` = dlogme+ k for some parameter k. The construction is simply to select a
random 0–1 matrix M of size n×`. Note that the construction depends on the number
of sets m, but it does not depend on the specific sets. Also note that space(M) is of
size at most 2 ·m · 2k and that to verify that the randomly chosen matrix M is good
takes polynomial time (in n and m).

Lemma 2.3. Let T1, . . . , Tm be a collection of sets, and let M be a random 0− 1
matrix of size n× `. With probability at least 1− 1

2k
, space(M) is immune to all sets

T1, . . . , Tm.

Proof. For convenience, we view the construction as selecting at random, one-by-
one, the n rows of the matrix M1, . . . ,Mn ∈ {0, 1}`. Fix a set Ti ⊆ {1, . . . , n} and
denote by t the maximal element in Ti. By Lemma 2.2, it is enough that

∑

j∈Ti
Mj 6= ~0.

Consider the tth step in the construction of M , when M1, . . . ,Mt−1 were already
fixed. The only row in the above sum that still should be chosen is Mt, and there is
exactly one choice, among the 2` possibilities, that will make this sum equal ~0. Hence,
the probability of failure for Ti is 1

2`
≤ 1

m·2k . Therefore, the probability that there

exists a set Ti for which we fail is at most m times larger, i.e., at most 1
2k

.
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2.3. Deterministic construction. In this section we describe a deterministic
construction. The idea is similar to what we did in the randomized case, but instead of
choosing the rows at random we will construct them deterministically entry-by-entry.
This time the construction does look at the specific sets T1, . . . , Tm in question. Let
` = dlog(m+ 1)e.

• For k = 1, . . . , n construct the kth row of M as follows.
We say that a set Ti is relevant for the kth step if k is the maximal element of
Ti. The goal in the kth step is to make sure that each of the relevant sets has
the property that

∑
j∈Ti Mj 6= ~0 (the fact that the set is relevant means that

k is the only row in the sum that was not fixed yet). For each of these sets
there is exactly one value (in {0, 1}`) for the row that violates this property
(i.e., with this value

∑
j∈Ti Mj = ~0). This implies that there are at most m

illegal choices for the kth row. However, there are 2` ≥ m+ 1 possible values
for this row; hence, at least one of them satisfies the property with respect to
all relevant sets.

Lemma 2.4. The above algorithm constructs in time poly(n,m) a matrix M such
that space(M) is immune to all sets T1, . . . , Tm.

Proof. The correctness follows from the above discussion (particularly, the choice
of ` and Lemma 2.2). The time complexity is obvious.

2.4. Parallel construction. In this section we show how immune sample spaces
can be constructed in parallel. Obviously, the randomized construction (section 2.2)
can be parallelized. Our goal, however, is to show how this can be done determinis-
tically, that is, by an NC-algorithm.

To do so, we construct a matrix M as in section 2.3 but this time in a column-
by-column fashion. Also, we think of each set Ti as a vector in {0, 1}n, which is
simply its characteristic vector. Note that if we find a column M j ∈ {0, 1}n such
that the inner product 〈Ti,M j〉 is 1 (i.e., 1 =

∑n
k=1 Ti,k ·M j

k =
∑

k∈Ti M
j
k), then Ti

has the desired property that
∑

j∈Ti Mj 6= ~0. We will use for the construction ε-bias

spaces. These are sets B ⊂ {0, 1}n of size polynomial in n and 1
ε such that, for every

x ∈ {0, 1}n (and in particular every Ti), Prb∈B(〈x, b〉 = 1) is at least 1
2 − ε. These

spaces were studied in [33, 1], which in particular proved that such spaces can be
constructed in NC1. By a simple counting argument, for every collection of t vectors
in {0, 1}n there exists b ∈ B whose inner product with 1

2 − ε of the vectors gives 1.
The idea of the construction is that this vector can be found in parallel. Let ε = 1

m
and ` = dlog 2

1+2ε
(m+ 1)e (again, the size of the space is 2` = O(m)).

• Construct an ε-bias space B.
• For j = 1, . . . , `,

consider all the sets Ti1 , . . . , Tit which were not marked as “done” yet. Find
(in parallel) a vector b ∈ B which is good for at least 1

2 −ε of these sets. Mark
these sets as “done.” Let M j = b.

As argued above, there exists some vector b ∈ B which is good for 1
2 − ε of the

sets. In order to find it in parallel, we can check for each b and each Ti whether b is
good for Ti (this can be done in O(logn) time on EREW PRAM).6 For each b, we
need to count the number of Ti’s for which it is good (this takes O(logm) time on
an EREW PRAM). Finally, we need to choose the b with the maximum number of
good sets (this takes O(logn) time on EREW PRAM). Therefore, each iteration takes

6 EREW PRAM = exclusive read exclusive write parallel random access machine.
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O(logn+ logm) time on EREW PRAM. Since there are at most O(logm) iterations,
the total time is O(logm logn+log2 m), which implies that this is an NC2 algorithm.

Lemma 2.5. Let the matrix M be constructed as above. Then, space(M) is
immune to all sets T1, . . . , Tm.

Proof. By the above discussion, no matter what is the set of unmarked Ti’s, there
exists b which is good for at least 1

2 − ε of them. Hence ` columns are enough.

2.5. Extensions of the construction. Many times we are guaranteed some
additional properties of the sets T1, . . . , Tm. Of a particular interest is the case where
for every p ∈ {1, . . . , n} it is known that p belongs to at most d of the sets (see [36]).
In this case, we are able to generate a space of size at most 2d (instead of size 2m
guaranteed by the construction of section 2.3).

Lemma 2.6. Let T1, . . . , Tm be a collection of sets such that each element appears
in at most d of them. Construct a matrix M using the construction of section 2.3
with the exception that now ` = dlog(d+ 1)e. Then, space(M) is immune to all sets
T1, . . . , Tm.

Proof. The proof is similar to the proof of Lemma 2.4, except that now the
number of relevant sets for each row k can obviously be bounded by d (instead of m).
Since 2` ≥ d+ 1, then ` columns are sufficient.

Schulman [36] considered the following problem: given sets H1, . . . , Hp construct
a space whose projection on every Hi yields a uniform distribution. Using our con-
structions, we get the following corollary, which is a new proof for the results of [36].7

Corollary 2.7.8 Let H1, . . . , Hp be a collection of sets of size at most h. Then
(1) a space of size O(p · 2h), whose projection on every Hi is uniform, can be con-
structed in time polynomial in p, n, and 2h; and (2) if in addition every element in
{1, . . . , n} appears in at most d of the Hi’s, then the construction can be made of size
O(d · 2h).

Proof. Given sets H1, . . . , Hp of size at most h define T = {T | for some i, T ⊆ Hi}
(i.e., T consists of p · 2h parity tests). Observe that if a space is immune to the sets
of T , then its projection on every Hi is uniform. Again this is a standard fact (see,
e.g., [2]); to see this, consider a set Hi. When specifying the probability of the parity
for each T ⊆ Hi, we essentially determine the Fourier transform of the distribution;
hence we uniquely determine the probability distribution over Hi. Since we require
that all the sets are immune, it implies that the probability distribution over the Hi

is the uniform one.
The two parts of the corollary now follow from Lemmas 2.4 and 2.6, respective-

ly.
It is sometimes useful to have a sample space which is not only immune to a

single test Ti but is t-wise immune; namely, if we take k ≤ t tests, then we get each
combination of the k parities with probability 2−k. This of course is possible only
if the k tests are independent (for example, if T1 and T2 are disjoint sets, then the
result of the parity test T3 = T1 ∪T2 is always the sum of the parity tests T1 and T2).
We show here how to transform our construction into a t-wise immune sample space.9

Let T = T1⊕T2⊕· · ·⊕Tk denote the set of elements that appear in an even number of

7 The construction obtained is different from that of [36]. In [36] the vectors of the space are
constructed directly without going through what we call the generating matrix. We believe that the
construction based on our approach is somewhat simpler.

8 Both this corollary and Lemma 2.6 are not used in the present paper and appear here only to
exemplify the power of our construction.

9 This transformation is standard and described here for the sake of completeness.
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sets in T1, . . . , Tk. This operation can best be viewed by looking at the characteristic
vectors of the sets. Then, the characteristic vector of T is the sum (over GF (2n)) of
the characteristic vectors of T1, . . . , Tk. We say that T1, . . . , Tk are independent if no
subset of them gives T = ∅ (alternatively, if their characteristic vectors are linearly
independent over GF (2n)).

Lemma 2.8. Given T1, . . . , Tm, let T be the collection of all (nonempty) sets of
the form Ti1 ⊕ · · · ⊕ Tik , where k ≤ t. If a sample space is immune to T , it is t-wise
immune to T1, . . . , Tm.

Proof. Let b1, . . . , bm be any boolean values, and consider the event in which,
for all i, the parity of the inputs in Ti is bi. Note that such an event is equivalent
to the event

∏m
i=1(χTi(x) − bi)/2 6= 0, where χTi(x) = (−1)Σj∈Tixi (these are just

the Fourier basis functions). Observe that once we multiply out the product in the
above expression, we have only terms of the form χA(x), where A ∈ T , i.e. the event
depends only on the parity of sets of the form A = Ti1 ⊕ · · · ⊕ Tik , where k ≤ t.

We can now use each of the constructions presented above. For example, see the
following corollary.

Corollary 2.9. Let T1, . . . , Tm be a collection of sets. There exists a sample
space which is t-wise immune to the sets T1, . . . , Tm. The size of the space is bounded
by the number of different sets of the form Ti1 ⊕ · · · ⊕ Tik (where k ≤ t) which is at
most O(

∑t
i=0

(
m
i

)
) = O(mt). This space can be constructed in time polynomial in n

and mt.

3. Privacy. In this section we consider the problem of computing xor t-privately.
We prove bounds on the (total) number of random bits used by the n players in order
to perform this task. We first present the upper bound (section 3.2) for which we use
the results of the previous section. Then (in section 3.3) we give a lower bound for
this problem. We start with some required definitions.

3.1. Preliminaries. A set of n players, P1, . . . , Pn, each possessing a single bit
xi (known only to Pi), collaborate in a protocol to compute xor (i.e., ⊕(x1, . . . , xn)).
Each player may toss coins during the protocol. This is formalized as follows: the
player Pi holds an infinite tape Ri of random bits. Each such bit gets the value 1 with
probability 1

2 (and the value 0 with probability 1
2 ), and the bits are all independent.

The number of random bits Pi uses is the position of the right-most cell read by
the player Pi on his tape Ri. The number of random bits used by the protocol
in a certain execution is the total number of bits used by all players (note that
in different executions each player Pi may use a different number of random bits).
The randomness complexity of a protocol is the worst-case (over all inputs and all
executions) number of random bits. A protocol to compute a function f is said to
be correct if for every input ~x and for every choice of the random tapes, the protocol
terminates with the value f(~x) known to all players.

Next, we define the notion of privacy (we follow, e.g., [6, 14]). For a set of players
T (sometimes called a coalition), denote by CT the communication seen by the players
in T ; that is, all messages the players in T receive during the execution of the protocol
(excluding, for convenience, the output messages). A protocol is said to be t-private
if every coalition T of size at most t sees the same distribution of communication on
inputs that look the same for players in T . Formally, for every two inputs ~x and ~y
such that xor(~x) = xor(~y) and xi = yi for all i ∈ T , for every sequence of messages
C, and for every choice of random tapes Ri for players in T , the protocol satisfies

Pr[CT = C|{Ri}i∈T , ~x ] = Pr[CT = C|{Ri}i∈T , ~y ],
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where the probability ranges over the random tapes of the players not in T .10

To simplify the presentation, we also consider a nonstandard model in which, in
addition to the n players P1, . . . , Pn, there is some trusted dealer Q. This dealer has a
multiset of vectors S, which are just strings in Σn for some set Σ. The trusted dealer
participates in the protocol in a very restricted way: Q first tosses some coins and use
their outcome to pick a random string from S; he then sends to Pi the ith coordinate
of that vector (the Pi’s have no other source of randomness); the players P1, . . . , Pn
proceed without receiving any more messages from Q.11 We assume that each vector
in S has a positive probability to be picked.

The notion of t-privacy is defined in a way similar to the standard model, but here
the definition is somewhat simpler since we assume that Q does not participate in any
coalition (he is a trusted dealer) and also that all other players are deterministic (i.e.,
they do not toss coins). That is, for every T ⊆ {P1, . . . , Pn}, every ~x, ~y as above and
every sequence of messages C, the protocol satisfies

Pr[CT = C|~x] = Pr[CT = C|~y],

where the probability ranges over the random choices made by the trusted dealer Q
(and CT includes the random bits received from Q by players in T ).

3.2. Upper bound. In this section we present a t-private protocol which com-
putes xor while using a small amount of random bits. We first show how, in the
trusted-dealer model, t-private computation of xor can be performed using only
O(t log(nt )) random bits. Then, we modify the protocol to work in the standard
model (where no such trusted dealer exists) with a penalty of O(t) in the randomness
complexity. Namely, we use O(t2 log(nt )) random bits (compared with the previously
known upper bound which is O(tn)).

We start with the protocol in the trusted-dealer model. We first assume that the
trusted dealer Q uses random bits which are uniformly distributed and completely
independent. We will analyze this protocol and as a result note that for the proof to
go through much weaker requirements regarding the random bits are needed. These
requirements are of the type satisfied by the sample spaces constructed above, and
hence Q will be able to choose its random bits from such a space. In the following
protocol (and throughout this section) all additions are modulo 2.

1. The trusted dealer Q chooses at random n− 1 random bits z1, . . . , zn−1. He
sends zi to Pi (1 ≤ i ≤ n− 1). In addition, Q sends zn =

∑n−1
i=1 zi to Pn.

2. In round i (for i = 1, . . . , n − 1), player Pi sums up the message (bit) mi−1

he received from Pi−1 in round i − 1, the random bit zi received from Q,
and its input xi, and it sends the result, mi, to Pi+1. (The first player P1

has to sum only z1 and x1 as he receives no other message; hence, we define
m0 = 0.) Similarly, in the nth round, Pn computes mn = mn−1 + xn + zn
and announces mn as the output.

10 The definition given above is sometimes called static privacy. A more general definition, where
the coalition T can be chosen (by an adversary) in an adaptive manner, was defined and discussed
in [11].

11 If we allow the trusted dealer Q to be active, he can collect the inputs of all players and compute
the answer. However, we will not be able to transform such a solution to the standard model (with
no trusted dealer).
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A simple induction shows that, for 1 ≤ i ≤ n− 1, the message mi sent by Pi satisfies:

mi = xi + zi +mi−1 =
i∑

j=1

xj +
i∑

j=1

zj .

This, together with the fact that zn =
∑n−1

i=1 zi, implies that

mn = mn−1 + xn + zn =

n∑

j=1

xj ,

and so the protocol is correct. It remains to prove the privacy of the protocol; namely,
that every coalition, given the output of the protocol and the input of coalition mem-
bers, sees the same distribution of communication. We distinguish between two types
of coalitions, depending on whether or not Pn is in the coalition. Consider a coalition
T = {i1, i2, . . . , ip}, of size p ≤ t, which does not include Pn. The view of this coalition
consists of the random bits zi1 , . . . , zip they received from Q in the first step of the
protocol and of messages mj1 , . . . ,mjr (r ≤ t) sent from players not in the coalition
to players in the coalition. We claim that, for all ~x, each assignment of values to these
p + r messages is obtained with probability 1/2p+r. Since this is true for all ~x, the
privacy with respect to this kind of coalitions follows. For each player Pjk /∈ T that
sends a message to a member of the coalition, denote by Pi(jk) the last player of the
coalition before him (formally, i(jk) is the maximum value which is smaller than jk
and Pi(jk) ∈ T ; if no such index exists then i(jk) = 0). Now, we can express each
message mjk as

mi(jk) +

jk∑

i=i(jk)+1

xi + Yjk ,

where Yjk denotes the sum
∑jk

i=i(jk)+1 zi. Clearly, given ~x, the values of zi1 , . . . , zip
and Yj1 , . . . , Yjr are completely determined by the view of T . Since each of these p+r
values depends on different zi’s, they are all equally distributed and independent.
Therefore, every communication has probability 1/2p+r, as claimed.

The case of coalitions that include the player Pn is similar. There, however, the
value of the message zn received by Pn is already determined by the other elements
of the view and the output. Hence, each communication which is consistent with the
output has probability of 1/2p−1+r.

By the above analysis, it is already clear how to define the sets to which the
sample space should be immune: for every 1 ≤ i ≤ j ≤ n − 1, let Ti,j = {i, . . . , j}.
These sets guarantee that each zij is uniformly distributed (as we have the singleton
Tij ,ij as a special case) and so is each Yjk (as it is the parity corresponding to the set
Ti(jk)+1,jk). To get the independence among these p+ r ≤ 2t values, it is sufficient to
consider the collection T of all sets which are composed of taking unions of at most 2t
disjoint sets as above (this is a standard fact; for details, see the proof of Lemma 2.8).
Each such union has at most 2t intervals; therefore, the number of sets in T can be
bounded by |T | ≤ ∑2t

i=0

(
n
2i

)
= (nt )

O(t). In other words, we replace step (1) of the
above protocol by the following.

1′. The trusted dealer Q chooses a vector ~z = z1, . . . , zn−1 from a space which
is immune to the sets in T (as constructed in the previous section). Since,
by Definition 2.1, all the spaces we construct are of size which is a power of
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2, then O(log |T |) = O(t log(nt )) random bits suffice for choosing a vector in

the sample space. Q sends zi to Pi (1 ≤ i ≤ n− 1) and zn =
∑n−1

i=1 zi to Pn.

The same proofs of correctness and privacy remain valid. Hence, we have just proved
the following theorem.

Theorem 3.1. There exists an n-party, t-private protocol in the trusted-dealer
model to compute xor using O(t log(n/t)) random bits.

To transform the above protocol to the standard model, we let the players P1, . . . , Pt
simulate the role of the trusted dealer Q. That is, we replace (1′) by the following.

1′′. Each Pj (1 ≤ j ≤ t) chooses, using O(t log(nt )) random bits, a vector ~zj =

zj1, . . . , z
j
n−1 from a space which is immune to the sets in T . Player Pj sends

zji to Pi (1 ≤ i ≤ n − 1) and zjn =
∑n−1

i=1 zji to Pn. Each Pi computes

zi =
∑t

j=1 z
j
i .

The key observation now is that if the coalition is P1, . . . , Pt, then the coalition gets no
messages (from noncoalition players) during the protocol and hence gets no additional
information. For any other coalition, there exists at least one player Pm, 1 ≤ m ≤ t,
whose random string is not known to the coalition. The same proof above, regarding
the distribution of communications, can be repeated using only the choices of Pm in
the argument. To conclude, we have proved the following theorem.

Theorem 3.2. There exists an n-party, t-private protocol to compute xor using
O(t2 log(n/t)) random bits.

Remark. Note that the size of the sets Ti,j defined above may be very large (up
to n− 1); hence the sample spaces of [36] are not enough. It should also be clear that
just by using a t-wise independent sample space the protocol fails. This is because
large sets of variables may be dependent and hence their sum (i.e., the Yjk ’s) is not
equally distributed.

3.3. Lower bound. In this section we prove a lower bound on the number of
random bits required for solving the privacy problem. We start with a simple combi-
natorial lemma to be used in the proof.

Lemma 3.3. Let S be a set of at most K distinct vectors of n coordinates (i.e.,
S ⊆ Σn, for some Σ). Then, there are k = blogKc coordinates and an assignment to
these k coordinates such that there is a unique vector ~s ∈ S which is consistent with
this assignment.

Proof. The proof is by induction on K. It can be easily verified for small values
of K (e.g., K = 2, 3). Now, given a set S, we find a coordinate i in which not all the
vectors have the same value. Choose this coordinate, and take a value which appears
in at most half of the vectors (but does appear at least once). After this we are left
with at most K

2 vectors and, by induction hypothesis, we can fix
⌊
log(K2 )

⌋
= k − 1

more coordinates so that exactly one vector in S is consistent with the fixed bits.

Again, for clarity of the presentation, we first consider the trusted-dealer model.
Let us call the set of vectors S from which the dealer Q picks its vector the support
of Q (and recall that each of these vectors is assumed to be picked with positive
probability).

Theorem 3.4. Let P be a protocol for n ≥ 3 players that allows computing xor
t-privately, t ≤ n − 2, using a trusted dealer Q. Then, S, the support of Q, has at
least 2t vectors.

Proof. By contradiction, assume that the trusted dealer has only 2t − 1 distinct
vectors (in Σn for some Σ) in its support set. By Lemma 3.3, there are t−1 processors,
Pi1 , . . . , Pit−1

, such that if each processor Pij receives a certain value sij from Q, the
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trusted dealer, then they uniquely determine that the entire vector used by Q is ~s.
Thus, in this event (which occurs with positive probability), the coalition of the t− 1
players knows all the values that Q distributed. Intuitively, in such a case, the protocol
becomes deterministic. The impossibility result follows from the fact that there is no
deterministic 1-private protocol for three or more parties (see [32]). To be more
formal, consider the protocol for n− (t−1) ≥ 3 players that is obtained by running P
while giving each Pij input 0 and each Pi (in this set and out of it) the corresponding
coordinate of ~s. It can be seen that the modified protocol is deterministic (the random
choices were fixed), 1-private (using the t-privacy of P) and correct. (A more detailed
proof can be given, following the proof of Theorem 3.6 below.)

The above theorem implies that in the trusted-dealer model t random bits are
required by the trusted dealer to allow t-private computation of xor. This is quite
close to the O(t log(nt )) upper bound proven for this model. The following theorem
shows that the same lower bound holds for the standard model, where no such trusted
dealer exists (note that the standard model is not a special case of the trusted-dealer
model since in the trusted-dealer model all other players are deterministic). One of the
difficulties in transforming the proof from the trusted-dealer model to the standard
model is the possibility that in different executions different players toss the coins.

Theorem 3.5. Let P be a protocol for n ≥ 3 players that allows computing xor
t-privately, t ≤ n − 2. Then, P requires at least t random bits; that is, there exists
an input ~x and an execution (i.e., an assignment for the random choices) in which a
total of at least t bits are used.

Theorem 3.5 follows from the following more general theorem. It claims that not
only is there an input ~x for which at least t random bits are used but that this is true
for every ~x. Moreover, it claims that not only are at least t random-bits used but that
there are at least t players who toss these bits.

Theorem 3.6. Let P be a protocol for n ≥ 3 players that allows computing xor
t-privately, t ≤ n−2. Then, for every input ~x there exists an execution of P in which
at least t players toss coins.

Proof. Suppose, toward a contradiction, that for some input vector, during every
execution of P at most s ≤ t−1 players toss coins. Assume, without loss of generality,
that ~0 is such an input, and that in some execution only players P1, . . . , Ps toss coins.
Denote by R1, . . . , Rs possible random tapes for these s players in such an execution.

We will construct a new protocol P ′ that computes xor for n − s ≥ 3 players,
Ps+1, . . . , Pn, 1-privately and deterministically. It is well known that such a protocol
does not exist (see [32]), and hence we will get the desired contradiction. To do so,
let Ps+1, . . . , Pn (who wish to compute the xor of ~x′ = (xs+1, . . . , xn)) execute the
protocol P on ~x = (0, . . . , 0, xs+1, . . . , xn); in addition, if any of these players needs
to send a message to one of P1, . . . , Ps he informs its value to everybody, and if he
needs to receive a message from one of P1, . . . , Ps he computes it himself by taking 0
as the input of each of them, the corresponding Ri (as fixed above), and the messages
they received in previous rounds (which are known to all). First we will show that
P ′ is deterministic. Clearly, on the input ~0 protocol P ′ is deterministic, but we are
using P ′ also on other inputs ~x′ = (xs+1, . . . , xn) (by running P on inputs of the form
(0, . . . , 0, xs+1, . . . , xn)). The idea is to use the privacy property of P to show that on
all these inputs P ′ has to be deterministic as well, namely, that for each input there
is only one possible execution.

Claim 3.7. P ′ is deterministic.

Proof. To prove that P ′ is deterministic we need to show that for all ~x′ the players
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never reach a point in their code that they are required to flip coins and to use it
(to be formalized below). Note that if ~x′ is the all-0 vector, then so is ~x (though ~x
has n entries while ~x′ has only n− s entries). In this case, by the assumptions, none
of Ps+1, . . . , Pn flips coins, and the whole communication is fixed to some vector of
values C. The problem is that it is not obvious that this is the case for all vectors ~x as
above (we will prove that this is the case). Let step0 be the first step in which for some
input, some of Ps+1, . . . , Pn tosses a coin. In all previous steps the communication
is deterministic (for all inputs), which implies that the messages sent are identical to
those in C. To see this, suppose this is false and consider the first step for which
on some input Pi sends to Pj the message 0 and on others he sends 1. Since this
is the first such step, this implies that Pi behaves differently when the input ~x′ is
the all-0 vector and when it is a vector in which only Pi and Pk (where Pk is any
player different than Pi, Pj , P1, . . . , Ps) have input 1. This implies that in the original
protocol, P, the coalition P1, . . . , Ps and Pj (which is of size s+1 ≤ t) could be able to
distinguish between these two inputs (when P1, . . . , Ps have randomness R1, . . . , Rs).
But, because in both cases they have the same input and the output is the same, they
should not be able to do that.

So we proved that up to step step0 for all inputs the communication is identical
to C. Now, by assumption, in this step some players toss coins and “use” them.
That is, for some input ~x′, some player Pi sends to some player Pj either a 0 or 1
both with positive probability (it can be seen that it must be that xi = 1). Again,
because so far the communication was the same for all inputs, this is true for the
vector in which only Pi and Pk have 1, which again allows the coalition P1, . . . , Ps
and Pj to distinguish between ~0 (on which the communication must be C) and this
vector (on which, with positive probability, the communication is different from C),
thus contradicting the t-privacy of the original protocol. This concludes the proof of
the claim that P ′ is deterministic.

Now, because we know that no player will be required to toss coins in P ′, we can
claim that P ′ is correct; each execution of it on input xs+1, . . . , xn has a corresponding
execution of the original protocol (on input 0, . . . , 0, xs+1, . . . , xn and with randomness
R1, . . . , Rs and where none of Ps+1, . . . , Pn tosses coins), which by assumption is
correct. Note that the inputs given to P1, . . . , Ps contribute nothing to the outcome
(had we fixed for these players inputs which are different than 0’s we may need to flip
the outcome).

Finally, we claim that P ′ is 1-private; the (deterministic) view in P ′ of any sin-
gle player Pj in {Ps+1, . . . , Pn} is the same as the view of P1, . . . , Ps together with
Pj in the original protocol (where P1, . . . , Ps have inputs 0, . . . , 0 and randomness
R1, . . . , Rs). Note that inputs for which we have the privacy requirement in P ′ re-
main so if we extend them with the inputs of P1, . . . , Ps. Hence, the 1-privacy of P ′

follows from the t-privacy of P. This concludes the proof of the theorem.

As we already remarked, the above theorem is stronger than what we actually
need to prove by the definition. It is important to notice that we prove that at
least t players need to toss coins, and that the proof does not depend on the actual
probabilities of the random choices but only on the number of possibilities. Then,
this lower bound still works in other models of randomness (such as the model which
is considered in the Appendix).

Appendix. An alternative private protocol. In this section, we briefly de-
scribe another protocol with similar properties to the protocol presented in section 3.2.
This construction does not use the notion of immune spaces. The construction was
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suggested by Ran Canetti and it appears here with his permission.

First, we need a slight modification to our model. Rather than assuming that
the players have access only to random bits, we would assume that the players can
choose uniformly at random an element from a set of size k using dlog ke bits. (As
mentioned in section 3.3, our lower bound applies to this generalized model as well.)

The protocol would be described for the trusted dealer model, and it is a variation
on our protocol. Let p be a prime such that p > n. The trusted dealer chooses at
random a polynomial q(·) over Zp of degree 2t. This is done by choosing 2t + 1
coefficients each taken from the set {0, 1, . . . , p − 1}; hence, it requires O(t log p) =
O(t logn) random bits. The trusted dealer sends to player Pi, 1 ≤ i ≤ n−1, the value

of zi = q(i), and it sends player Pn the value of zn =
∑n−1

i=1 q(i) mod p.

Similar to our protocol, each player Pi, when it receives a message mi−1, sends to
player Pi+1 the message mi = mi−1 + zi + xi mod p, where xi is the input of player
Pi. The last player Pn outputs the value mn−1 + zn + xn mod p.

The argument for correctness is simple and similar to the one of our protocol. The
privacy argument uses the fact that the view of any coalition of t players has access
to the t values of the polynomial q(·) they received from the trusted dealer, and to
at most t messages they received. It is not hard to see that, due to the fact that q
is of degree 2t, the view of any such coalition is random and independent from the
specific input to the other players. For example, assume that the coalition consists
of t players, Pi1 , . . . , Pit , not including Pn. We will use the values of the trusted
dealer to show that any view of this coalition is equally likely. The values zi1 , . . . , zit
are just the values of the polynomial q in certain t points. In addition, the view of
the coalition contains messages mij−1 where Pij−1 is not in the coalition. Consider
the value zij−1; the message mij−1 can be expressed as some value added with zij−1

modulo p. Therefore, by the appropriate choice of zij−1 we can set the value of mij−1

to any value we like. This implies, using the fact that a random degree-2t polynomial
gets every combination of at most 2t values with the same probability, that any setting
of zi1 , . . . , zit and mi1−1, . . . ,mit−1 has the same probability.
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Abstract. We study the following problem: given an interval graph, does it have a realization
which satisfies additional constraints on the distances between interval endpoints? This problem
arises in numerous applications in which topological information on intersection of pairs of intervals
is accompanied by additional metric information on their order, distance, or size. An important
application is physical mapping, a central challenge in the human genome project. Our results are
(1) a polynomial algorithm for the problem on interval graphs which admit a unique clique order
(UCO graphs). This class of graphs properly contains all prime interval graphs. (2) In case all
constraints are upper and lower bounds on individual interval lengths, the problem on UCO graphs
is linearly equivalent to deciding if a system of difference inequalities is feasible. (3) Even if all
the constraints are prescribed lengths of individual intervals, the problem is NP-complete. Hence,
problems (1) and (2) are also NP-complete on arbitrary interval graphs.
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constraints, distance constraints
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1. Introduction. A graph G(V,E) is an interval graph if one can assign to
each vertex v an interval Iv on the real line, so that two intervals have a nonempty
intersection if and only if their vertices are adjacent. The set of intervals {Iv}v∈V is
called a realization of G. The problems which we study here are concerned with the
existence of an interval realization to a graph, subject to various types of distance
(or difference) constraints on interval endpoints. These are inequalities of the form
x− y < Cxy or x− y ≤ Cxy for variables x, y and constant Cxy. Specifically, we study
the following problems (we defer further definitions to section 2).

Distance-constrained interval graph (DCIG):
INSTANCE: A graph G = (V,E) and a system S of distance con-
straints on the variables {lv, rv}v∈V .
QUESTION: Does G have a closed interval realization whose end-
points satisfy S? That is, is there a set of intervals {[lv, rv]|v ∈ V }
which form a realization of G and their endpoints satisfy S?

A special case is DCIG in which all constraints are lower and upper bounds on
interval lengths:

Bounded interval graph recognition (BIG):
INSTANCE: A graph G = (V,E) and functions L : V → N,
U : V → N.
QUESTION: Is there a closed interval realization of G such that
for each vertex v, L(v) ≤ |Iv| ≤ U(v)?

In the following problem, each interval must have a prescribed length
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Measured interval graph recognition (MIG∗):
INSTANCE: A graph G = (V,E) and a length function L : V → N.
QUESTION: Is there a closed interval realization of G in which for
every v ∈ V , |Iv| = L(v)?

We shall prove here that even MIG∗, the most restricted problem of the three,
is strongly NP-complete. Unlike the situation with interval graphs, the fact that the
intervals must be closed causes some loss in generality. In contrast, we show that
when the interval graph admits a unique consecutive clique order (up to complete
reversal), DCIG is polynomial, and, hence, so are the other two problems. The class
of graphs satisfying this property (which we call UCO graphs) properly contains the
class of prime interval graphs and is recognizable in linear time. Our solution is based
on reducing the problem to a system of difference constraints. We also prove that
we cannot do better, by showing that the problem of solving a system of difference
constraints and the problem BIG on UCO graphs are linearly equivalent.

Interval graphs have been intensively studied due to their central role in many
applications (cf. [33, 17, 11]). They arise in many practical problems which require the
construction of a time line where each particular event or phenomenon corresponds
to an interval representing its duration. Among the applications are planning [3],
scheduling [22, 31], archaeology [26], temporal reasoning [2], medical diagnosis [29],
and circuit design [36]. There are also nontemporal applications in genetics [6] and
behavioral psychology [9]. In the human genome project, a central problem which
bears directly on interval graphs is the physical mapping of DNA [8, 25]: it calls for
the reconstruction of a map (a realization) for a collection of DNA segments based
on information on the pairwise intersections of segments.

In the applications above, size and distance constraints on the intervals may
occur naturally: the lengths of events (intervals) may be known precisely or may
have upper and lower bounds. The order or distance between two events may be
known. This is often the case in scheduling problems and temporal reasoning. In
physical mapping, certain experiments provide information on the sizes of the DNA
segments [21]. Our goal here is to study how to combine those additional constraints
with precise intersection data.

Green and Xu (cf. Green and Green [20]) developed and implemented a program
(called SEGMAP) for construction of physical maps of DNA, which utilizes inter-
section and size data. The intersection data is obtained by experimentally testing
whether each of the segments contain a sequence of DNA (called STS) which appears
in a unique, unknown location along the chromosome. Hence, two segments which
contain a common STS must intersect. Their algorithm works in two phases: the first
phase ignores the size data. It obtains a partition of the STSs into groups, and a linear
order on the groups. The second phase uses the partial order of phase 1 together with
the size data to obtain the map using linear programming algorithms. Our results in
section 3 imply that faster algorithms (utilizing network flow techniques) can be used
under certain conditions on the data. However, the results in section 5 imply that the
general problem tackled by SEGMAP is intractable (unless P=NP) even with perfect
data.

Recognizing interval graphs (i.e., deciding if a graph has an interval realization)
can be done in linear time [7, 28, 23]. Surprisingly, much less is known about the
realization problem when the input contains additional constraints on the realization.
The special case of MIG where all intervals have equal (unit) length corresponds
to recognizing unit interval graphs [33], which can be done in linear time [10]. The
special case of DCIG, where all distance constraints have the form rv − lu < 0 or
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lv − ru ≤ 0, is the problem of seriation with side constraints [27, 19] (also called
interval graph with order constraints), which can also be solved in linear time [32].
When DCIG is further restricted to the special case where for each pair u, v, where
(u, v) 6∈ E, we have either the constraint rv − lu < 0 or ru − lv < 0. The problem
is equivalent to recognizing an interval order, which can be done in linear time [4].
Fishburn and Graham [12] discussed a special case of BIG where all intervals have
the same pair p and q of upper and lower bounds. For each p and q, they characterized
the resulting class of interval graphs (and interval orders) in terms of the family of
minimal forbidden induced subgraphs (respectively, suborders). They proved that
such a family is finite if and only if p

q is rational. In this case, for integer p and q,

their characterization yields an exponential time nO(pq) algorithm for identification
of such graphs (orders), where n is the number of vertices. Isaak [24] studied a
variant of BIG in which the input is an interval order, there are upper and lower
integer bounds on individual interval lengths, and the question is whether there exist
a realization in which all endpoints are integers. Using Bellman’s notion of a distance
graph, Isaak gave an O(min(n3, n2 1

2 lognC)) time algorithm for that problem, where
C is the sum of bounds on lengths. He also posed the more general problem of BIG,
which we answer here. We generalize distance graphs to handle both strict and weak
inequalities on endpoints in order to solve DCIG on a particular class of graphs.

There have been other studies on the realization of a set of intervals based on
partial information on their intersection, length, and order. Those are different from
our problems here inasmuch as the information on intersection is incomplete; i.e.,
the underlying interval graph is not completely known. Among these are studies
on interval sandwich [18], interval satisfiability [19, 37, 32], on interval graphs and
orders which have realizations with at most k different lengths [11, Chapter 9], on the
smallest interval orders whose representation requires at least k different lengths [11,
Chapter 10], and on the number of distinct interval graphs and orders on n vertices
which have a realization with k given lengths [35].

The paper is organized as follows: section 2 contains some preliminaries and
background. Section 3 studies problem DCIG on UCO graphs and proves its linear
equivalence to solving systems of difference constraints. This implies in particular an
O(min(n3, n2 1

2 lognC)) time algorithm for all three problems on UCO graphs. In sec-
tion 4 we sketch a simple proof that DCIG is strongly NP-complete. Section 5 proves
the stronger result that MIG∗ is strongly NP-complete. The reduction (performed
in two steps) is rather involved, but we feel it gives insight on the interplay between
the topological side of the problem (i.e., intersection, open or closed intervals) and its
metric aspect (i.e., the intervals’ sizes).

2. Preliminaries. A graph G = (V,E) is called an intersection graph of a family
of sets S = {Iv}v∈V if Iv ∩ Iu 6= ∅ ⇔ vu ∈ E. G is called an interval graph if it is
an intersection graph of a family S = {Iv}v∈V of intervals on the real line. In that
case, S is called a realization of G. Depending on the convention, each interval may
be either closed or open, with no loss of generality. For simplicity, we sometimes use
the same names for the intervals and for the corresponding vertices.

For an interval I denote its left and right endpoints by l(I) and r(I), respectively.
The length of I, denoted |I|, is r(I) − l(I). If G has a realization in which all the
intervals are of equal length, then it is called a unit interval graph.

Let C1, . . . , Ck be the maximal cliques in a graph G = (V,E), where V =
{v1, . . . , vn}. The clique matrix of G is the n × k zero-one matrix C(G) = (mij),
where mij = 1 if and only if vi ∈ Cj . If the columns in C(G) can be permuted so
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that the ones in each row are consecutive, then we say that C(G) has the consecutive
ones property, and we call such a permutation of the columns a consecutive (clique)
order. According to Gilmore and Hoffman [16], G is an interval graph if and only if
C(G) has the consecutive ones property.

For two nonintersecting intervals x, y, where x is completely to the left of y, we
write x≺y or, equivalently, y�x. Let P = (V,<) be a partial order. Call < an interval
order if there exists a set of intervals S = {Iv}v∈V such that v < u if and only if Iv≺Iu.
S is called a realization for P . Call G = (V,E) the incomparability graph of P if for
each u, v ∈ V , uv ∈ E if and only if u and v are incomparable in P ; i.e., u 6< v and
v 6< u. Hence, G is an interval graph if and only if it is the incomparability graph of
some interval order. In this case we will say that the graph G admits the order <.

For a vertex v ∈ V in the graph G = (V,E), denote N(v) = {u ∈ V |uv ∈ E}
and N [v] = N(v) ∪ {v}. For a vertex set U ⊆ V denote N [U ] = ∪u∈UN [u] and
N(U) = N [U ]\U . A set M ⊆ V is called a module in G = (V,E) if for each x, y ∈M ,
and for each u 6∈ M : xu ∈ E ⇔ yu ∈ E. Surely, V is a module, and for each v ∈ V ,
{v} is a module. Such modules are called trivial. If all modules in G are trivial, then
G is called prime. For a subset X ⊂ V define E[X] = {uv ∈ E|u, v ∈ X}. For a
module M in the graph G, create the graph G′ = (V ′, E′), where V ′ = (V \M)∪{v},
and E′ = E[V \M ]∪{uv|u ∈ N(M)}. G′ is said to be obtained from G by contracting
M to v. We usually denote by n and m the number of vertices and edges, respectively,
in the graph.

3. Distance constraints in UCO graphs. We call an interval graph uniquely
clique-orderable (UCO for short) if it has a unique consecutive clique order, up to
complete reversal, in every realization. An interval graph G is UCO if and only if the
only nontrivial modules in it are cliques [34]. Note that G is UCO if and only if the
interval order admitted by G is unique, up to complete reversal, because an interval
order of the vertices of G uniquely determines a linear order of the maximal cliques in
G and vice versa. Denote this order by ≺G. Note also that the class of UCO graphs
properly contains the class of prime interval graphs. UCO graphs can be recognized
in linear time by applying the PQ-tree algorithm of Booth and Lueker [7] and noting
that G is UCO if and only if the final tree consists of a single internal Q-node and
the leaves. This procedure also computes ≺G in O(m+ n) time.

In this section we study the problem DCIG when the input graph is UCO. We
show how to reduce this problem, in linear time, to the problem of deciding whether
a system of difference constraints is feasible. Hence, DCIG, BIG, and MIG are all
polynomial on UCO graphs. We also prove that for BIG and DCIG we cannot do
any better, since deciding the feasibility of a system of difference constraints can be
reduced in linear time to an instance of BIG with a UCO graph.

3.1. A polynomial algorithm for DCIG on UCO graphs. Let P = (G,A)
be an instance of DCIG, where G = (V,E) is UCO and A is a set of difference
inequalities on the interval endpoints. Construct two systems T and T̄ of difference
constraints on the variables {lv, rv}v∈V , as follows: both systems include all inequal-
ities in A. In addition, for each x, y ∈ V , if x≺Gy then T contains an inequality
rx < ly, and T̄ contains an inequality ry < lx. If xy ∈ E then both T and T̄ contain
an inequality rx ≥ ly (and ry ≤ lx). With these definitions we prove Lemma 3.1.

Lemma 3.1. P has a realization if and only if either T or T̄ has a feasible
solution.

Proof. If X = {l̃v, r̃v}v∈V is a feasible solution to T or to T̄ , then X is a solution
to A, and {[l̃v, r̃v]}v∈V realizes G. On the other hand, let {[l̃v, r̃v]}v∈V be a realization
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of G, whose endpoints satisfy A. Then the order of the intervals {[l̃v, r̃v]}v∈V on the
real line is either ≺G or its reversal. Therefore, {l̃v, r̃v}v∈V is a feasible solution to
either T or T̄ .

Hence, we can solve our problem by deciding whether system T or T̄ is feasi-
ble. We shall prove now that a system S of weak and strict difference constraints
on n variables is reducible in linear time to a system S′ which consists of weak dif-
ference constraints, with numbers only O(n) times larger. (Standard transformation
techniques [14] would give numbers O(2L) times larger for binary input length L.)

Assume all constants in S to be integral, and fix ε ≤ 1
n . Define S′ to include

every weak inequality x − y ≤ c in S, and a weak inequality x − y ≤ c − ε for every
strict inequality x − y < c in S. Note that the number of variables and number of
inequalities in the two systems is the same, and the constants in S′ (after multiplying
by an appropriate factor to restore integrality) are larger than the constants in S by
a factor of Θ(n).

Lemma 3.2. S has a feasible solution if and only if S′ has one.

Proof. The “if” direction is trivial, since a feasible solution to S′ also satisfies S.

To prove the “only if,” we generalize the notion of a distance graph (cf. [1, p.
103]) to handle strict and weak inequalities: for a system T of difference constraints,
construct a directed weighted graph D(T ) = (V,A), with arc weights and arc labels,
as follows: for every constraint x− y ≤ Cxy or x− y < Cxy add an arc (y, x) to D(T )
with weight Cxy and label the arc ≤ or <, respectively. D(T ) is called the distance
graph of the system T . The weight of a path (or a cycle) in this graph is the sum of
the weights of its arcs. Bellman has shown that when all inequalities in T are weak,
T is feasible if and only if D(T ) contains no negative cycle ([5]; see also [1, p. 103]).

Suppose S′ is not feasible. Then D(S′) must contain a negative-weight cycle
c. Let w(c) and w′(c) be the total weight of c in D(S) and D(S′), respectively.
Distinguish two cases:

• All arcs in c have labels ≤. Then w(c) = w′(c) < 0. But

w(c) =
∑

(y,x)∈c
Cxy ≥

∑
(y,x)∈c

(x− y) = 0.(1)

Hence, S is infeasible.
• c contains an arc marked <. Since the weight of each arc in c differs from the

weight of the corresponding arc in c′ by no more than ε, we get

w(c) ≤ w′(c) + nε ≤ w′(c) + 1 < 1.

Since the weights in D(S) are integral, it follows that w(c) ≤ 0. Since the
cycle c in D(S) contains an arc marked <, the inequality (1) is strict, namely,
w(c) > 0, so S is infeasible.

Corollary 3.3. A system T is feasible if and only if the weight of every cycle
in its distance graph D(T ) is either positive, or it is zero and the cycle consists of ≤
arcs only.

We now show that addition of identical strict inequalities to the equivalent systems
S and S′ above maintains the equivalence between them. (We will need this property
in section 5.3.) For constants {Ci}i∈I1∪I2∪I3 , define the following systems S1, S2, S

′
2,

and S3 on the set of variables X = {xi}ni=1:
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xji − xki ≤ Ci, i ∈ I1,(S1)

xji − xki < Ci, i ∈ I2,(S2)

xji − xki ≤ Ci − ε, i ∈ I2,(S′2)

xji − xki < Ci, i ∈ I3.(S3)

Lemma 3.4. Let S = S1 ∪ S2 ∪ S3 and S′ = S1 ∪ S′2 ∪ S3, where all Ci’s are
integers and ε < 1

n . S has a feasible solution if and only if S′ has one.
Proof. The proof is by induction on the size of I3. For I3 = /o, this is Lemma 3.2.

Suppose both S and S′ have feasible solutions and consider adding a single strict
inequality E: x− y < C to both systems. This implies adding an arc e = yx labeled
< with w(e) = C to both distance graphs D(S) and D(S′). By Corollary 3.3, it
suffices to prove that there exists a cycle of nonpositive weight passing through e in
D(S ∪ E) if and only if such a cycle exists in D(S′ ∪ E). But for every simple path
p from x to y, wS′(p) = wS(p) − kε, where k < n and wS(p) is an integer. Hence,
dwS′(p)e = wS(p), and since C is integral, wS′(p ∪ e) ≤ 0 if and only if wS(p ∪ e) ≤
0.

By Lemmas 3.1 and 3.2, solving an instance of DCIG linearly reduces into de-
termining if at least one of two systems of difference constraints is feasible. Using the
distance graph reformulation, the feasibility of such a system with M weak inequali-
ties on N variables, with sum of absolute values of arc weights C, can be decided in
O(min(NM,

√
NM logNC)) time [30, 13]. In our instance (G,A) there are n vertices,

so N = 2n,M = Θ(n2). Hence Corollary 3.5 follows.
Corollary 3.5. Deciding if a UCO graph with difference constraints has a

realization can be done in O(min(n3, n2 1
2 lognC)) time.

Note that the algorithms of [30, 13] for deciding the feasibility of a system also
produce a feasible solution if one exists. This enables construction of a realization (if

one exists) in O(min(n3, n2 1
2 lognC)) time.

3.2. Reducing a system of difference constraints to BIG on UCO graphs.
Given a system of weak difference constraints, we shall show how to reduce it, in lin-
ear time, to an equivalent instance of BIG, in which the graph is UCO. According to
Lemma 3.2, the assumption that all constraints are weak can be made without loss
of generality.

Let P be the following system of weak difference constraints in the variables
X = {x1, . . . , xN}:

xji − xki ≤ ci, i = 1, . . . ,M.(P)

Fix C > 1 +
∑M

i=1 |ci|, and let c′i = ci + (ji − ki)C. Define a new system P ′ of
difference constraints on the same variable set X:

xji − xki ≤ c′i, i = 1, . . . ,M.(P′)

Note that the choice of C guarantees that c′i > 1 (< −1) if and only if ji > ki
(ji < ki), so P ′ can be rewritten as

xji − xki ≤ c′i, ji > ki,
xki − xji ≥ −c′i, ji < ki,

(P′)
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where all right-hand-side terms are larger than one.

We call a solution {x̃i}Ni=1 to P ′ monotone if x̃i < x̃i+1−1 for each i = 1, . . . , N−1.

Lemma 3.6. P has a solution if and only if P ′ has a monotone solution. More-
over, if X̄ = {x̄i} is a feasible solution to P for which ∆ = max{x̄i} − min{x̄i} is
minimal, then X̄ ′ = {x̄′i|x̄′i = x̄i + iC} is a monotone feasible solution to P ′.

Proof. Suppose P ′ has a monotone solution x′1 < x′2 < · · · < x′N . Let x̃i = x′i−iC
for each 1 ≤ i ≤ N . By P ′ we get, for each 1 ≤ i ≤M : x̃ji − x̃ki = x′ji − x′ki − (ji −
ki)C ≤ c′i− (ji− ki)C = ci. Therefore, the ith inequality in P is satisfied by {x̃i}Ni=1.
Hence, P has a feasible solution.

Let x̃1, . . . , x̃N be a solution of P for which ∆ = max{x̃i} −min{x̃i} is minimal.
(P defines an intersection of closed half-spaces, which is a closed set; therefore, there
is a solution attaining this minimal value.) By [5], ∆ is the sum of arc weights along
some simple path in the distance graph D(P ); hence, ∆ < C − 1. Let x′i = x̃i + iC,
for each 1 ≤ i ≤ N . By P , for each 1 ≤ i ≤ M we get the following: x′ji − x′ki =

x̃ji − x̃ki + (ji − ki)C ≤ ci + (ji − ki)C = c′i. Hence, X ′ = {x′i}ki=1 is a feasible
solution of P ′. x̃i − x̃j ≤ ∆ < (C − 1)(j − i) for each 1 ≤ i < j ≤ N ; hence,
x′i − x′j = x̃i − x̃j + (i− j)C < −1, and X ′ is monotone.

For the above system P , define J = (G,U,L) to be the following BIG instance
(compare Figure 1):

• G is the intersection graph of the set of intervals A∪B∪W , defined as follows:
– A = {ai}Ni=0, where ai = [i, i+ 1];

– B = {bi/2}2N+1
i=1 , where bx = [x, x];

– W = {wjiki}Mi=1, where if ji > ki then wjiki = [ki, ji], and if ji < ki then

wjiki = [ji + 1
4 , ki − 1

4 ].
• The length constraints are as follows:

– U(ai) = ∞, L(ai) = 0;
– for integral i, U(bi) = L(bi) = 0 and U(bi+ 1

2
) = L(bi+ 1

2
) = 1;

– if ji > ki, then L(wjiki) = 0, U(wjiki) = c′i;
– if ji < ki, then L(wjiki) = −c′i − ε, where ε < 1/N , and U(wjiki) = ∞.

Lemma 3.7. G is UCO.

Proof. Let G′ be the intersection graph of A ∪ B. It is easy to see that G′ is
prime, and, hence, it has a unique clique order [34]. Moreover, G′ has exactly 2N + 1
maximal cliques, each one containing (among other vertices) a unique and distinct bi.
The set of maximal cliques in G is {N [bx]}bx∈B ; namely, each clique is distinguished
by a single bi. Since G′ is UCO, its unique clique order determines a unique linear
order on {bx|x ∈ B} and, hence, also on the maximal cliques of G. Hence, G is
UCO.

Theorem 3.8. P has a feasible solution if and only if J has a realization.

Proof. Only if: Suppose {x̃i}Ni=1 is a feasible solution to P for which ∆ =
max{x̃i} − min{x̃i} is minimal. By Lemma 3.6, {x′i}Ni=1, where x′i = x̃i + iC is a
monotone solution to P ′. Choose arbitrary x′0 < x′1 − 1, x′N+1 > x′N + 1. Define the
following set R ∪ T ∪ S of intervals:

• T = {Ti}Ni=0, where Ti = [x′i, x
′
i+1];

• R = {Ri/2}2N+1
i=1 , where Ri = [x′i, x

′
i] if i is integral, and Ri+ 1

2
= [

x′
i+x

′
i+1−1

2 ,
x′
i+x

′
i+1+1

2 ] otherwise;
• S = {Si}Mi=1, where Si = [x′ki , x

′
ji

] if ji > ki, and Si = [x′ji + ε
2 , x

′
ki
− ε

2 ] if
ji < ki.

Since X ′ is monotone, the intersection graph of R ∪ T ∪ S is isomorphic to G.
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Fig. 1. The graph G used in the reduction (top) and a realization for it (bottom).

The length bounds on vertices of T and R are trivially satisfied. If ji > ki then
|Si| = x′ji − x′ki ≤ c′i as required. If ji < ki then x′ki − x′ji ≥ −c′i, so indeed |Si| =
x′ki − x′ji − ε ≥ −c′i − ε, satisfying the length bounds on the vertices of S.

If: Suppose J has a realization. Let {yi}Ni=1 be the points in a realization of J
which correspond to the intervals {bi}Ni=1 (which have length zero). Without loss of
generality yN > y1, because otherwise we can reverse the realization. Since G is UCO,
the order of the intervals in J is identical to the order of the intervals A∪B∪W in the
definition of G. Therefore yi < yj if and only if i < j, and, due to the length constraint
on bi+ 1

2
, yi < yi+1 − 1 for i = 1, . . . , N − 1. Let Si be the interval corresponding to

wjiki in the realization. Define a system P ′′ of difference constraints as follows:

xji − xki ≤ c′i, ji > ki,
xki − xji > −c′i − ε, ji < ki.

(P′′)

If ji < ki then yki −yji > |Si| ≥ −c′i− ε, and if ji > ki then yji −yki ≤ |Si| ≤ c′i.
It follows that {yi}Ni=1 is a monotone solution to P ′′. A proof similar to Lemma 3.2
implies that P ′ and P ′′ are equivalent, so P ′ is feasible. We would like to show that
P ′ has a monotone solution. Let Q′ be the system of constraints xi < xi+1 − 1,
i = 1, . . . , N − 1. P ′ ∪ Q′ and P ′′ ∪ Q′ have only monotone solutions. According to
Lemma 3.4, adding Q′ to both P ′ and P ′′ maintains the equivalence between them.
But a monotone solution of P ′′ realizes P ′′ ∪Q′; hence, P ′ has a monotone solution
and according to Lemma 3.6 P is feasible.

Corollary 3.9. The problem of deciding whether there exists a feasible solution
to a system of difference constraints is linearly reducible to the problem BIG on a
UCO graph.
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Fig. 2. The vi’s can be squeezed between the ai’s if and only if a 3-partition exists.

4. DCIG is NP-complete. We will now show that although DCIG is polyno-
mial when restricted to UCO graphs, it is NP-complete in general. A stronger result
will be proven in the next section, but we include a sketch of this proof as it is much
more transparent.

Theorem 4.1. DCIG is strongly NP-complete.

Proof. We show a pseudo-polynomial reduction from the problem 3-PARTITION
which is known to be strongly NP-complete (see, e.g., [15]).

An instance of 3-PARTITION is a set X of n = 3k real numbers x1, . . . , xn ∈
( 1
4 ,

1
2 ) such that

∑n
i=1 xi = k. The question is to determine whether there exists a

partition of X into k subsets (which have to be triplets) X1, . . . , Xk so that for each
1 ≤ j ≤ k,

∑
x∈Xj

x = 1.

Let X = {x1, . . . , xn} be an instance of 3-PARTITION. Define an instance of
DCIG, I = (G,S) where G is the empty graph on the vertices {vj}nj=1 ∪ {aj}kj=0,
and S consists of the following three types of constraints:

• r(vj)− l(vj) ≥ xj for each 1 ≤ j ≤ n;
• l(aj+1)− r(aj) = 1 for each 0 ≤ j ≤ k − 1;
• r(a0) ≤ r(vj) ≤ l(ak) for each 1 ≤ j ≤ n.

We shall see that I is satisfiable if and only if X is a “yes” instance (see Figure 2).
Assume for now that all intervals in X must be open.

Suppose there exists a partition X1, . . . , Xk as required, where Xj = {xij}3i=1. De-

fine sij =
∑i

r=1 x
r
j , s

0
j = 0. Examine the set of intervals T = {Iaj}kj=0∪{Ivij}1≤j≤k,1≤i≤3

where Iaj = (2j−1, 2j) and Ivi
j

= (2j+ si−1
j , 2j+ sij). The intervals in T are disjoint,

and their endpoints trivially satisfy S; hence, T is a realization of I.

Conversely, suppose {Iai}ki=0 ∪ {Ivi}ni=1 is a realization of I. For each 1 ≤ j ≤ k
define Ij = (r(aj−1), l(aj)), Xj = {xi|Ivi ⊆ Ij}. According to the constraints, l(a0) <
r(a0) < · · · < l(ak) < r(ak), the Ij ’s do not intersect each other, and therefore the sets
Xj are disjoint. Moreover, every xi is a member of some Xj . Therefore, X1, . . . , Xk

is a partition of X. For each 1 ≤ j ≤ n, since G is empty all the Ivi ’s are disjoint;
hence,

∑
xi∈Xj

xi ≤ |Ij | = 1; and, hence, X1, . . . , Xk form a 3-partition.

We assumed here that all intervals in the realization are open. To form a closed
realization, it suffices to modify the reduction by allowing an interval of length 1 + ε
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Fig. 3. The K1,3 graph shown (right) has a realization (left) if all intervals but c are closed.

(instead of length 1) for each “gap” interval [r(ai−1), l(ai)], where ε is sufficiently
small. (If each ai = pi

qi
, where pi,qi are integers, then ε < 1

4 (maxi qi)
−3 suffices.)

Since 3-partition is strongly NP-complete, and the reduction is pseudopolynomial,
our problem is strongly NP-complete.

5. Recognizing measured interval graphs is NP-complete. In this section
we prove the NP-completeness of the problem MIG∗, introduced in section 1. The
main part in this proof is a hardness result for the following, slightly more general
problem in which we specify in advance for each interval whether it should be closed
or open:

Recognizing a measured interval graph with specified end-
points (MIG):
INSTANCE: A graph G = (V,E), a nonnegative length L(v) for
every v ∈ V , and a function φ : V → {open, closed}.
QUESTION: Is there a realization of G in which the length of Iv
is exactly L(v), and Iv is open if and only if φ(v) = open?

We shall denote such an instance by P = (G,L, φ). When P is a “yes” instance,
we say that P is a measured interval graph (with endpoint specification). We shall
first prove that MIG is NP-complete and then reduce MIG to MIG∗.

The issue of endpoint specification seems unnatural at first sight. It is well known
that for interval graphs in general the endpoint specification can be arbitrary; namely,
a graph is interval if and only if it has a realization for any possible specification of
endpoints. This is not the case in the presence of length constraints. For example, a
K1,3 graph with length 1 assigned to all vertices has no realization if all intervals are
open (or all closed), but it has a realization precisely if the degree-3 vertex and two
of the others are closed, as in Figure 3.

We shall often use the following implicit formulation for the problem by repre-
senting G and φ using intervals and using L to modify their length:

MIG: Implicit formulation:
INSTANCE: A pair (T, L) where T = {Ix}x∈V is a set of intervals
and L : V → Q+ is a length function.
QUESTION: Is there a set of intervals S = {Jx}x∈V s.t. (i) Jx ∩
Jy 6= /o if and only if Ix ∩ Iy 6= /o, (ii) |Jx| = L(x) for all x, (iii) Jx is
closed if and only if Ix is closed.

This formulation is sometimes more convenient as it suggests a possible realiza-
tion. We need the following notation and definitions.

Definition 5.1. Let P = (G,L, φ) be a measured interval graph with endpoints
specification, and let U ⊆ V be a set of its vertices. Define the measured interval graph
PU induced by P on U to be (GU , LU , φU ), where GU is the subgraph of G induced
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on U , and LU , φU are the restrictions of L and φ, respectively, to U .
Call two MIG instances P = (G,L, φ) and P ′ = (G′, L′, φ′) isomorphic if there is

a graph isomorphism f between G and G′, and for each v ∈ V (G) the following holds:
L(v) = L′(f(v)) and φ(v) = φ′(f(v)); namely, the length and closure properties of
intervals are preserved by f . In this case denote P ∼= P ′.

Definition 5.2. Let P = (G,L, φ) be an instance of MIG. Let S = {I1, . . . , I|V (G)|}
be a realization of P . Define Length(S) = sup{x ∈ I|I ∈ S} − inf{x ∈ I|I ∈ S}.
Define Length(P ) = inf{Length(S)|S is a realization of P}.

5.1. Basic structures. We now describe three “gadgets” which are building
blocks in our NP-completeness construction and prove some of their properties. The
structure of these gadgets assures us that their realization has very few degrees of
freedom. To formalize this we introduce the following definition.

Definition 5.3. Two realizations of the same interval graph are isometric if
they are identical up to reversal and an additive shift. Namely, there exists a function
f(x) = s · x+ c where s = ±1 and c ∈ R, and f(Ij) = I ′j for all j. Let P = (G,L, φ)
be an instance of MIG. We call U ⊆ V (G) rigid in P if in any two realizations of P ,
the sets of intervals realizing U are isometric. In particular, all endpoints are located
at fixed distances from the leftmost endpoint, including the rightmost one. Thus in
every realization U has the same length. If V (G) is rigid in P , we call P rigid.

Note that the fact that U is rigid in P does not imply that PU is rigid. For
example, the instance P defined implicitly by the intervals in Figure 3 is rigid, and
in particular {b, c, d} is rigid in P , but P{b,c,d} is not rigid.

5.1.1. The switch. We first define the switch, a gadget which will be used as
a toggle in larger structures. For the parameter real value a ≥ 1, define the MIG
instance Switch(a) = (G,L, φ) as follows (compare Figure 4): G is the graph on the
five vertices v1, v2, v3, v4, v5, with edges v1v2, v2v3, v2v4, v3v4, v4v5. L assigns lengths
0, 1

2 , 1,
1
2 , a− 1 to v1, . . . , v5, respectively, and φ(v) specifies v3 to be open and all the

other vertices to be closed.
A realization {I1, I2, I3, I4, I5} of a Switch(a) will be called straight if I1 is to

the left of I5. Otherwise, it will be called reversed. We say that such a realization is
located at I3. For a straight realization U of a Switch(a) located at (x, x+ 1), denote
by −U the reverse realization located at (x + a − 1, x + a). Hence, −U is a “mirror
image” of U , covering the same interval [x, x+ a] along the real line.

Lemma 5.4. Switch(a) is rigid. In particular, Length(Switch(a)) = a.
Proof. Let S be a straight realization, as in the top left of Figure 4. Suppose

S′ is another realization such that both leftmost endpoints I1 and I ′1 are identical.
The intersection graph of a Switch(a) is prime; hence, I3 is between I1 and I5,
and l(I5) ≥ l(I1) + 1. But l(I5) ≤ l(I4) + 1

2 ≤ l(I2) + 1
2 + 1

2 ≤ l(I1) + 1
2 + 1

2 ;
therefore, all inequalities hold as equalities. In particular, Length(S) = a, yielding
Length(Switch(a)) = a.

Note that Lemma 5.4 implies that a realization of a straight Switch(a) located
at (x, x+ 1) is unique. The same is true for a reversed Switch.

Lemma 5.5. Let P = (G,L, φ) be an instance of MIG, and let S = {I(v)}v∈V (G)

be a realization for it. Let U ⊆ V be a module such that PU ∼= Switch(a). Then for
x, y ∈ N(U), |I(x) ∩ I(y)| ≥ 1.

Proof. Let U = {vi}5i=1, with vertices numbered in the same order as in the
definition of a Switch. According to Lemma 5.4, I(v1) and I(v5) are one unit apart,
but both of them intersect I(x) and I(y). Therefore, I(x) ∩ I(y) contains the unit
length interval between I(v1) and I(v5), yielding |I(x) ∩ I(y)| ≥ 1.
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Fig. 4. The Switch (bottom), a straight realization (top left), and a reversed realization (top right).

Fig. 5. The Fetters (bottom) and a realization of it (top). The distance between the Switches
v1 and v2 is fixed.
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5.1.2. The fetters. Our second gadget binds two Switches and imposes a pre-
scribed distance between them. For positive real parameters, d, r1, r2, and two sets of
vertices, U1 and U2, define a five-parameter instance of MIG, Fetters(d, r1, r2, U1, U2)
or, in short, Fetters = (G,L, φ), as follows:

• U1 and U2 are modules in G, and each of them induces a Switch. More
precisely, there exist constants a1, a2 such that FettersU1

∼= Switch(a1),
FettersU2

∼= Switch(a2).
• The graph G̃ = (Ṽ , Ẽ), constructed from G by contracting U1, U2 into vertices
v1, v2, respectively, is as follows (compare Figure 5):

– Ṽ = {vtot} ∪ ∪i=1,2{vi, vendi , vshorti , vlongi };
– Ẽ = Ê∪E1∪E2, where Ê = {(vshort2 , vlong1 ), (vshort1 , vlong2 ), (vlong1 , vlong2 ),

(vlong2 , v1), (vlong1 , v2)} andEi = {(vshorti , vlongi ), (vshorti , vendi ), (vendi , vlongi ),

(vshorti , vtot), (vtot, vlongi ), (vshorti , vi), (vi, v
long
i ), (vi, v

tot), (vtot, vi)} for
i = 1, 2.

• The lengths for the remaining intervals are
– L(vtot) = r1 + r2 + d− 1;
– L(vshorti ) = ri for i = 1, 2;

– L(vlongi ) = ri + d for i = 1, 2;
– L(vendi ) = 0 for i = 1, 2.

• φ specifies vtot to be open, and all the other intervals outside U1, U2 to be
closed.

When there is no confusion, we shall use the vertex and the corresponding interval
in the realization interchangeably. For example, l(vshorti ) is the position of the left
endpoint of the interval corresponding to vshorti in the realization, |vshorti | is its length,
etc.

Call a realization of Fetters straight if v1 is to the left of v2. Otherwise call the
realization reversed. A realization of Fetters is said to be located at the interval cor-
responding to vtot. The Fetters instance fixes the distance between its two Switches.
To formalize this notion we need the following definition.

Definition 5.6. Let P = (G,L, φ) be an MIG instance. Let M,M ′ ⊆ V (G) be
modules in G where PM ∼= Switch(a) and PM ′ ∼= Switch(a′). For a realization of P ,
in which I and I ′ are the intervals corresponding to the middle vertices in M and M ′,
respectively, define Dist(M,M ′) = |l(I)− l(I ′)|.

Lemma 5.7. Ṽ \{v1, v2} is rigid in the Fetters. In particular, in every realization
of the Fetters, Dist(U1, U2) = d.

Proof. Recall that G̃ is the graph constructed from G by contracting U1 and U2

into v1 and v2, respectively. It is easy to see that G̃ is prime. Prime interval graphs
have an interval order which is unique, up to complete reversal [34]. Hence, let us
refer to the order in Figure 5, where w.l.o.g. l(vend1 ) = 0, and l(vend2 ) > 0. vtot is
between vend1 and vend2 , so l(vend2 ) ≥ r1 + r2 + d − 1. Furthermore, according to the

length constraints, l(vend2 ) ≤ r2 + l(vshort2 ) and r(vlong1 ) ≤ r1 + d.

By Lemma 5.5, r(vlong1 ) − l(vshort2 ) = |vlong1 ∩ vshort2 | ≥ 1, so l(vend2 ) ≤ r2 +

r(vlong1 ) − 1 ≤ r1 + r2 + d − 1, yielding l(vend2 ) = r1 + r2 + d − 1, vlong1 = [0, r1 + d],
vshort2 = [r1 + d− 1, r1 + r2 + d− 1], and v2 = [r1 + d− 1, r1 + d].

In a similar way we prove vshort1 = [0, r1], v
long
2 = [r1− 1, r1 + r2 + d− 1], and the

result follows.

By Lemma 5.7, for a realization of the Fetters(d, r1, r2, U1, U2) which is straight
(or reversed) and located at (x, x+ r1 + r2 + d− 1), the only degrees of freedom are
reversals of the Switches.
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5.1.3. The frame. We now construct an element which divides an interval into
subintervals of prescribed lengths. Each subinterval is characterized by a distinct set
of intervals which contain it. This element will be used as a frame, into which the
moving and toggling elements will fit, and will have the desired degrees of freedom.

Let k = 2r − 1 ≥ 3, and let x1, x2, . . . , xk be a sequence of real positive numbers
whose sum is s. Define Frame(x1, x2, . . . , xk) to be an instance P = (G(V,E), L, φ)
(see Figure 6) as follows:

• V = V α ∪ V β ∪ V γ consists of 3r + 3 vertices, where V α = {α1, α2, . . . , αk},
V β = {β1, β3, . . . , βk}, and V γ = {γ1, γ2, γ3, γ4}.

• The edges in G are
– γ2v for each v ∈ V ;
– γ4v for each v ∈ V α ∪ V β ;
– γ1β1 and γ3βk;
– αiβj for each 1 ≤ i, j ≤ k such that j is odd and |i− j| ≤ 1;
– βiβj for each 1 < i 6= j < k such that i, j are odd and |i− j| ≤ 2.

• The lengths are
– L(αi) = xi for each 1 ≤ i ≤ k;
– L(βi) = xi−1+xi+xi+1 for each odd i, 3 ≤ i ≤ k−2, and L(β1) = x1+x2,
L(βk) = xk−1 + xk;

– L(γ1) = L(γ3) = 0 and L(γ2) = L(γ4) = s.
• φ specifies αi to be open if i is odd and γ4 to be open but all other intervals

to be closed.

A realization of a Frame is said to be straight if γ1 is to the left of γ3. Otherwise
it is called reversed. Such a realization is located at the interval corresponding to γ4.

Lemma 5.8. V \ {β1, βk} is rigid in a Frame.

Proof. Let G′ be the subgraph of G induced on V α ∪ V β . It is easy to see that
G′ is prime and, hence, has a unique clique order [34]. Moreover, G′ has exactly k
maximal cliques, each one containing (among other vertices) a unique and distinct αi.
The set of maximal cliques in G is {N [αi]}ki=1; namely, each clique is distinguished
by a single αi. Since G′ is UCO, its unique clique order determines a unique linear
order on V α and, hence, also on the maximal cliques of G. Hence, G is UCO.

Let S and S′ be two realizations of the same Frame. Suppose γ1 = γ′1 are their
leftmost endpoints, respectively. The Frame graph is UCO; hence, the order of the
α-intervals is identical in both S and S′. Moreover,

∑k
i=1 L(αi) = s, and all the

α-intervals are disjoint and must be between γ′1 and γ′3, which are at distance exactly
s. Thus, the position of all α endpoints is uniquely determined. It is easy to see that
also all β-intervals except β1, βk must have identical position in both realizations.

By Lemma 5.8, for any straight (or reversed) realization of a Frame(x1, . . . , xk)
located at (x, x+s), the positions of all intervals except β1, βk are uniquely determined.

In the sequel, when we use a realization of such a Frame to implicitly define an
MIG instance, we shall assume that β1 and βk are contained in [x, x + s], so the
realization has the shortest possible length. In addition, when we use any gadget
in the implicit definition, and we describe its intervals by saying that “the gadget is
located at . . . ,” we mean that “a straight realization of the gadget is located at . . . .”

5.2. The reduction. The realization of an MIG instance is a polynomial wit-
ness for a “yes” instance; hence, MIG is in NP. We describe a reduction from 3-
coloring, which is NP-complete (see, e.g., [15]). Let G = (V,E) be an instance of
3-coloring. We construct an instance P = (T, L) of MIG (in implicit form) and
prove that P is a “yes” instance if and only if G is 3-colorable.
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Fig. 6. A graph of a Frame (top) and its realization (bottom). The Frame structure is rigid
and divides an interval into smaller intervals of prescribed lengths and positions.

The general plan is as follows: we construct measured interval subinstances for
each vertex and for each edge of G. The subinstance of a vertex is designed so that
it can be realized only in three possible ways, which will correspond to its color. The
subinstance for each edge will prevent the vertices at its endpoints from having the
same color.

5.2.1. The vertex subinstance. Let n = |V |, m = |E|, M = 24m + 11n + 1.
Define the following set S = ω ∪ δ ∪ ζ of intervals (compare Figures 7 and 8):

• ω = α ∪ β ∪ γ is a Frame(1, 4, 1, 4, 1), located at (0, 11).
• δ = δ1 ∪ δ2, where δj = {δij}5i=1, and each of δ1 and δ2 is a Switch(3), located

at (1, 2) and (7, 8), respectively. The superscripts match the vertex numbers
in each Switch.

• ζ = {ζtot, ζend1 , ζshort1 , ζlong1 , ζend2 , ζshort2 , ζlong2 } such that ζ ∪ δ1 ∪ δ2 is a
Fetters(6, 2M + 2, 2M − 7, δ1, δ2) located at (−2M, 2M).

Note that the intersection graph of ω ∪ ζ is prime.
For each interval I ∈ S let L(I) = |I|. The subinstance of each vertex is iso-

morphic to (S,L), and the Frames of the n vertices are laid out contiguously as
follows: for an interval J and a real number x, denote J + x = {y + x|y ∈ J}.
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Fig. 7. This is the set of intervals S. δ can be positioned in the frame. The distance between
δ1 and δ2 is enforced by the ζ.

Fig. 8. This is a sketch of the structure of a vertex. The Switches δ can be positioned in the
frame ω. The distance between δ1 and δ2 is enforced by the ζ.

Let V = {0, . . . , n − 1}. For each i ∈ V , J ∈ S denote J(i) = J + 11i. Denote
S(i) = {J(i)}J∈S and S = ∪i∈V S(i). Let PV be the measured interval graph defined
implicitly by S.

A realization of a vertex subinstance is called straight (respectively, reversed) if
the realization of its ω is straight (respectively, reversed).

Lemma 5.9. Let ∪i∈V S(i)′ be a realization of PV with S(i)′ = {J(i)′}J(i)∈S(i).
Then either every S(i)′ is straight or every S(i)′ is reversed.

Proof. It suffices to prove that l(γ1(i)
′) < l(γ3(i)

′) if and only if l(γ1(i + 1)′) <
l(γ3(i + 1)′). This follows from the identity of the zero-length intersecting intervals
γ1(i+ 1)′ and γ3(i)

′, and the disjointness of γ1(i)
′ and γ3(i+ 1)′, which are both, by

Lemma 5.8, at distance 11 from the former pair, respectively.
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Fig. 9. The three possible positions of δ1,δ2 in a vertex subinstance, which will correspond to
the three possible colors of the vertex.

Let S′ be a straight realization of PV . Define the function Col : V −→ R, as
follows:

Col(i) = l(δ31(i)
′
)− l(γ1(i)

′
)− 1.(2)

Call Col the coloring defined by S′. We now show that each vertex subgraph can be
realized in exactly three distinct colors. This is also demonstrated in Figure 9.

Lemma 5.10. For each i ∈ V : Col(i) ∈ {0, 1, 2}.
Proof. According to Lemma 5.8, in each straight S(i)′ the positions of the inter-

vals in α(i)′ relative to l(γ1(i)
′) are fixed. Assume w.l.o.g. l(γ1(i)

′) = 0. For each
J ∈ δ1(i)

′, J ⊆ [1, 5], and for each J ∈ δ2(i)
′, then J ⊆ [6, 10]. By Lemma 5.4,

Length(δ1(i)) = Length(δ2(i)) = 3. Hence (compare Figure 9) the following hold:

if δ1(i)
′ is straight, then 1 ≤ l(δ31(i)′) ≤ 2;(3)

if δ1(i)
′ is reversed, then 3 ≤ l(δ31(i)′) ≤ 4;(4)

if δ2(i)
′ is straight, then 6 ≤ l(δ32(i)′) ≤ 7;(5)

if δ2(i)
′ is reversed, then 8 ≤ l(δ32(i)′) ≤ 9.(6)

But according to Lemma 5.7,

l(δ31(i)′)− l(δ32(i)′) = 6.(7)

Therefore,

l(δ31(i)′) ∈ {1, 2, 3}(8)

and Col(i) ∈ {0, 1, 2}.
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Fig. 10. This is a functional sketch of the edge subinstance. The two Switches D can only
reverse in their relative fixed positions inside the moving frame. Their distances from the corre-
sponding Switches in the vertices i, j, respectively, are fixed. The moving frame itself can have
different positions along the fixed frame.

5.2.2. The edge subinstance. Let the edges of G be E = {e0, . . . , em−1}, and
let ek = (i, j) be an edge in E, where i < j. For each edge ek we construct an edge
subinstance that forces the colors of the vertices i and j to be different.

We first give an overview of this construction (compare Figure 10): each edge is
assigned a fixed Frame w which contains two Switches, D1 and D2, which are the
heart of its subinstance. The Frames of the edges are laid out contiguously to the
right of the vertex Frames. The subinstance is a collection of intervals {A0} ∪W ∪
D ∪ Y ∪ Z ∪ w designed so that the following hold:

1. D1 and δ1(i) are kept at a fixed distance (this is done by the Y intervals).
2. D2 and δ1(j) are kept at a fixed distance (this is done by Z).
3. D1 and D2 are restricted to be in one of four possible relative positions,

allowing the four possible color differences between the vertices i and j (this
is done by W ).

4. D1 and D2 together can undergo a translation, allowing the six possible color
combinations of the vertices i and j, as demonstrated in Figure 12 (this is
done by A0 and w).

We now describe the construction in detail (compare Figure 11): define the fol-
lowing set X(k) = {A0(k)} ∪W (k) ∪ D(k) ∪ Y (k) ∪ Z(k) ∪ w(k) of intervals. Let
Base(k) = 18k + 11n. For readability, we omit the parameter k whenever possible.

• w = a ∪ b ∪ c is a Frame(5, 12, 1), located at (0, 18) +Base(k).
• A0 = [3, 7] +Base(k).
• W = A ∪B ∪ C is a Frame(1, 2, 1, 4, 1), located at (7, 16) +Base(k).
• D = D1 ∪D2, where Dj = {Di

j}5i=1, and
– D1 is a Switch(2) located at (8, 9) +Base(k),
– D2 is a Switch(4) located at (11, 12) +Base(k).

• Define dY (k, i) = Base(k) + 8− (11i+ 2) = 11(n− i) + 18k + 6.

Y = {Y tot, Y end
1 , Y short

1 , Y long
1 , Y end

2 , Y short
2 , Y long

2 } such that Y ∪D1 ∪ δ1(i)
is the Fetters(dY (k, i) + 1, 6k + 5 + 11i + 2,M − 6k + 4 − (11n + 18k + 8),
δ1(i), D1) located at (−6k − 5,M − 6k + 4).

• Define dZ(k, j) = Base(k) + 11− (11j + 1) = 11(n− j) + 18k + 10.

Z = {Ztot, Zend
1 , Zshort

1 , Zlong
1 , Zend

2 , Zshort
2 , Zlong

2 } such that Z∪D2∪δ1(j) is
the Fetters(dZ(k, j), 6k+3+11j+1+1,M−6k−(11n+18k+11), δ1(j), D2)
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Fig. 11. The edge subinstance: a moving frame can be positioned inside the fixed frame. The
Switches D1 and D2 are positioned inside the moving frame. Each of D1 and D2 is connected to
its vertex subinstance via Fetters.

located at (−6k − 3,M − 6k).
The length function on the subinstance (X,L) is defined so that L(I) = |I| for

all intervals except the Y ’s in which we set

L(Y short
1 ) = |Y short

1 |+ 1, L(Y long
2 ) = |Y long

2 | − 1.

This change, together with the +1 in the first parameter of the Fetters of Y , forces
a +1 shift on the location of δ1(i). This shift will be crucial in forcing the vertices i
and j to have different colors.

Note that the intersection graph of X(k) − D(k) is prime. Note also that the
left and right ends of the Fetters subinstances Y and Z are positioned way beyond
the contiguous Frames in all edge subinstances and vertex subinstances. This allows
every Fetters to move independently, and no vertex or edge subgraph is a module.

Denote X = ∪ei∈EX(i). Let X′ = ∪J∈XJ
′ be a set of intervals with the same

intersection graph as of X, which satisfy the corrected length constraints, where
X(i)′ = {J(i)′}J(i)∈X(i). Call X(i)′ a straight (respectively, reversed) realization if the
frame w(i)′ is straight (respectively, reversed). A proof similar to that of Lemma 5.9
implies Lemma 5.11.

Lemma 5.11. For each 1 ≤ i < j ≤ m, X(i)′ is straight if and only if X(j)′ is
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straight.
The complete constructed instance is P = (S ∪ X, L), where the interval lengths

L are implicit in each of the two types of subgraphs, and the only exception is the
corrected length in the Y (k)’s. Due to this exception, simple superimposition of S

and X does not give a realization.
Lemma 5.12. If S′ ∪ X′ is a realization of P for which S′ is straight, then X′ is

straight.
Proof. Recall that c1(1) and γ3(n) are the leftmost and the rightmost zero length

intervals in the leftmost edge subinstance and the rightmost vertex subinstance, re-
spectively. Suppose, to the contrary, that X′ is not straight. The zero-length in-
tersecting intervals c1(1)′ and γ3(n)′ must be identical. Without loss of generality,
c1(1)′ = γ3(n)′ = [0, 0]. Then c2(1)′ = [−18, 0], γ1(n)′ = [−11,−11], and these two
intervals intersect, in contradiction to our constructed interval graph.

Lemma 5.13. If ek = (i, j), then for every realization S′ ∪ X′ of P, Col(i) 6=
Col(j).

Proof. Assume w.l.o.g. that the realization is straight, and that l(c1(k)
′
) =

Base(k). Again, we omit the parameter k whenever possible. Surely

l(C1
′) ≤ r(A0

′) < r(a1
′) + 4 = 9 +Base(k).(9)

The first inequality follows since C ′
1 and A′

0 must intersect, the second inequality
follows since A′

0 and a′1 should intersect, and the last equality follows since w′ is rigid
(Lemma 5.8). Since Length(W ) = |W ′| = 9, we conclude that W ′ = A′ ∪ B′ ∪ C ′ is
straight.

According to Lemma 5.8 the relative positions of all the intervals in the Frame
(except B′

1 and B′
5) are fixed relative to l(C ′

1). The realization for each of D1 and
D2 can be either straight or reversed, giving rise to four possible combinations of
positions. (Any of these combinations fixes the positions of D′ with respect to l(C ′

1).)
In particular,

l(D3
2
′)− l(D3

1
′) ∈ {2, 3, 5, 6}.(10)

Due to Lemma 5.7 and the realization being straight,

l(δ31(j)′)− l(δ31(i)′)(11)

= (l(D3
2
′)− dZ(k, j))− (l(D3

1
′)− dY (k, i))(12)

= (l(D3
2
′)− (11(n− j) + 18k + 10))− (l(D3

1
′)− (11(n− i) + 18k + 6))(13)

= l(D3
1
′)− l(D3

1
′)− 4 + 11(j − i) ∈ {11(j − i)± 1, 11(j − i)± 2}.(14)

Therefore,

Col(j)− Col(i)(15)

= (l(δ31(j)
′
)− l(γ1(j))

′ − 1)− (l(δ31(i)
′
)− l(γ1(i))

′ − 1)(16)

= l(δ31(j)′)− l(δ31(i)′)− 11j + 11i ∈ {±1,±2}.(17)

Corollary 5.14. If P is a “yes” instance, then G is 3-colorable.
Proof. If P is a measured interval graph, then it has a straight realization (since

the realization can be reversed completely). Define the coloring Col : V −→ {0, 1, 2}
as described in (2). By Lemma 5.13, Col is a proper 3-coloring of G.

Let us now prove the converse.
Lemma 5.15. If G is 3-colorable, then P admits a realization.
Proof. Let Col : V → {0, 1, 2} be a proper 3-coloring of G. We build a realization

S′ ∪ X′ for the instance P as follows:
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Fig. 12. The relative position of D3
1 and D3

2 forces the colors of the vertices to be different.

1. For the vertex i ∈ V with Col(i) = x, position its Switches δ′1, δ
′
2 as follows

(compare Figure 9):
• if x = 0 then δ′1 = δ1, δ

′
2 = δ2;

• if x = 1 then δ′1 = δ1 + 1, δ′2 = −δ2 − 1;
• if x = 2 then δ′1 = −δ1, δ′2 = −δ2.

The rest of the intervals in the vertex subgraph are positioned accordingly
(cf. Lemma 5.10).

2. For the edge ek = (i, j) with y = Col(j) − Col(i), the directions of the
Switches D1(k)

′ and D2(k)
′ in the realization are determined by y, thus

fixing the distance between D3
1(k)

′ and D3
1(k)

′. The absolute position of
these Switches is determined according to Col(i) and Col(j) as follows in
Table 1 (compare Figure 12):

S′ ∪X′ and S∪X have the same intersection graph, all interval lengths match the
prescribed lengths, and their endpoints meet the specification.
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Table 1

Col(i) Col(j) D1(k)′ D2(k)′
0 1 −D1(k)′ − 2 −D2(k)′ − 2
0 2 D1(k)′ − 1 −D2(k)′ − 1
1 0 D1(k)′ D2(k)′
1 2 −D1(k)′ − 1 −D2(k)′ − 1
2 0 −D1(k)′ D2(k)′
2 1 D1(k)′ + 1 D2(k)′ + 1

From Lemma 5.15 and Corollary 5.14 we can finally conclude Theorem 5.16.
Theorem 5.16. MIG is NP-complete.
In fact, the same reduction implies strong NP-completeness, because 3-coloring

is strongly NP-complete, and the reduction is also pseudopolynomial.

5.3. Closing the open intervals. We have proved that recognizing a measured
interval graph with specified endpoints is NP-complete. We now show that this prob-
lem is hard even where all the intervals are closed. Given an instance P = (G,L, φ) of
MIG, define a new instance P ′ = (G,L′) of MIG∗ (in which all intervals are closed),
as follows: let n = |V (G)|, and fix ε < 1

20n2 .

L′(v) =

{
L(v) if v is closed,
L(v)− 2ε if v is open.

(18)

Let P be an instance generated by the reduction in section 5.2. We shall prove that
P has a realization if and only if P′ has one.

First, we observe that the construction introduced in the proof of Theorem 5.16
has a special property: let S be a realization in which the shortest nonzero length of
an interval is C. S is called discrete if all the endpoints of its intervals are integer
multiples of C. In that case, C is called the grid size of S.

Remark 5.17. By the proofs of Lemma 5.15 and Corollary 5.14, P has a realiza-
tion if and only if it has a discrete realization, with grid size 1

2 .
Lemma 5.18. If P has a realization, then P′ has one.
Proof. If P has a realization, then by Remark 5.17 it has a discrete realization

{Iv}v∈V (G) with grid size 1
2 . Construct the set of closed intervals {I ′v}v∈V (G) defined

as follows: if Iv is closed, let I ′v = Iv. If Iv is open, let I ′v = [l(Iv) + ε, r(Iv)− ε].
We assume that this set is a realization of P′: since P is discrete, the intervals

Iv and Iu intersect if and only if I ′v and I ′u intersect, since if one (or both) of Iv, Iu
is open, then their overlap is at least 1

2 . Furthermore, clearly |I ′v| = L′(v) for every
v ∈ V .

Unfortunately, the converse of Lemma 5.18 does not always hold for arbitrary
MIG instances, as demonstrated in Figure 13. We shall prove that the converse does
hold for instances generated by the reduction in section 5.2.

Define the following order-oriented analogue of MIG and MIG∗, respectively.
Recognizing a measured interval order with specified end-
points (MIO):
INSTANCE: A partial order ≺ on a set V , a nonnegative length
L(v) for every v ∈ V , and a function φ : V → {open, closed}.
QUESTION: Is there an interval realization of (V,≺) in which the
length of Iv is exactly L(v), and Iv is open if and only if φ(v) = open?

MIO∗ is the restriction of MIO to instances with all intervals closed. MIO∗ can
be solved in polynomial time [19, 24, 32], and that solution can be generalized to deal
with open intervals and solve MIO as well.
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Fig. 13. In the MIG instance P on the left, the numbers denote lengths, and the four intervals
corresponding to the vertices marked “o” should be open. P has no realization, but P ′ has one, as
shown on the right.

We need to generalize the notion of rigidness in the following manner.

Definition 5.19. For a real p ≥ 0, two realizations {Ij} and {I ′j} of the same
interval graph are p-isometric if there exists a function f(x) = s · x + c where s =
±1, c ∈ R, and constants cj, |cj | < p such that f(Ij) + cj = I ′j for all j. We call
U ⊆ V (G) p-rigid in an MIO instance if in any two realizations of the instance, the
sets of intervals realizing U are p-isometric. Note that in this case all endpoints of
U are located at fixed distances from the leftmost endpoint, up to ±p. Hence, every
realization has the same length, up to ±p.

For an instance Q of MIO, define the following system of inequalities S(Q) on
the variables {lv}v∈V :

• If x≺y, and both x, y are closed, lx + L(x) < ly.
• If x≺y, and at least one of x, y is open, lx + L(x) ≤ ly.
• If x ∩ y 6= /o, and both x, y are closed, lx + L(x) ≥ ly.
• If x ∩ y 6= /o, and at least one of x, y is open, lx + L(x) > ly.

Q has a realization if and only if S(Q) has a feasible solution, since the left
endpoints of the realization satisfy S(Q), and vice versa. Recall that D(S(Q)) is the
distance graph of S(Q), as in the proof of Lemma 3.2, and denote it D(Q) for short.

Lemma 5.20. Let Q be an instance of MIO. If U is a strongly connected com-
ponent in the union of all zero-weight cycles in D(Q), then U is rigid in Q.

Proof. For vertices x, y ∈ U , there is a zero-weight cycle c in D(Q) passing through
both x and y. Let d (resp., −d) be the weight of the path from x to y (resp., y to x)
along c. Summing the inequalities in S(Q) along the two paths we get ly ≤ lx+d and
lx ≤ ly − d, respectively, implying ly − lx = d. Since every realization must satisfy
S(Q) for every realization ly − lx = d, then U is rigid.

The converse holds as well.

Lemma 5.21. Let Q be a realizable instance of MIO, with U rigid in Q. Then
for each x, y ∈ U there is a zero-weight cycle in D(Q) containing both x and y.

Proof. Suppose to the contrary x, y ∈ U and there is no zero-weight cycle in D(Q)
containing both x and y. Either there is a cycle in D(Q) through x and y or there is
no such cycle.

If there is no cycle in D(Q) through x and y, then w.l.o.g. there is no path in
D(Q) from x to y. Let W ⊆ V \ {x} be the set of all vertices in V to which there is
a path from y in D(Q) (including y itself). Then Q does not contain any inequalities
v < w + C or v ≤ w + C for w ∈ W , v ∈ V \W . Let {Iv}v∈V be a realization for
Q. Then {Iw−1}w∈W ∪{Iv}v∈V \W also realizes Q, with a different distance between
the intervals corresponding to x and to y, contradicting the rigidness of U in Q.

If there exists a cycle in D(Q) through x and y, then let c be such a cycle
of minimum weight, and let l = w(c). By assumption l 6= 0, and since Q has a
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realization, by Corollary 3.3 l > 0. Let d be the weight of the path from x to y
along c. For every ∆, d− l < ∆ < d, consider a new directed graph D′(∆) obtained
from D(Q) by adding two arcs xy and yx, both labeled ≤, with weights ∆ and −∆,
respectively. Observe that adding the two arcs does not introduce into the graph any
cycles of negative-weight or zero-weight cycles with strict arcs. Hence, the augmented
system corresponding to D′(∆) has a realization. Moreover, in every realization of
D′(∆), the distance between the left endpoints of x and y is ∆. By choosing different
values of ∆, we contradict the rigidness of U .

We can now generalize Lemma 5.20.
Lemma 5.22. Let Q be a realizable instance of MIO. For a nonnegative p, let C

be a union of cycles in D(Q), each of weight less than p. If U is a strongly connected
component in C, then U is |U |p-rigid in Q.

Proof. For vertices x, y ∈ U , by the definition of U , there is a simple path
P0 : x = x1, x2, . . . , xk = y in C. Every edge xixi+1 is in C; therefore, there exists a
path Pi in C from xi+1 to xi s.t. xixi+1 and Pi form a cycle in C. The concatenation
of Pk−1, Pk−2, . . . , P1 is a path P from y to x in C. Moreover, the concatenation
of P0 and P is a cycle c in C (not necessarily simple) of weight at most (k − 1)p.
Let d = w(P0), d

′ = w(P ), and q = |U |p. Since k ≤ |U |, we have established that
w(c) = w(P0) + w(P ) = d + d′ ≤ q. Since Q is realizable, d + d′ ≥ 0. Hence,
−d ≤ d′ ≤ q− d. Summing the inequalities in S(Q) along the two paths P0 and P we
get ly ≤ lx + d and lx ≤ ly + d′, respectively. Any realization {lx}x∈V of Q satisfies
S(Q), so −d ≤ lx − ly ≤ d′ ≤ −d+ q. Hence, any two realizations are q-isometric.

Lemma 5.23. Let Q = (≺, L, φ) be an MIO instance, and let Q′ = (≺, L′) be
the corresponding MIO∗ instance (obtained by the transformation in (18)). Suppose
U ⊆ V (≺) is rigid in Q, and let n = |V (≺)|. If n2ε < 1

2 then U is 2n2ε-rigid in Q′.
Proof. The weight of each arc in D(Q′) changes by no more than 2ε, compared

with D(Q). Hence, the weight of every simple cycle changes by at most 2nε. U is
rigid in Q; hence, by Lemma 5.21 it is contained in a strongly connected component
W of a union of zero-weight cycles in D(Q). W is also a union of simple zero-weight
cycles in D(Q). The weight of each such cycle in D(Q′) is at most 2nε. Hence, by
Lemma 5.22, W is 2|W |nε-rigid in Q′, and so is U .

We now return to the instance P generated by the reduction in the proof of
Theorem 5.16. Recall that P′ is the instance obtained from P by the transformation
(18). Suppose P′ has a realization. Let ≺ be the corresponding interval order, and let
Q = (≺, L, φ) and Q′ = (≺, L′). Consider each of our gadgets: By Lemma 5.4, every
Switch is rigid in Q. A slight modification of Lemma 5.7 shows that every Fetters
must be rigid in Q (since the directions of the Switches are set). By Lemma 5.8 every
Frame is rigid in Q, with the exception of its end β-intervals. Hence, each of these
gadgets is 2n2ε-rigid in Q′ by Lemma 5.23. This imposes, up to small additive shifts,
the relative positions of the intervals in each vertex (or edge) subinstance. Define
the function Col as in (2). We shall show that the choice of ε makes these shifts
sufficiently small so that the properties of the coloring are preserved.

Lemma 5.24. For each i ∈ V there exist Ci, |Ci| < 4n2ε s.t. Col(i) + Ci ∈
{0, 1, 2}.

Proof. The proof is analogous to Lemma 5.10: relations (3)–(7) hold up to ±2n2ε.
Hence, (8) holds up to ±4n2ε.

Lemma 5.25. For every edge (i, j), |Col(i)− Col(j)| ≥ 1− 8n2ε.
Proof. The proof is analogous to Lemma 5.13: relations (9)–(14) hold up to±2n2ε.

Relations (15)–(17) hold up to ±8n2ε, because they involve up to four differences of
endpoint distances.
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Let round(x) be the integer closest to x. Recall that ε < 1
20n2 . By Lemma 5.24

|Col(i) − round(Col(i))| < 0.2. By Lemma 5.25, for every edge (i, j), |Col(i) −
Col(j)| ≥ 0.6. Hence, round(Col(i)) 6= round(Col(j)). This proves that if there
exists a realization to P′, by rounding the colors to the nearest integer we obtain a
proper 3-coloring. By Lemma 5.15 this implies the existence of a realization to P.
Thus, P has a realization if and only if P′ has one. Since the transformation described
in (18) is polynomial, we conclude the following theorem.

Theorem 5.26. MIG∗ is NP-complete.

5.4. Related problems. In section 1 we introduced the recognition problem of
interval graph with individual lower and upper bounds on interval lengths (the BIG
problem). Since MIG∗ is a restriction of BIG and DCIG, Corollary 5.27 holds.

Corollary 5.27. BIG and DCIG are NP-complete.

When restricted to interval graphs with depth 0 decomposition trees (see [23]
for a definition of the decomposition tree), i.e., to prime interval graphs, the MIG
problem can be solved in polynomial time, using the algorithm devised in section 3
for UCO graphs. This depth bound is indeed tight; namely, when allowing deeper
decomposition trees the problem is NP-complete.

Proposition 5.28. MIG is NP-complete even when restricted to interval graphs
with decomposition tree of depth 1.

Proof. We shall see that besides the Switches δi(j) and Di(k), and the K2

modules {c3(k), c1(k + 1)}, {γ3(i), γ1(i + 1)}, and {γ3(n − 1), c1(0)} there are no
nontrivial modules in the interval graph constructed by the reduction in the proof
of Theorem 5.26: let H be the graph obtained by contraction of the above modules.
Suppose to the contrary that H contains a nontrivial module M , and suppose v, u ∈
M . If v, u are in the same vertex subgraph (or in the same edge subgraph) HU , then
M∩U is a nontrivial module in HU , contradicting the primality of the vertex subgraph
(and the edge subgraph). Hence, u, v are in different vertex/edge subgraphs. In this
case, there are intervals in these subgraphs, which intersect only one out of u, v, in
contradiction to M being a module.
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